summaryrefslogtreecommitdiff
path: root/drivers/cpuidle/governors/menu.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/cpuidle/governors/menu.c')
-rw-r--r--drivers/cpuidle/governors/menu.c114
1 files changed, 65 insertions, 49 deletions
diff --git a/drivers/cpuidle/governors/menu.c b/drivers/cpuidle/governors/menu.c
index e26a40971b26..575a68f31761 100644
--- a/drivers/cpuidle/governors/menu.c
+++ b/drivers/cpuidle/governors/menu.c
@@ -124,7 +124,6 @@ struct menu_device {
int tick_wakeup;
unsigned int next_timer_us;
- unsigned int predicted_us;
unsigned int bucket;
unsigned int correction_factor[BUCKETS];
unsigned int intervals[INTERVALS];
@@ -197,10 +196,11 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
* of points is below a threshold. If it is... then use the
* average of these 8 points as the estimated value.
*/
-static unsigned int get_typical_interval(struct menu_device *data)
+static unsigned int get_typical_interval(struct menu_device *data,
+ unsigned int predicted_us)
{
int i, divisor;
- unsigned int max, thresh, avg;
+ unsigned int min, max, thresh, avg;
uint64_t sum, variance;
thresh = UINT_MAX; /* Discard outliers above this value */
@@ -208,6 +208,7 @@ static unsigned int get_typical_interval(struct menu_device *data)
again:
/* First calculate the average of past intervals */
+ min = UINT_MAX;
max = 0;
sum = 0;
divisor = 0;
@@ -218,8 +219,19 @@ again:
divisor++;
if (value > max)
max = value;
+
+ if (value < min)
+ min = value;
}
}
+
+ /*
+ * If the result of the computation is going to be discarded anyway,
+ * avoid the computation altogether.
+ */
+ if (min >= predicted_us)
+ return UINT_MAX;
+
if (divisor == INTERVALS)
avg = sum >> INTERVAL_SHIFT;
else
@@ -286,10 +298,9 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
struct menu_device *data = this_cpu_ptr(&menu_devices);
int latency_req = cpuidle_governor_latency_req(dev->cpu);
int i;
- int first_idx;
int idx;
unsigned int interactivity_req;
- unsigned int expected_interval;
+ unsigned int predicted_us;
unsigned long nr_iowaiters, cpu_load;
ktime_t delta_next;
@@ -298,50 +309,36 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
data->needs_update = 0;
}
- /* Special case when user has set very strict latency requirement */
- if (unlikely(latency_req == 0)) {
- *stop_tick = false;
- return 0;
- }
-
/* determine the expected residency time, round up */
data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length(&delta_next));
get_iowait_load(&nr_iowaiters, &cpu_load);
data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
+ if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
+ ((data->next_timer_us < drv->states[1].target_residency ||
+ latency_req < drv->states[1].exit_latency) &&
+ !drv->states[0].disabled && !dev->states_usage[0].disable)) {
+ /*
+ * In this case state[0] will be used no matter what, so return
+ * it right away and keep the tick running.
+ */
+ *stop_tick = false;
+ return 0;
+ }
+
/*
* Force the result of multiplication to be 64 bits even if both
* operands are 32 bits.
* Make sure to round up for half microseconds.
*/
- data->predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
+ predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
data->correction_factor[data->bucket],
RESOLUTION * DECAY);
-
- expected_interval = get_typical_interval(data);
- expected_interval = min(expected_interval, data->next_timer_us);
-
- first_idx = 0;
- if (drv->states[0].flags & CPUIDLE_FLAG_POLLING) {
- struct cpuidle_state *s = &drv->states[1];
- unsigned int polling_threshold;
-
- /*
- * Default to a physical idle state, not to busy polling, unless
- * a timer is going to trigger really really soon.
- */
- polling_threshold = max_t(unsigned int, 20, s->target_residency);
- if (data->next_timer_us > polling_threshold &&
- latency_req > s->exit_latency && !s->disabled &&
- !dev->states_usage[1].disable)
- first_idx = 1;
- }
-
/*
* Use the lowest expected idle interval to pick the idle state.
*/
- data->predicted_us = min(data->predicted_us, expected_interval);
+ predicted_us = min(predicted_us, get_typical_interval(data, predicted_us));
if (tick_nohz_tick_stopped()) {
/*
@@ -352,34 +349,46 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
* the known time till the closest timer event for the idle
* state selection.
*/
- if (data->predicted_us < TICK_USEC)
- data->predicted_us = ktime_to_us(delta_next);
+ if (predicted_us < TICK_USEC)
+ predicted_us = ktime_to_us(delta_next);
} else {
/*
* Use the performance multiplier and the user-configurable
* latency_req to determine the maximum exit latency.
*/
- interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
+ interactivity_req = predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
if (latency_req > interactivity_req)
latency_req = interactivity_req;
}
- expected_interval = data->predicted_us;
/*
* Find the idle state with the lowest power while satisfying
* our constraints.
*/
idx = -1;
- for (i = first_idx; i < drv->state_count; i++) {
+ for (i = 0; i < drv->state_count; i++) {
struct cpuidle_state *s = &drv->states[i];
struct cpuidle_state_usage *su = &dev->states_usage[i];
if (s->disabled || su->disable)
continue;
+
if (idx == -1)
idx = i; /* first enabled state */
- if (s->target_residency > data->predicted_us) {
- if (data->predicted_us < TICK_USEC)
+
+ if (s->target_residency > predicted_us) {
+ /*
+ * Use a physical idle state, not busy polling, unless
+ * a timer is going to trigger soon enough.
+ */
+ if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
+ s->exit_latency <= latency_req &&
+ s->target_residency <= data->next_timer_us) {
+ predicted_us = s->target_residency;
+ idx = i;
+ break;
+ }
+ if (predicted_us < TICK_USEC)
break;
if (!tick_nohz_tick_stopped()) {
@@ -389,7 +398,7 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
* tick in that case and let the governor run
* again in the next iteration of the loop.
*/
- expected_interval = drv->states[idx].target_residency;
+ predicted_us = drv->states[idx].target_residency;
break;
}
@@ -403,7 +412,7 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
s->target_residency <= ktime_to_us(delta_next))
idx = i;
- goto out;
+ return idx;
}
if (s->exit_latency > latency_req) {
/*
@@ -412,7 +421,7 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
* expected idle duration so that the tick is retained
* as long as that target residency is low enough.
*/
- expected_interval = drv->states[idx].target_residency;
+ predicted_us = drv->states[idx].target_residency;
break;
}
idx = i;
@@ -426,7 +435,7 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
* expected idle duration is shorter than the tick period length.
*/
if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
- expected_interval < TICK_USEC) && !tick_nohz_tick_stopped()) {
+ predicted_us < TICK_USEC) && !tick_nohz_tick_stopped()) {
unsigned int delta_next_us = ktime_to_us(delta_next);
*stop_tick = false;
@@ -450,10 +459,7 @@ static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
}
}
-out:
- data->last_state_idx = idx;
-
- return data->last_state_idx;
+ return idx;
}
/**
@@ -512,9 +518,19 @@ static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
* duration predictor do a better job next time.
*/
measured_us = 9 * MAX_INTERESTING / 10;
+ } else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
+ dev->poll_time_limit) {
+ /*
+ * The CPU exited the "polling" state due to a time limit, so
+ * the idle duration prediction leading to the selection of that
+ * state was inaccurate. If a better prediction had been made,
+ * the CPU might have been woken up from idle by the next timer.
+ * Assume that to be the case.
+ */
+ measured_us = data->next_timer_us;
} else {
/* measured value */
- measured_us = cpuidle_get_last_residency(dev);
+ measured_us = dev->last_residency;
/* Deduct exit latency */
if (measured_us > 2 * target->exit_latency)