diff options
author | Jason Gunthorpe <jgg@mellanox.com> | 2018-08-16 23:13:03 +0300 |
---|---|---|
committer | Jason Gunthorpe <jgg@mellanox.com> | 2018-08-16 23:21:29 +0300 |
commit | 0a3173a5f09bc58a3638ecfd0a80bdbae55e123c (patch) | |
tree | d6c0bc84863cca54dfbde3b7463e5d49c82af9f1 /net/sched/sch_cake.c | |
parent | 92f4e77c85918eab5e5803d7e28ab89a7e6bd3a2 (diff) | |
parent | 5c60a7389d795e001c8748b458eb76e3a5b6008c (diff) | |
download | linux-0a3173a5f09bc58a3638ecfd0a80bdbae55e123c.tar.xz |
Merge branch 'linus/master' into rdma.git for-next
rdma.git merge resolution for the 4.19 merge window
Conflicts:
drivers/infiniband/core/rdma_core.c
- Use the rdma code and revise with the new spelling for
atomic_fetch_add_unless
drivers/nvme/host/rdma.c
- Replace max_sge with max_send_sge in new blk code
drivers/nvme/target/rdma.c
- Use the blk code and revise to use NULL for ib_post_recv when
appropriate
- Replace max_sge with max_recv_sge in new blk code
net/rds/ib_send.c
- Use the net code and revise to use NULL for ib_post_recv when
appropriate
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Diffstat (limited to 'net/sched/sch_cake.c')
-rw-r--r-- | net/sched/sch_cake.c | 3020 |
1 files changed, 3020 insertions, 0 deletions
diff --git a/net/sched/sch_cake.c b/net/sched/sch_cake.c new file mode 100644 index 000000000000..35fc7252187c --- /dev/null +++ b/net/sched/sch_cake.c @@ -0,0 +1,3020 @@ +// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause + +/* COMMON Applications Kept Enhanced (CAKE) discipline + * + * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com> + * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk> + * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com> + * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de> + * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk> + * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au> + * + * The CAKE Principles: + * (or, how to have your cake and eat it too) + * + * This is a combination of several shaping, AQM and FQ techniques into one + * easy-to-use package: + * + * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE + * equipment and bloated MACs. This operates in deficit mode (as in sch_fq), + * eliminating the need for any sort of burst parameter (eg. token bucket + * depth). Burst support is limited to that necessary to overcome scheduling + * latency. + * + * - A Diffserv-aware priority queue, giving more priority to certain classes, + * up to a specified fraction of bandwidth. Above that bandwidth threshold, + * the priority is reduced to avoid starving other tins. + * + * - Each priority tin has a separate Flow Queue system, to isolate traffic + * flows from each other. This prevents a burst on one flow from increasing + * the delay to another. Flows are distributed to queues using a + * set-associative hash function. + * + * - Each queue is actively managed by Cobalt, which is a combination of the + * Codel and Blue AQM algorithms. This serves flows fairly, and signals + * congestion early via ECN (if available) and/or packet drops, to keep + * latency low. The codel parameters are auto-tuned based on the bandwidth + * setting, as is necessary at low bandwidths. + * + * The configuration parameters are kept deliberately simple for ease of use. + * Everything has sane defaults. Complete generality of configuration is *not* + * a goal. + * + * The priority queue operates according to a weighted DRR scheme, combined with + * a bandwidth tracker which reuses the shaper logic to detect which side of the + * bandwidth sharing threshold the tin is operating. This determines whether a + * priority-based weight (high) or a bandwidth-based weight (low) is used for + * that tin in the current pass. + * + * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly + * granted us permission to leverage. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/jiffies.h> +#include <linux/string.h> +#include <linux/in.h> +#include <linux/errno.h> +#include <linux/init.h> +#include <linux/skbuff.h> +#include <linux/jhash.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/reciprocal_div.h> +#include <net/netlink.h> +#include <linux/version.h> +#include <linux/if_vlan.h> +#include <net/pkt_sched.h> +#include <net/pkt_cls.h> +#include <net/tcp.h> +#include <net/flow_dissector.h> + +#if IS_ENABLED(CONFIG_NF_CONNTRACK) +#include <net/netfilter/nf_conntrack_core.h> +#endif + +#define CAKE_SET_WAYS (8) +#define CAKE_MAX_TINS (8) +#define CAKE_QUEUES (1024) +#define CAKE_FLOW_MASK 63 +#define CAKE_FLOW_NAT_FLAG 64 + +/* struct cobalt_params - contains codel and blue parameters + * @interval: codel initial drop rate + * @target: maximum persistent sojourn time & blue update rate + * @mtu_time: serialisation delay of maximum-size packet + * @p_inc: increment of blue drop probability (0.32 fxp) + * @p_dec: decrement of blue drop probability (0.32 fxp) + */ +struct cobalt_params { + u64 interval; + u64 target; + u64 mtu_time; + u32 p_inc; + u32 p_dec; +}; + +/* struct cobalt_vars - contains codel and blue variables + * @count: codel dropping frequency + * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1 + * @drop_next: time to drop next packet, or when we dropped last + * @blue_timer: Blue time to next drop + * @p_drop: BLUE drop probability (0.32 fxp) + * @dropping: set if in dropping state + * @ecn_marked: set if marked + */ +struct cobalt_vars { + u32 count; + u32 rec_inv_sqrt; + ktime_t drop_next; + ktime_t blue_timer; + u32 p_drop; + bool dropping; + bool ecn_marked; +}; + +enum { + CAKE_SET_NONE = 0, + CAKE_SET_SPARSE, + CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */ + CAKE_SET_BULK, + CAKE_SET_DECAYING +}; + +struct cake_flow { + /* this stuff is all needed per-flow at dequeue time */ + struct sk_buff *head; + struct sk_buff *tail; + struct list_head flowchain; + s32 deficit; + u32 dropped; + struct cobalt_vars cvars; + u16 srchost; /* index into cake_host table */ + u16 dsthost; + u8 set; +}; /* please try to keep this structure <= 64 bytes */ + +struct cake_host { + u32 srchost_tag; + u32 dsthost_tag; + u16 srchost_refcnt; + u16 dsthost_refcnt; +}; + +struct cake_heap_entry { + u16 t:3, b:10; +}; + +struct cake_tin_data { + struct cake_flow flows[CAKE_QUEUES]; + u32 backlogs[CAKE_QUEUES]; + u32 tags[CAKE_QUEUES]; /* for set association */ + u16 overflow_idx[CAKE_QUEUES]; + struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */ + u16 flow_quantum; + + struct cobalt_params cparams; + u32 drop_overlimit; + u16 bulk_flow_count; + u16 sparse_flow_count; + u16 decaying_flow_count; + u16 unresponsive_flow_count; + + u32 max_skblen; + + struct list_head new_flows; + struct list_head old_flows; + struct list_head decaying_flows; + + /* time_next = time_this + ((len * rate_ns) >> rate_shft) */ + ktime_t time_next_packet; + u64 tin_rate_ns; + u64 tin_rate_bps; + u16 tin_rate_shft; + + u16 tin_quantum_prio; + u16 tin_quantum_band; + s32 tin_deficit; + u32 tin_backlog; + u32 tin_dropped; + u32 tin_ecn_mark; + + u32 packets; + u64 bytes; + + u32 ack_drops; + + /* moving averages */ + u64 avge_delay; + u64 peak_delay; + u64 base_delay; + + /* hash function stats */ + u32 way_directs; + u32 way_hits; + u32 way_misses; + u32 way_collisions; +}; /* number of tins is small, so size of this struct doesn't matter much */ + +struct cake_sched_data { + struct tcf_proto __rcu *filter_list; /* optional external classifier */ + struct tcf_block *block; + struct cake_tin_data *tins; + + struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS]; + u16 overflow_timeout; + + u16 tin_cnt; + u8 tin_mode; + u8 flow_mode; + u8 ack_filter; + u8 atm_mode; + + /* time_next = time_this + ((len * rate_ns) >> rate_shft) */ + u16 rate_shft; + ktime_t time_next_packet; + ktime_t failsafe_next_packet; + u64 rate_ns; + u64 rate_bps; + u16 rate_flags; + s16 rate_overhead; + u16 rate_mpu; + u64 interval; + u64 target; + + /* resource tracking */ + u32 buffer_used; + u32 buffer_max_used; + u32 buffer_limit; + u32 buffer_config_limit; + + /* indices for dequeue */ + u16 cur_tin; + u16 cur_flow; + + struct qdisc_watchdog watchdog; + const u8 *tin_index; + const u8 *tin_order; + + /* bandwidth capacity estimate */ + ktime_t last_packet_time; + ktime_t avg_window_begin; + u64 avg_packet_interval; + u64 avg_window_bytes; + u64 avg_peak_bandwidth; + ktime_t last_reconfig_time; + + /* packet length stats */ + u32 avg_netoff; + u16 max_netlen; + u16 max_adjlen; + u16 min_netlen; + u16 min_adjlen; +}; + +enum { + CAKE_FLAG_OVERHEAD = BIT(0), + CAKE_FLAG_AUTORATE_INGRESS = BIT(1), + CAKE_FLAG_INGRESS = BIT(2), + CAKE_FLAG_WASH = BIT(3), + CAKE_FLAG_SPLIT_GSO = BIT(4) +}; + +/* COBALT operates the Codel and BLUE algorithms in parallel, in order to + * obtain the best features of each. Codel is excellent on flows which + * respond to congestion signals in a TCP-like way. BLUE is more effective on + * unresponsive flows. + */ + +struct cobalt_skb_cb { + ktime_t enqueue_time; + u32 adjusted_len; +}; + +static u64 us_to_ns(u64 us) +{ + return us * NSEC_PER_USEC; +} + +static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb) +{ + qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb)); + return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data; +} + +static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb) +{ + return get_cobalt_cb(skb)->enqueue_time; +} + +static void cobalt_set_enqueue_time(struct sk_buff *skb, + ktime_t now) +{ + get_cobalt_cb(skb)->enqueue_time = now; +} + +static u16 quantum_div[CAKE_QUEUES + 1] = {0}; + +/* Diffserv lookup tables */ + +static const u8 precedence[] = { + 0, 0, 0, 0, 0, 0, 0, 0, + 1, 1, 1, 1, 1, 1, 1, 1, + 2, 2, 2, 2, 2, 2, 2, 2, + 3, 3, 3, 3, 3, 3, 3, 3, + 4, 4, 4, 4, 4, 4, 4, 4, + 5, 5, 5, 5, 5, 5, 5, 5, + 6, 6, 6, 6, 6, 6, 6, 6, + 7, 7, 7, 7, 7, 7, 7, 7, +}; + +static const u8 diffserv8[] = { + 2, 5, 1, 2, 4, 2, 2, 2, + 0, 2, 1, 2, 1, 2, 1, 2, + 5, 2, 4, 2, 4, 2, 4, 2, + 3, 2, 3, 2, 3, 2, 3, 2, + 6, 2, 3, 2, 3, 2, 3, 2, + 6, 2, 2, 2, 6, 2, 6, 2, + 7, 2, 2, 2, 2, 2, 2, 2, + 7, 2, 2, 2, 2, 2, 2, 2, +}; + +static const u8 diffserv4[] = { + 0, 2, 0, 0, 2, 0, 0, 0, + 1, 0, 0, 0, 0, 0, 0, 0, + 2, 0, 2, 0, 2, 0, 2, 0, + 2, 0, 2, 0, 2, 0, 2, 0, + 3, 0, 2, 0, 2, 0, 2, 0, + 3, 0, 0, 0, 3, 0, 3, 0, + 3, 0, 0, 0, 0, 0, 0, 0, + 3, 0, 0, 0, 0, 0, 0, 0, +}; + +static const u8 diffserv3[] = { + 0, 0, 0, 0, 2, 0, 0, 0, + 1, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 2, 0, 2, 0, + 2, 0, 0, 0, 0, 0, 0, 0, + 2, 0, 0, 0, 0, 0, 0, 0, +}; + +static const u8 besteffort[] = { + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, +}; + +/* tin priority order for stats dumping */ + +static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7}; +static const u8 bulk_order[] = {1, 0, 2, 3}; + +#define REC_INV_SQRT_CACHE (16) +static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0}; + +/* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots + * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2) + * + * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32 + */ + +static void cobalt_newton_step(struct cobalt_vars *vars) +{ + u32 invsqrt, invsqrt2; + u64 val; + + invsqrt = vars->rec_inv_sqrt; + invsqrt2 = ((u64)invsqrt * invsqrt) >> 32; + val = (3LL << 32) - ((u64)vars->count * invsqrt2); + + val >>= 2; /* avoid overflow in following multiply */ + val = (val * invsqrt) >> (32 - 2 + 1); + + vars->rec_inv_sqrt = val; +} + +static void cobalt_invsqrt(struct cobalt_vars *vars) +{ + if (vars->count < REC_INV_SQRT_CACHE) + vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count]; + else + cobalt_newton_step(vars); +} + +/* There is a big difference in timing between the accurate values placed in + * the cache and the approximations given by a single Newton step for small + * count values, particularly when stepping from count 1 to 2 or vice versa. + * Above 16, a single Newton step gives sufficient accuracy in either + * direction, given the precision stored. + * + * The magnitude of the error when stepping up to count 2 is such as to give + * the value that *should* have been produced at count 4. + */ + +static void cobalt_cache_init(void) +{ + struct cobalt_vars v; + + memset(&v, 0, sizeof(v)); + v.rec_inv_sqrt = ~0U; + cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt; + + for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) { + cobalt_newton_step(&v); + cobalt_newton_step(&v); + cobalt_newton_step(&v); + cobalt_newton_step(&v); + + cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt; + } +} + +static void cobalt_vars_init(struct cobalt_vars *vars) +{ + memset(vars, 0, sizeof(*vars)); + + if (!cobalt_rec_inv_sqrt_cache[0]) { + cobalt_cache_init(); + cobalt_rec_inv_sqrt_cache[0] = ~0; + } +} + +/* CoDel control_law is t + interval/sqrt(count) + * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid + * both sqrt() and divide operation. + */ +static ktime_t cobalt_control(ktime_t t, + u64 interval, + u32 rec_inv_sqrt) +{ + return ktime_add_ns(t, reciprocal_scale(interval, + rec_inv_sqrt)); +} + +/* Call this when a packet had to be dropped due to queue overflow. Returns + * true if the BLUE state was quiescent before but active after this call. + */ +static bool cobalt_queue_full(struct cobalt_vars *vars, + struct cobalt_params *p, + ktime_t now) +{ + bool up = false; + + if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) { + up = !vars->p_drop; + vars->p_drop += p->p_inc; + if (vars->p_drop < p->p_inc) + vars->p_drop = ~0; + vars->blue_timer = now; + } + vars->dropping = true; + vars->drop_next = now; + if (!vars->count) + vars->count = 1; + + return up; +} + +/* Call this when the queue was serviced but turned out to be empty. Returns + * true if the BLUE state was active before but quiescent after this call. + */ +static bool cobalt_queue_empty(struct cobalt_vars *vars, + struct cobalt_params *p, + ktime_t now) +{ + bool down = false; + + if (vars->p_drop && + ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) { + if (vars->p_drop < p->p_dec) + vars->p_drop = 0; + else + vars->p_drop -= p->p_dec; + vars->blue_timer = now; + down = !vars->p_drop; + } + vars->dropping = false; + + if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) { + vars->count--; + cobalt_invsqrt(vars); + vars->drop_next = cobalt_control(vars->drop_next, + p->interval, + vars->rec_inv_sqrt); + } + + return down; +} + +/* Call this with a freshly dequeued packet for possible congestion marking. + * Returns true as an instruction to drop the packet, false for delivery. + */ +static bool cobalt_should_drop(struct cobalt_vars *vars, + struct cobalt_params *p, + ktime_t now, + struct sk_buff *skb, + u32 bulk_flows) +{ + bool next_due, over_target, drop = false; + ktime_t schedule; + u64 sojourn; + +/* The 'schedule' variable records, in its sign, whether 'now' is before or + * after 'drop_next'. This allows 'drop_next' to be updated before the next + * scheduling decision is actually branched, without destroying that + * information. Similarly, the first 'schedule' value calculated is preserved + * in the boolean 'next_due'. + * + * As for 'drop_next', we take advantage of the fact that 'interval' is both + * the delay between first exceeding 'target' and the first signalling event, + * *and* the scaling factor for the signalling frequency. It's therefore very + * natural to use a single mechanism for both purposes, and eliminates a + * significant amount of reference Codel's spaghetti code. To help with this, + * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close + * as possible to 1.0 in fixed-point. + */ + + sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb))); + schedule = ktime_sub(now, vars->drop_next); + over_target = sojourn > p->target && + sojourn > p->mtu_time * bulk_flows * 2 && + sojourn > p->mtu_time * 4; + next_due = vars->count && ktime_to_ns(schedule) >= 0; + + vars->ecn_marked = false; + + if (over_target) { + if (!vars->dropping) { + vars->dropping = true; + vars->drop_next = cobalt_control(now, + p->interval, + vars->rec_inv_sqrt); + } + if (!vars->count) + vars->count = 1; + } else if (vars->dropping) { + vars->dropping = false; + } + + if (next_due && vars->dropping) { + /* Use ECN mark if possible, otherwise drop */ + drop = !(vars->ecn_marked = INET_ECN_set_ce(skb)); + + vars->count++; + if (!vars->count) + vars->count--; + cobalt_invsqrt(vars); + vars->drop_next = cobalt_control(vars->drop_next, + p->interval, + vars->rec_inv_sqrt); + schedule = ktime_sub(now, vars->drop_next); + } else { + while (next_due) { + vars->count--; + cobalt_invsqrt(vars); + vars->drop_next = cobalt_control(vars->drop_next, + p->interval, + vars->rec_inv_sqrt); + schedule = ktime_sub(now, vars->drop_next); + next_due = vars->count && ktime_to_ns(schedule) >= 0; + } + } + + /* Simple BLUE implementation. Lack of ECN is deliberate. */ + if (vars->p_drop) + drop |= (prandom_u32() < vars->p_drop); + + /* Overload the drop_next field as an activity timeout */ + if (!vars->count) + vars->drop_next = ktime_add_ns(now, p->interval); + else if (ktime_to_ns(schedule) > 0 && !drop) + vars->drop_next = now; + + return drop; +} + +static void cake_update_flowkeys(struct flow_keys *keys, + const struct sk_buff *skb) +{ +#if IS_ENABLED(CONFIG_NF_CONNTRACK) + struct nf_conntrack_tuple tuple = {}; + bool rev = !skb->_nfct; + + if (tc_skb_protocol(skb) != htons(ETH_P_IP)) + return; + + if (!nf_ct_get_tuple_skb(&tuple, skb)) + return; + + keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip; + keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip; + + if (keys->ports.ports) { + keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all; + keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all; + } +#endif +} + +/* Cake has several subtle multiple bit settings. In these cases you + * would be matching triple isolate mode as well. + */ + +static bool cake_dsrc(int flow_mode) +{ + return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC; +} + +static bool cake_ddst(int flow_mode) +{ + return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST; +} + +static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb, + int flow_mode) +{ + u32 flow_hash = 0, srchost_hash, dsthost_hash; + u16 reduced_hash, srchost_idx, dsthost_idx; + struct flow_keys keys, host_keys; + + if (unlikely(flow_mode == CAKE_FLOW_NONE)) + return 0; + + skb_flow_dissect_flow_keys(skb, &keys, + FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); + + if (flow_mode & CAKE_FLOW_NAT_FLAG) + cake_update_flowkeys(&keys, skb); + + /* flow_hash_from_keys() sorts the addresses by value, so we have + * to preserve their order in a separate data structure to treat + * src and dst host addresses as independently selectable. + */ + host_keys = keys; + host_keys.ports.ports = 0; + host_keys.basic.ip_proto = 0; + host_keys.keyid.keyid = 0; + host_keys.tags.flow_label = 0; + + switch (host_keys.control.addr_type) { + case FLOW_DISSECTOR_KEY_IPV4_ADDRS: + host_keys.addrs.v4addrs.src = 0; + dsthost_hash = flow_hash_from_keys(&host_keys); + host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; + host_keys.addrs.v4addrs.dst = 0; + srchost_hash = flow_hash_from_keys(&host_keys); + break; + + case FLOW_DISSECTOR_KEY_IPV6_ADDRS: + memset(&host_keys.addrs.v6addrs.src, 0, + sizeof(host_keys.addrs.v6addrs.src)); + dsthost_hash = flow_hash_from_keys(&host_keys); + host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; + memset(&host_keys.addrs.v6addrs.dst, 0, + sizeof(host_keys.addrs.v6addrs.dst)); + srchost_hash = flow_hash_from_keys(&host_keys); + break; + + default: + dsthost_hash = 0; + srchost_hash = 0; + } + + /* This *must* be after the above switch, since as a + * side-effect it sorts the src and dst addresses. + */ + if (flow_mode & CAKE_FLOW_FLOWS) + flow_hash = flow_hash_from_keys(&keys); + + if (!(flow_mode & CAKE_FLOW_FLOWS)) { + if (flow_mode & CAKE_FLOW_SRC_IP) + flow_hash ^= srchost_hash; + + if (flow_mode & CAKE_FLOW_DST_IP) + flow_hash ^= dsthost_hash; + } + + reduced_hash = flow_hash % CAKE_QUEUES; + + /* set-associative hashing */ + /* fast path if no hash collision (direct lookup succeeds) */ + if (likely(q->tags[reduced_hash] == flow_hash && + q->flows[reduced_hash].set)) { + q->way_directs++; + } else { + u32 inner_hash = reduced_hash % CAKE_SET_WAYS; + u32 outer_hash = reduced_hash - inner_hash; + bool allocate_src = false; + bool allocate_dst = false; + u32 i, k; + + /* check if any active queue in the set is reserved for + * this flow. + */ + for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; + i++, k = (k + 1) % CAKE_SET_WAYS) { + if (q->tags[outer_hash + k] == flow_hash) { + if (i) + q->way_hits++; + + if (!q->flows[outer_hash + k].set) { + /* need to increment host refcnts */ + allocate_src = cake_dsrc(flow_mode); + allocate_dst = cake_ddst(flow_mode); + } + + goto found; + } + } + + /* no queue is reserved for this flow, look for an + * empty one. + */ + for (i = 0; i < CAKE_SET_WAYS; + i++, k = (k + 1) % CAKE_SET_WAYS) { + if (!q->flows[outer_hash + k].set) { + q->way_misses++; + allocate_src = cake_dsrc(flow_mode); + allocate_dst = cake_ddst(flow_mode); + goto found; + } + } + + /* With no empty queues, default to the original + * queue, accept the collision, update the host tags. + */ + q->way_collisions++; + q->hosts[q->flows[reduced_hash].srchost].srchost_refcnt--; + q->hosts[q->flows[reduced_hash].dsthost].dsthost_refcnt--; + allocate_src = cake_dsrc(flow_mode); + allocate_dst = cake_ddst(flow_mode); +found: + /* reserve queue for future packets in same flow */ + reduced_hash = outer_hash + k; + q->tags[reduced_hash] = flow_hash; + + if (allocate_src) { + srchost_idx = srchost_hash % CAKE_QUEUES; + inner_hash = srchost_idx % CAKE_SET_WAYS; + outer_hash = srchost_idx - inner_hash; + for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; + i++, k = (k + 1) % CAKE_SET_WAYS) { + if (q->hosts[outer_hash + k].srchost_tag == + srchost_hash) + goto found_src; + } + for (i = 0; i < CAKE_SET_WAYS; + i++, k = (k + 1) % CAKE_SET_WAYS) { + if (!q->hosts[outer_hash + k].srchost_refcnt) + break; + } + q->hosts[outer_hash + k].srchost_tag = srchost_hash; +found_src: + srchost_idx = outer_hash + k; + q->hosts[srchost_idx].srchost_refcnt++; + q->flows[reduced_hash].srchost = srchost_idx; + } + + if (allocate_dst) { + dsthost_idx = dsthost_hash % CAKE_QUEUES; + inner_hash = dsthost_idx % CAKE_SET_WAYS; + outer_hash = dsthost_idx - inner_hash; + for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; + i++, k = (k + 1) % CAKE_SET_WAYS) { + if (q->hosts[outer_hash + k].dsthost_tag == + dsthost_hash) + goto found_dst; + } + for (i = 0; i < CAKE_SET_WAYS; + i++, k = (k + 1) % CAKE_SET_WAYS) { + if (!q->hosts[outer_hash + k].dsthost_refcnt) + break; + } + q->hosts[outer_hash + k].dsthost_tag = dsthost_hash; +found_dst: + dsthost_idx = outer_hash + k; + q->hosts[dsthost_idx].dsthost_refcnt++; + q->flows[reduced_hash].dsthost = dsthost_idx; + } + } + + return reduced_hash; +} + +/* helper functions : might be changed when/if skb use a standard list_head */ +/* remove one skb from head of slot queue */ + +static struct sk_buff *dequeue_head(struct cake_flow *flow) +{ + struct sk_buff *skb = flow->head; + + if (skb) { + flow->head = skb->next; + skb->next = NULL; + } + + return skb; +} + +/* add skb to flow queue (tail add) */ + +static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb) +{ + if (!flow->head) + flow->head = skb; + else + flow->tail->next = skb; + flow->tail = skb; + skb->next = NULL; +} + +static struct iphdr *cake_get_iphdr(const struct sk_buff *skb, + struct ipv6hdr *buf) +{ + unsigned int offset = skb_network_offset(skb); + struct iphdr *iph; + + iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf); + + if (!iph) + return NULL; + + if (iph->version == 4 && iph->protocol == IPPROTO_IPV6) + return skb_header_pointer(skb, offset + iph->ihl * 4, + sizeof(struct ipv6hdr), buf); + + else if (iph->version == 4) + return iph; + + else if (iph->version == 6) + return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr), + buf); + + return NULL; +} + +static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb, + void *buf, unsigned int bufsize) +{ + unsigned int offset = skb_network_offset(skb); + const struct ipv6hdr *ipv6h; + const struct tcphdr *tcph; + const struct iphdr *iph; + struct ipv6hdr _ipv6h; + struct tcphdr _tcph; + + ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); + + if (!ipv6h) + return NULL; + + if (ipv6h->version == 4) { + iph = (struct iphdr *)ipv6h; + offset += iph->ihl * 4; + + /* special-case 6in4 tunnelling, as that is a common way to get + * v6 connectivity in the home + */ + if (iph->protocol == IPPROTO_IPV6) { + ipv6h = skb_header_pointer(skb, offset, + sizeof(_ipv6h), &_ipv6h); + + if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) + return NULL; + + offset += sizeof(struct ipv6hdr); + + } else if (iph->protocol != IPPROTO_TCP) { + return NULL; + } + + } else if (ipv6h->version == 6) { + if (ipv6h->nexthdr != IPPROTO_TCP) + return NULL; + + offset += sizeof(struct ipv6hdr); + } else { + return NULL; + } + + tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); + if (!tcph) + return NULL; + + return skb_header_pointer(skb, offset, + min(__tcp_hdrlen(tcph), bufsize), buf); +} + +static const void *cake_get_tcpopt(const struct tcphdr *tcph, + int code, int *oplen) +{ + /* inspired by tcp_parse_options in tcp_input.c */ + int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr); + const u8 *ptr = (const u8 *)(tcph + 1); + + while (length > 0) { + int opcode = *ptr++; + int opsize; + + if (opcode == TCPOPT_EOL) + break; + if (opcode == TCPOPT_NOP) { + length--; + continue; + } + opsize = *ptr++; + if (opsize < 2 || opsize > length) + break; + + if (opcode == code) { + *oplen = opsize; + return ptr; + } + + ptr += opsize - 2; + length -= opsize; + } + + return NULL; +} + +/* Compare two SACK sequences. A sequence is considered greater if it SACKs more + * bytes than the other. In the case where both sequences ACKs bytes that the + * other doesn't, A is considered greater. DSACKs in A also makes A be + * considered greater. + * + * @return -1, 0 or 1 as normal compare functions + */ +static int cake_tcph_sack_compare(const struct tcphdr *tcph_a, + const struct tcphdr *tcph_b) +{ + const struct tcp_sack_block_wire *sack_a, *sack_b; + u32 ack_seq_a = ntohl(tcph_a->ack_seq); + u32 bytes_a = 0, bytes_b = 0; + int oplen_a, oplen_b; + bool first = true; + + sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a); + sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b); + + /* pointers point to option contents */ + oplen_a -= TCPOLEN_SACK_BASE; + oplen_b -= TCPOLEN_SACK_BASE; + + if (sack_a && oplen_a >= sizeof(*sack_a) && + (!sack_b || oplen_b < sizeof(*sack_b))) + return -1; + else if (sack_b && oplen_b >= sizeof(*sack_b) && + (!sack_a || oplen_a < sizeof(*sack_a))) + return 1; + else if ((!sack_a || oplen_a < sizeof(*sack_a)) && + (!sack_b || oplen_b < sizeof(*sack_b))) + return 0; + + while (oplen_a >= sizeof(*sack_a)) { + const struct tcp_sack_block_wire *sack_tmp = sack_b; + u32 start_a = get_unaligned_be32(&sack_a->start_seq); + u32 end_a = get_unaligned_be32(&sack_a->end_seq); + int oplen_tmp = oplen_b; + bool found = false; + + /* DSACK; always considered greater to prevent dropping */ + if (before(start_a, ack_seq_a)) + return -1; + + bytes_a += end_a - start_a; + + while (oplen_tmp >= sizeof(*sack_tmp)) { + u32 start_b = get_unaligned_be32(&sack_tmp->start_seq); + u32 end_b = get_unaligned_be32(&sack_tmp->end_seq); + + /* first time through we count the total size */ + if (first) + bytes_b += end_b - start_b; + + if (!after(start_b, start_a) && !before(end_b, end_a)) { + found = true; + if (!first) + break; + } + oplen_tmp -= sizeof(*sack_tmp); + sack_tmp++; + } + + if (!found) + return -1; + + oplen_a -= sizeof(*sack_a); + sack_a++; + first = false; + } + + /* If we made it this far, all ranges SACKed by A are covered by B, so + * either the SACKs are equal, or B SACKs more bytes. + */ + return bytes_b > bytes_a ? 1 : 0; +} + +static void cake_tcph_get_tstamp(const struct tcphdr *tcph, + u32 *tsval, u32 *tsecr) +{ + const u8 *ptr; + int opsize; + + ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize); + + if (ptr && opsize == TCPOLEN_TIMESTAMP) { + *tsval = get_unaligned_be32(ptr); + *tsecr = get_unaligned_be32(ptr + 4); + } +} + +static bool cake_tcph_may_drop(const struct tcphdr *tcph, + u32 tstamp_new, u32 tsecr_new) +{ + /* inspired by tcp_parse_options in tcp_input.c */ + int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr); + const u8 *ptr = (const u8 *)(tcph + 1); + u32 tstamp, tsecr; + + /* 3 reserved flags must be unset to avoid future breakage + * ACK must be set + * ECE/CWR are handled separately + * All other flags URG/PSH/RST/SYN/FIN must be unset + * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero) + * 0x00C00000 = CWR/ECE (handled separately) + * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000 + */ + if (((tcp_flag_word(tcph) & + cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK)) + return false; + + while (length > 0) { + int opcode = *ptr++; + int opsize; + + if (opcode == TCPOPT_EOL) + break; + if (opcode == TCPOPT_NOP) { + length--; + continue; + } + opsize = *ptr++; + if (opsize < 2 || opsize > length) + break; + + switch (opcode) { + case TCPOPT_MD5SIG: /* doesn't influence state */ + break; + + case TCPOPT_SACK: /* stricter checking performed later */ + if (opsize % 8 != 2) + return false; + break; + + case TCPOPT_TIMESTAMP: + /* only drop timestamps lower than new */ + if (opsize != TCPOLEN_TIMESTAMP) + return false; + tstamp = get_unaligned_be32(ptr); + tsecr = get_unaligned_be32(ptr + 4); + if (after(tstamp, tstamp_new) || + after(tsecr, tsecr_new)) + return false; + break; + + case TCPOPT_MSS: /* these should only be set on SYN */ + case TCPOPT_WINDOW: + case TCPOPT_SACK_PERM: + case TCPOPT_FASTOPEN: + case TCPOPT_EXP: + default: /* don't drop if any unknown options are present */ + return false; + } + + ptr += opsize - 2; + length -= opsize; + } + + return true; +} + +static struct sk_buff *cake_ack_filter(struct cake_sched_data *q, + struct cake_flow *flow) +{ + bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE; + struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL; + struct sk_buff *skb_check, *skb_prev = NULL; + const struct ipv6hdr *ipv6h, *ipv6h_check; + unsigned char _tcph[64], _tcph_check[64]; + const struct tcphdr *tcph, *tcph_check; + const struct iphdr *iph, *iph_check; + struct ipv6hdr _iph, _iph_check; + const struct sk_buff *skb; + int seglen, num_found = 0; + u32 tstamp = 0, tsecr = 0; + __be32 elig_flags = 0; + int sack_comp; + + /* no other possible ACKs to filter */ + if (flow->head == flow->tail) + return NULL; + + skb = flow->tail; + tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph)); + iph = cake_get_iphdr(skb, &_iph); + if (!tcph) + return NULL; + + cake_tcph_get_tstamp(tcph, &tstamp, &tsecr); + + /* the 'triggering' packet need only have the ACK flag set. + * also check that SYN is not set, as there won't be any previous ACKs. + */ + if ((tcp_flag_word(tcph) & + (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK) + return NULL; + + /* the 'triggering' ACK is at the tail of the queue, we have already + * returned if it is the only packet in the flow. loop through the rest + * of the queue looking for pure ACKs with the same 5-tuple as the + * triggering one. + */ + for (skb_check = flow->head; + skb_check && skb_check != skb; + skb_prev = skb_check, skb_check = skb_check->next) { + iph_check = cake_get_iphdr(skb_check, &_iph_check); + tcph_check = cake_get_tcphdr(skb_check, &_tcph_check, + sizeof(_tcph_check)); + + /* only TCP packets with matching 5-tuple are eligible, and only + * drop safe headers + */ + if (!tcph_check || iph->version != iph_check->version || + tcph_check->source != tcph->source || + tcph_check->dest != tcph->dest) + continue; + + if (iph_check->version == 4) { + if (iph_check->saddr != iph->saddr || + iph_check->daddr != iph->daddr) + continue; + + seglen = ntohs(iph_check->tot_len) - + (4 * iph_check->ihl); + } else if (iph_check->version == 6) { + ipv6h = (struct ipv6hdr *)iph; + ipv6h_check = (struct ipv6hdr *)iph_check; + + if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) || + ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr)) + continue; + + seglen = ntohs(ipv6h_check->payload_len); + } else { + WARN_ON(1); /* shouldn't happen */ + continue; + } + + /* If the ECE/CWR flags changed from the previous eligible + * packet in the same flow, we should no longer be dropping that + * previous packet as this would lose information. + */ + if (elig_ack && (tcp_flag_word(tcph_check) & + (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) { + elig_ack = NULL; + elig_ack_prev = NULL; + num_found--; + } + + /* Check TCP options and flags, don't drop ACKs with segment + * data, and don't drop ACKs with a higher cumulative ACK + * counter than the triggering packet. Check ACK seqno here to + * avoid parsing SACK options of packets we are going to exclude + * anyway. + */ + if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) || + (seglen - __tcp_hdrlen(tcph_check)) != 0 || + after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq))) + continue; + + /* Check SACK options. The triggering packet must SACK more data + * than the ACK under consideration, or SACK the same range but + * have a larger cumulative ACK counter. The latter is a + * pathological case, but is contained in the following check + * anyway, just to be safe. + */ + sack_comp = cake_tcph_sack_compare(tcph_check, tcph); + + if (sack_comp < 0 || + (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) && + sack_comp == 0)) + continue; + + /* At this point we have found an eligible pure ACK to drop; if + * we are in aggressive mode, we are done. Otherwise, keep + * searching unless this is the second eligible ACK we + * found. + * + * Since we want to drop ACK closest to the head of the queue, + * save the first eligible ACK we find, even if we need to loop + * again. + */ + if (!elig_ack) { + elig_ack = skb_check; + elig_ack_prev = skb_prev; + elig_flags = (tcp_flag_word(tcph_check) + & (TCP_FLAG_ECE | TCP_FLAG_CWR)); + } + + if (num_found++ > 0) + goto found; + } + + /* We made it through the queue without finding two eligible ACKs . If + * we found a single eligible ACK we can drop it in aggressive mode if + * we can guarantee that this does not interfere with ECN flag + * information. We ensure this by dropping it only if the enqueued + * packet is consecutive with the eligible ACK, and their flags match. + */ + if (elig_ack && aggressive && elig_ack->next == skb && + (elig_flags == (tcp_flag_word(tcph) & + (TCP_FLAG_ECE | TCP_FLAG_CWR)))) + goto found; + + return NULL; + +found: + if (elig_ack_prev) + elig_ack_prev->next = elig_ack->next; + else + flow->head = elig_ack->next; + + elig_ack->next = NULL; + + return elig_ack; +} + +static u64 cake_ewma(u64 avg, u64 sample, u32 shift) +{ + avg -= avg >> shift; + avg += sample >> shift; + return avg; +} + +static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off) +{ + if (q->rate_flags & CAKE_FLAG_OVERHEAD) + len -= off; + + if (q->max_netlen < len) + q->max_netlen = len; + if (q->min_netlen > len) + q->min_netlen = len; + + len += q->rate_overhead; + + if (len < q->rate_mpu) + len = q->rate_mpu; + + if (q->atm_mode == CAKE_ATM_ATM) { + len += 47; + len /= 48; + len *= 53; + } else if (q->atm_mode == CAKE_ATM_PTM) { + /* Add one byte per 64 bytes or part thereof. + * This is conservative and easier to calculate than the + * precise value. + */ + len += (len + 63) / 64; + } + + if (q->max_adjlen < len) + q->max_adjlen = len; + if (q->min_adjlen > len) + q->min_adjlen = len; + + return len; +} + +static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb) +{ + const struct skb_shared_info *shinfo = skb_shinfo(skb); + unsigned int hdr_len, last_len = 0; + u32 off = skb_network_offset(skb); + u32 len = qdisc_pkt_len(skb); + u16 segs = 1; + + q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8); + + if (!shinfo->gso_size) + return cake_calc_overhead(q, len, off); + + /* borrowed from qdisc_pkt_len_init() */ + hdr_len = skb_transport_header(skb) - skb_mac_header(skb); + + /* + transport layer */ + if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | + SKB_GSO_TCPV6))) { + const struct tcphdr *th; + struct tcphdr _tcphdr; + + th = skb_header_pointer(skb, skb_transport_offset(skb), + sizeof(_tcphdr), &_tcphdr); + if (likely(th)) + hdr_len += __tcp_hdrlen(th); + } else { + struct udphdr _udphdr; + + if (skb_header_pointer(skb, skb_transport_offset(skb), + sizeof(_udphdr), &_udphdr)) + hdr_len += sizeof(struct udphdr); + } + + if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) + segs = DIV_ROUND_UP(skb->len - hdr_len, + shinfo->gso_size); + else + segs = shinfo->gso_segs; + + len = shinfo->gso_size + hdr_len; + last_len = skb->len - shinfo->gso_size * (segs - 1); + + return (cake_calc_overhead(q, len, off) * (segs - 1) + + cake_calc_overhead(q, last_len, off)); +} + +static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j) +{ + struct cake_heap_entry ii = q->overflow_heap[i]; + struct cake_heap_entry jj = q->overflow_heap[j]; + + q->overflow_heap[i] = jj; + q->overflow_heap[j] = ii; + + q->tins[ii.t].overflow_idx[ii.b] = j; + q->tins[jj.t].overflow_idx[jj.b] = i; +} + +static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i) +{ + struct cake_heap_entry ii = q->overflow_heap[i]; + + return q->tins[ii.t].backlogs[ii.b]; +} + +static void cake_heapify(struct cake_sched_data *q, u16 i) +{ + static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES; + u32 mb = cake_heap_get_backlog(q, i); + u32 m = i; + + while (m < a) { + u32 l = m + m + 1; + u32 r = l + 1; + + if (l < a) { + u32 lb = cake_heap_get_backlog(q, l); + + if (lb > mb) { + m = l; + mb = lb; + } + } + + if (r < a) { + u32 rb = cake_heap_get_backlog(q, r); + + if (rb > mb) { + m = r; + mb = rb; + } + } + + if (m != i) { + cake_heap_swap(q, i, m); + i = m; + } else { + break; + } + } +} + +static void cake_heapify_up(struct cake_sched_data *q, u16 i) +{ + while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) { + u16 p = (i - 1) >> 1; + u32 ib = cake_heap_get_backlog(q, i); + u32 pb = cake_heap_get_backlog(q, p); + + if (ib > pb) { + cake_heap_swap(q, i, p); + i = p; + } else { + break; + } + } +} + +static int cake_advance_shaper(struct cake_sched_data *q, + struct cake_tin_data *b, + struct sk_buff *skb, + ktime_t now, bool drop) +{ + u32 len = get_cobalt_cb(skb)->adjusted_len; + + /* charge packet bandwidth to this tin + * and to the global shaper. + */ + if (q->rate_ns) { + u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft; + u64 global_dur = (len * q->rate_ns) >> q->rate_shft; + u64 failsafe_dur = global_dur + (global_dur >> 1); + + if (ktime_before(b->time_next_packet, now)) + b->time_next_packet = ktime_add_ns(b->time_next_packet, + tin_dur); + + else if (ktime_before(b->time_next_packet, + ktime_add_ns(now, tin_dur))) + b->time_next_packet = ktime_add_ns(now, tin_dur); + + q->time_next_packet = ktime_add_ns(q->time_next_packet, + global_dur); + if (!drop) + q->failsafe_next_packet = \ + ktime_add_ns(q->failsafe_next_packet, + failsafe_dur); + } + return len; +} + +static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free) +{ + struct cake_sched_data *q = qdisc_priv(sch); + ktime_t now = ktime_get(); + u32 idx = 0, tin = 0, len; + struct cake_heap_entry qq; + struct cake_tin_data *b; + struct cake_flow *flow; + struct sk_buff *skb; + + if (!q->overflow_timeout) { + int i; + /* Build fresh max-heap */ + for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--) + cake_heapify(q, i); + } + q->overflow_timeout = 65535; + + /* select longest queue for pruning */ + qq = q->overflow_heap[0]; + tin = qq.t; + idx = qq.b; + + b = &q->tins[tin]; + flow = &b->flows[idx]; + skb = dequeue_head(flow); + if (unlikely(!skb)) { + /* heap has gone wrong, rebuild it next time */ + q->overflow_timeout = 0; + return idx + (tin << 16); + } + + if (cobalt_queue_full(&flow->cvars, &b->cparams, now)) + b->unresponsive_flow_count++; + + len = qdisc_pkt_len(skb); + q->buffer_used -= skb->truesize; + b->backlogs[idx] -= len; + b->tin_backlog -= len; + sch->qstats.backlog -= len; + qdisc_tree_reduce_backlog(sch, 1, len); + + flow->dropped++; + b->tin_dropped++; + sch->qstats.drops++; + + if (q->rate_flags & CAKE_FLAG_INGRESS) + cake_advance_shaper(q, b, skb, now, true); + + __qdisc_drop(skb, to_free); + sch->q.qlen--; + + cake_heapify(q, 0); + + return idx + (tin << 16); +} + +static void cake_wash_diffserv(struct sk_buff *skb) +{ + switch (skb->protocol) { + case htons(ETH_P_IP): + ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0); + break; + case htons(ETH_P_IPV6): + ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0); + break; + default: + break; + } +} + +static u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash) +{ + u8 dscp; + + switch (skb->protocol) { + case htons(ETH_P_IP): + dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; + if (wash && dscp) + ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0); + return dscp; + + case htons(ETH_P_IPV6): + dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; + if (wash && dscp) + ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0); + return dscp; + + case htons(ETH_P_ARP): + return 0x38; /* CS7 - Net Control */ + + default: + /* If there is no Diffserv field, treat as best-effort */ + return 0; + } +} + +static struct cake_tin_data *cake_select_tin(struct Qdisc *sch, + struct sk_buff *skb) +{ + struct cake_sched_data *q = qdisc_priv(sch); + u32 tin; + + if (TC_H_MAJ(skb->priority) == sch->handle && + TC_H_MIN(skb->priority) > 0 && + TC_H_MIN(skb->priority) <= q->tin_cnt) { + tin = q->tin_order[TC_H_MIN(skb->priority) - 1]; + + if (q->rate_flags & CAKE_FLAG_WASH) + cake_wash_diffserv(skb); + } else if (q->tin_mode != CAKE_DIFFSERV_BESTEFFORT) { + /* extract the Diffserv Precedence field, if it exists */ + /* and clear DSCP bits if washing */ + tin = q->tin_index[cake_handle_diffserv(skb, + q->rate_flags & CAKE_FLAG_WASH)]; + if (unlikely(tin >= q->tin_cnt)) + tin = 0; + } else { + tin = 0; + if (q->rate_flags & CAKE_FLAG_WASH) + cake_wash_diffserv(skb); + } + + return &q->tins[tin]; +} + +static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t, + struct sk_buff *skb, int flow_mode, int *qerr) +{ + struct cake_sched_data *q = qdisc_priv(sch); + struct tcf_proto *filter; + struct tcf_result res; + u32 flow = 0; + int result; + + filter = rcu_dereference_bh(q->filter_list); + if (!filter) + goto hash; + + *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; + result = tcf_classify(skb, filter, &res, false); + + if (result >= 0) { +#ifdef CONFIG_NET_CLS_ACT + switch (result) { + case TC_ACT_STOLEN: + case TC_ACT_QUEUED: + case TC_ACT_TRAP: + *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; + /* fall through */ + case TC_ACT_SHOT: + return 0; + } +#endif + if (TC_H_MIN(res.classid) <= CAKE_QUEUES) + flow = TC_H_MIN(res.classid); + } +hash: + *t = cake_select_tin(sch, skb); + return flow ?: cake_hash(*t, skb, flow_mode) + 1; +} + +static void cake_reconfigure(struct Qdisc *sch); + +static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch, + struct sk_buff **to_free) +{ + struct cake_sched_data *q = qdisc_priv(sch); + int len = qdisc_pkt_len(skb); + int uninitialized_var(ret); + struct sk_buff *ack = NULL; + ktime_t now = ktime_get(); + struct cake_tin_data *b; + struct cake_flow *flow; + u32 idx; + + /* choose flow to insert into */ + idx = cake_classify(sch, &b, skb, q->flow_mode, &ret); + if (idx == 0) { + if (ret & __NET_XMIT_BYPASS) + qdisc_qstats_drop(sch); + __qdisc_drop(skb, to_free); + return ret; + } + idx--; + flow = &b->flows[idx]; + + /* ensure shaper state isn't stale */ + if (!b->tin_backlog) { + if (ktime_before(b->time_next_packet, now)) + b->time_next_packet = now; + + if (!sch->q.qlen) { + if (ktime_before(q->time_next_packet, now)) { + q->failsafe_next_packet = now; + q->time_next_packet = now; + } else if (ktime_after(q->time_next_packet, now) && + ktime_after(q->failsafe_next_packet, now)) { + u64 next = \ + min(ktime_to_ns(q->time_next_packet), + ktime_to_ns( + q->failsafe_next_packet)); + sch->qstats.overlimits++; + qdisc_watchdog_schedule_ns(&q->watchdog, next); + } + } + } + + if (unlikely(len > b->max_skblen)) + b->max_skblen = len; + + if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) { + struct sk_buff *segs, *nskb; + netdev_features_t features = netif_skb_features(skb); + unsigned int slen = 0; + + segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); + if (IS_ERR_OR_NULL(segs)) + return qdisc_drop(skb, sch, to_free); + + while (segs) { + nskb = segs->next; + segs->next = NULL; + qdisc_skb_cb(segs)->pkt_len = segs->len; + cobalt_set_enqueue_time(segs, now); + get_cobalt_cb(segs)->adjusted_len = cake_overhead(q, + segs); + flow_queue_add(flow, segs); + + sch->q.qlen++; + slen += segs->len; + q->buffer_used += segs->truesize; + b->packets++; + segs = nskb; + } + + /* stats */ + b->bytes += slen; + b->backlogs[idx] += slen; + b->tin_backlog += slen; + sch->qstats.backlog += slen; + q->avg_window_bytes += slen; + + qdisc_tree_reduce_backlog(sch, 1, len); + consume_skb(skb); + } else { + /* not splitting */ + cobalt_set_enqueue_time(skb, now); + get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb); + flow_queue_add(flow, skb); + + if (q->ack_filter) + ack = cake_ack_filter(q, flow); + + if (ack) { + b->ack_drops++; + sch->qstats.drops++; + b->bytes += qdisc_pkt_len(ack); + len -= qdisc_pkt_len(ack); + q->buffer_used += skb->truesize - ack->truesize; + if (q->rate_flags & CAKE_FLAG_INGRESS) + cake_advance_shaper(q, b, ack, now, true); + + qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack)); + consume_skb(ack); + } else { + sch->q.qlen++; + q->buffer_used += skb->truesize; + } + + /* stats */ + b->packets++; + b->bytes += len; + b->backlogs[idx] += len; + b->tin_backlog += len; + sch->qstats.backlog += len; + q->avg_window_bytes += len; + } + + if (q->overflow_timeout) + cake_heapify_up(q, b->overflow_idx[idx]); + + /* incoming bandwidth capacity estimate */ + if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) { + u64 packet_interval = \ + ktime_to_ns(ktime_sub(now, q->last_packet_time)); + + if (packet_interval > NSEC_PER_SEC) + packet_interval = NSEC_PER_SEC; + + /* filter out short-term bursts, eg. wifi aggregation */ + q->avg_packet_interval = \ + cake_ewma(q->avg_packet_interval, + packet_interval, + (packet_interval > q->avg_packet_interval ? + 2 : 8)); + + q->last_packet_time = now; + + if (packet_interval > q->avg_packet_interval) { + u64 window_interval = \ + ktime_to_ns(ktime_sub(now, + q->avg_window_begin)); + u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC; + + do_div(b, window_interval); + q->avg_peak_bandwidth = + cake_ewma(q->avg_peak_bandwidth, b, + b > q->avg_peak_bandwidth ? 2 : 8); + q->avg_window_bytes = 0; + q->avg_window_begin = now; + + if (ktime_after(now, + ktime_add_ms(q->last_reconfig_time, + 250))) { + q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4; + cake_reconfigure(sch); + } + } + } else { + q->avg_window_bytes = 0; + q->last_packet_time = now; + } + + /* flowchain */ + if (!flow->set || flow->set == CAKE_SET_DECAYING) { + struct cake_host *srchost = &b->hosts[flow->srchost]; + struct cake_host *dsthost = &b->hosts[flow->dsthost]; + u16 host_load = 1; + + if (!flow->set) { + list_add_tail(&flow->flowchain, &b->new_flows); + } else { + b->decaying_flow_count--; + list_move_tail(&flow->flowchain, &b->new_flows); + } + flow->set = CAKE_SET_SPARSE; + b->sparse_flow_count++; + + if (cake_dsrc(q->flow_mode)) + host_load = max(host_load, srchost->srchost_refcnt); + + if (cake_ddst(q->flow_mode)) + host_load = max(host_load, dsthost->dsthost_refcnt); + + flow->deficit = (b->flow_quantum * + quantum_div[host_load]) >> 16; + } else if (flow->set == CAKE_SET_SPARSE_WAIT) { + /* this flow was empty, accounted as a sparse flow, but actually + * in the bulk rotation. + */ + flow->set = CAKE_SET_BULK; + b->sparse_flow_count--; + b->bulk_flow_count++; + } + + if (q->buffer_used > q->buffer_max_used) + q->buffer_max_used = q->buffer_used; + + if (q->buffer_used > q->buffer_limit) { + u32 dropped = 0; + + while (q->buffer_used > q->buffer_limit) { + dropped++; + cake_drop(sch, to_free); + } + b->drop_overlimit += dropped; + } + return NET_XMIT_SUCCESS; +} + +static struct sk_buff *cake_dequeue_one(struct Qdisc *sch) +{ + struct cake_sched_data *q = qdisc_priv(sch); + struct cake_tin_data *b = &q->tins[q->cur_tin]; + struct cake_flow *flow = &b->flows[q->cur_flow]; + struct sk_buff *skb = NULL; + u32 len; + + if (flow->head) { + skb = dequeue_head(flow); + len = qdisc_pkt_len(skb); + b->backlogs[q->cur_flow] -= len; + b->tin_backlog -= len; + sch->qstats.backlog -= len; + q->buffer_used -= skb->truesize; + sch->q.qlen--; + + if (q->overflow_timeout) + cake_heapify(q, b->overflow_idx[q->cur_flow]); + } + return skb; +} + +/* Discard leftover packets from a tin no longer in use. */ +static void cake_clear_tin(struct Qdisc *sch, u16 tin) +{ + struct cake_sched_data *q = qdisc_priv(sch); + struct sk_buff *skb; + + q->cur_tin = tin; + for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++) + while (!!(skb = cake_dequeue_one(sch))) + kfree_skb(skb); +} + +static struct sk_buff *cake_dequeue(struct Qdisc *sch) +{ + struct cake_sched_data *q = qdisc_priv(sch); + struct cake_tin_data *b = &q->tins[q->cur_tin]; + struct cake_host *srchost, *dsthost; + ktime_t now = ktime_get(); + struct cake_flow *flow; + struct list_head *head; + bool first_flow = true; + struct sk_buff *skb; + u16 host_load; + u64 delay; + u32 len; + +begin: + if (!sch->q.qlen) + return NULL; + + /* global hard shaper */ + if (ktime_after(q->time_next_packet, now) && + ktime_after(q->failsafe_next_packet, now)) { + u64 next = min(ktime_to_ns(q->time_next_packet), + ktime_to_ns(q->failsafe_next_packet)); + + sch->qstats.overlimits++; + qdisc_watchdog_schedule_ns(&q->watchdog, next); + return NULL; + } + + /* Choose a class to work on. */ + if (!q->rate_ns) { + /* In unlimited mode, can't rely on shaper timings, just balance + * with DRR + */ + bool wrapped = false, empty = true; + + while (b->tin_deficit < 0 || + !(b->sparse_flow_count + b->bulk_flow_count)) { + if (b->tin_deficit <= 0) + b->tin_deficit += b->tin_quantum_band; + if (b->sparse_flow_count + b->bulk_flow_count) + empty = false; + + q->cur_tin++; + b++; + if (q->cur_tin >= q->tin_cnt) { + q->cur_tin = 0; + b = q->tins; + + if (wrapped) { + /* It's possible for q->qlen to be + * nonzero when we actually have no + * packets anywhere. + */ + if (empty) + return NULL; + } else { + wrapped = true; + } + } + } + } else { + /* In shaped mode, choose: + * - Highest-priority tin with queue and meeting schedule, or + * - The earliest-scheduled tin with queue. + */ + ktime_t best_time = KTIME_MAX; + int tin, best_tin = 0; + + for (tin = 0; tin < q->tin_cnt; tin++) { + b = q->tins + tin; + if ((b->sparse_flow_count + b->bulk_flow_count) > 0) { + ktime_t time_to_pkt = \ + ktime_sub(b->time_next_packet, now); + + if (ktime_to_ns(time_to_pkt) <= 0 || + ktime_compare(time_to_pkt, + best_time) <= 0) { + best_time = time_to_pkt; + best_tin = tin; + } + } + } + + q->cur_tin = best_tin; + b = q->tins + best_tin; + + /* No point in going further if no packets to deliver. */ + if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count))) + return NULL; + } + +retry: + /* service this class */ + head = &b->decaying_flows; + if (!first_flow || list_empty(head)) { + head = &b->new_flows; + if (list_empty(head)) { + head = &b->old_flows; + if (unlikely(list_empty(head))) { + head = &b->decaying_flows; + if (unlikely(list_empty(head))) + goto begin; + } + } + } + flow = list_first_entry(head, struct cake_flow, flowchain); + q->cur_flow = flow - b->flows; + first_flow = false; + + /* triple isolation (modified DRR++) */ + srchost = &b->hosts[flow->srchost]; + dsthost = &b->hosts[flow->dsthost]; + host_load = 1; + + if (cake_dsrc(q->flow_mode)) + host_load = max(host_load, srchost->srchost_refcnt); + + if (cake_ddst(q->flow_mode)) + host_load = max(host_load, dsthost->dsthost_refcnt); + + WARN_ON(host_load > CAKE_QUEUES); + + /* flow isolation (DRR++) */ + if (flow->deficit <= 0) { + /* The shifted prandom_u32() is a way to apply dithering to + * avoid accumulating roundoff errors + */ + flow->deficit += (b->flow_quantum * quantum_div[host_load] + + (prandom_u32() >> 16)) >> 16; + list_move_tail(&flow->flowchain, &b->old_flows); + + /* Keep all flows with deficits out of the sparse and decaying + * rotations. No non-empty flow can go into the decaying + * rotation, so they can't get deficits + */ + if (flow->set == CAKE_SET_SPARSE) { + if (flow->head) { + b->sparse_flow_count--; + b->bulk_flow_count++; + flow->set = CAKE_SET_BULK; + } else { + /* we've moved it to the bulk rotation for + * correct deficit accounting but we still want + * to count it as a sparse flow, not a bulk one. + */ + flow->set = CAKE_SET_SPARSE_WAIT; + } + } + goto retry; + } + + /* Retrieve a packet via the AQM */ + while (1) { + skb = cake_dequeue_one(sch); + if (!skb) { + /* this queue was actually empty */ + if (cobalt_queue_empty(&flow->cvars, &b->cparams, now)) + b->unresponsive_flow_count--; + + if (flow->cvars.p_drop || flow->cvars.count || + ktime_before(now, flow->cvars.drop_next)) { + /* keep in the flowchain until the state has + * decayed to rest + */ + list_move_tail(&flow->flowchain, + &b->decaying_flows); + if (flow->set == CAKE_SET_BULK) { + b->bulk_flow_count--; + b->decaying_flow_count++; + } else if (flow->set == CAKE_SET_SPARSE || + flow->set == CAKE_SET_SPARSE_WAIT) { + b->sparse_flow_count--; + b->decaying_flow_count++; + } + flow->set = CAKE_SET_DECAYING; + } else { + /* remove empty queue from the flowchain */ + list_del_init(&flow->flowchain); + if (flow->set == CAKE_SET_SPARSE || + flow->set == CAKE_SET_SPARSE_WAIT) + b->sparse_flow_count--; + else if (flow->set == CAKE_SET_BULK) + b->bulk_flow_count--; + else + b->decaying_flow_count--; + + flow->set = CAKE_SET_NONE; + srchost->srchost_refcnt--; + dsthost->dsthost_refcnt--; + } + goto begin; + } + + /* Last packet in queue may be marked, shouldn't be dropped */ + if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb, + (b->bulk_flow_count * + !!(q->rate_flags & + CAKE_FLAG_INGRESS))) || + !flow->head) + break; + + /* drop this packet, get another one */ + if (q->rate_flags & CAKE_FLAG_INGRESS) { + len = cake_advance_shaper(q, b, skb, + now, true); + flow->deficit -= len; + b->tin_deficit -= len; + } + flow->dropped++; + b->tin_dropped++; + qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb)); + qdisc_qstats_drop(sch); + kfree_skb(skb); + if (q->rate_flags & CAKE_FLAG_INGRESS) + goto retry; + } + + b->tin_ecn_mark += !!flow->cvars.ecn_marked; + qdisc_bstats_update(sch, skb); + + /* collect delay stats */ + delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb))); + b->avge_delay = cake_ewma(b->avge_delay, delay, 8); + b->peak_delay = cake_ewma(b->peak_delay, delay, + delay > b->peak_delay ? 2 : 8); + b->base_delay = cake_ewma(b->base_delay, delay, + delay < b->base_delay ? 2 : 8); + + len = cake_advance_shaper(q, b, skb, now, false); + flow->deficit -= len; + b->tin_deficit -= len; + + if (ktime_after(q->time_next_packet, now) && sch->q.qlen) { + u64 next = min(ktime_to_ns(q->time_next_packet), + ktime_to_ns(q->failsafe_next_packet)); + + qdisc_watchdog_schedule_ns(&q->watchdog, next); + } else if (!sch->q.qlen) { + int i; + + for (i = 0; i < q->tin_cnt; i++) { + if (q->tins[i].decaying_flow_count) { + ktime_t next = \ + ktime_add_ns(now, + q->tins[i].cparams.target); + + qdisc_watchdog_schedule_ns(&q->watchdog, + ktime_to_ns(next)); + break; + } + } + } + + if (q->overflow_timeout) + q->overflow_timeout--; + + return skb; +} + +static void cake_reset(struct Qdisc *sch) +{ + u32 c; + + for (c = 0; c < CAKE_MAX_TINS; c++) + cake_clear_tin(sch, c); +} + +static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = { + [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 }, + [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 }, + [TCA_CAKE_ATM] = { .type = NLA_U32 }, + [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 }, + [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 }, + [TCA_CAKE_RTT] = { .type = NLA_U32 }, + [TCA_CAKE_TARGET] = { .type = NLA_U32 }, + [TCA_CAKE_AUTORATE] = { .type = NLA_U32 }, + [TCA_CAKE_MEMORY] = { .type = NLA_U32 }, + [TCA_CAKE_NAT] = { .type = NLA_U32 }, + [TCA_CAKE_RAW] = { .type = NLA_U32 }, + [TCA_CAKE_WASH] = { .type = NLA_U32 }, + [TCA_CAKE_MPU] = { .type = NLA_U32 }, + [TCA_CAKE_INGRESS] = { .type = NLA_U32 }, + [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 }, +}; + +static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu, + u64 target_ns, u64 rtt_est_ns) +{ + /* convert byte-rate into time-per-byte + * so it will always unwedge in reasonable time. + */ + static const u64 MIN_RATE = 64; + u32 byte_target = mtu; + u64 byte_target_ns; + u8 rate_shft = 0; + u64 rate_ns = 0; + + b->flow_quantum = 1514; + if (rate) { + b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL); + rate_shft = 34; + rate_ns = ((u64)NSEC_PER_SEC) << rate_shft; + rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate)); + while (!!(rate_ns >> 34)) { + rate_ns >>= 1; + rate_shft--; + } + } /* else unlimited, ie. zero delay */ + + b->tin_rate_bps = rate; + b->tin_rate_ns = rate_ns; + b->tin_rate_shft = rate_shft; + + byte_target_ns = (byte_target * rate_ns) >> rate_shft; + + b->cparams.target = max((byte_target_ns * 3) / 2, target_ns); + b->cparams.interval = max(rtt_est_ns + + b->cparams.target - target_ns, + b->cparams.target * 2); + b->cparams.mtu_time = byte_target_ns; + b->cparams.p_inc = 1 << 24; /* 1/256 */ + b->cparams.p_dec = 1 << 20; /* 1/4096 */ +} + +static int cake_config_besteffort(struct Qdisc *sch) +{ + struct cake_sched_data *q = qdisc_priv(sch); + struct cake_tin_data *b = &q->tins[0]; + u32 mtu = psched_mtu(qdisc_dev(sch)); + u64 rate = q->rate_bps; + + q->tin_cnt = 1; + + q->tin_index = besteffort; + q->tin_order = normal_order; + + cake_set_rate(b, rate, mtu, + us_to_ns(q->target), us_to_ns(q->interval)); + b->tin_quantum_band = 65535; + b->tin_quantum_prio = 65535; + + return 0; +} + +static int cake_config_precedence(struct Qdisc *sch) +{ + /* convert high-level (user visible) parameters into internal format */ + struct cake_sched_data *q = qdisc_priv(sch); + u32 mtu = psched_mtu(qdisc_dev(sch)); + u64 rate = q->rate_bps; + u32 quantum1 = 256; + u32 quantum2 = 256; + u32 i; + + q->tin_cnt = 8; + q->tin_index = precedence; + q->tin_order = normal_order; + + for (i = 0; i < q->tin_cnt; i++) { + struct cake_tin_data *b = &q->tins[i]; + + cake_set_rate(b, rate, mtu, us_to_ns(q->target), + us_to_ns(q->interval)); + + b->tin_quantum_prio = max_t(u16, 1U, quantum1); + b->tin_quantum_band = max_t(u16, 1U, quantum2); + + /* calculate next class's parameters */ + rate *= 7; + rate >>= 3; + + quantum1 *= 3; + quantum1 >>= 1; + + quantum2 *= 7; + quantum2 >>= 3; + } + + return 0; +} + +/* List of known Diffserv codepoints: + * + * Least Effort (CS1) + * Best Effort (CS0) + * Max Reliability & LLT "Lo" (TOS1) + * Max Throughput (TOS2) + * Min Delay (TOS4) + * LLT "La" (TOS5) + * Assured Forwarding 1 (AF1x) - x3 + * Assured Forwarding 2 (AF2x) - x3 + * Assured Forwarding 3 (AF3x) - x3 + * Assured Forwarding 4 (AF4x) - x3 + * Precedence Class 2 (CS2) + * Precedence Class 3 (CS3) + * Precedence Class 4 (CS4) + * Precedence Class 5 (CS5) + * Precedence Class 6 (CS6) + * Precedence Class 7 (CS7) + * Voice Admit (VA) + * Expedited Forwarding (EF) + + * Total 25 codepoints. + */ + +/* List of traffic classes in RFC 4594: + * (roughly descending order of contended priority) + * (roughly ascending order of uncontended throughput) + * + * Network Control (CS6,CS7) - routing traffic + * Telephony (EF,VA) - aka. VoIP streams + * Signalling (CS5) - VoIP setup + * Multimedia Conferencing (AF4x) - aka. video calls + * Realtime Interactive (CS4) - eg. games + * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch + * Broadcast Video (CS3) + * Low Latency Data (AF2x,TOS4) - eg. database + * Ops, Admin, Management (CS2,TOS1) - eg. ssh + * Standard Service (CS0 & unrecognised codepoints) + * High Throughput Data (AF1x,TOS2) - eg. web traffic + * Low Priority Data (CS1) - eg. BitTorrent + + * Total 12 traffic classes. + */ + +static int cake_config_diffserv8(struct Qdisc *sch) +{ +/* Pruned list of traffic classes for typical applications: + * + * Network Control (CS6, CS7) + * Minimum Latency (EF, VA, CS5, CS4) + * Interactive Shell (CS2, TOS1) + * Low Latency Transactions (AF2x, TOS4) + * Video Streaming (AF4x, AF3x, CS3) + * Bog Standard (CS0 etc.) + * High Throughput (AF1x, TOS2) + * Background Traffic (CS1) + * + * Total 8 traffic classes. + */ + + struct cake_sched_data *q = qdisc_priv(sch); + u32 mtu = psched_mtu(qdisc_dev(sch)); + u64 rate = q->rate_bps; + u32 quantum1 = 256; + u32 quantum2 = 256; + u32 i; + + q->tin_cnt = 8; + + /* codepoint to class mapping */ + q->tin_index = diffserv8; + q->tin_order = normal_order; + + /* class characteristics */ + for (i = 0; i < q->tin_cnt; i++) { + struct cake_tin_data *b = &q->tins[i]; + + cake_set_rate(b, rate, mtu, us_to_ns(q->target), + us_to_ns(q->interval)); + + b->tin_quantum_prio = max_t(u16, 1U, quantum1); + b->tin_quantum_band = max_t(u16, 1U, quantum2); + + /* calculate next class's parameters */ + rate *= 7; + rate >>= 3; + + quantum1 *= 3; + quantum1 >>= 1; + + quantum2 *= 7; + quantum2 >>= 3; + } + + return 0; +} + +static int cake_config_diffserv4(struct Qdisc *sch) +{ +/* Further pruned list of traffic classes for four-class system: + * + * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4) + * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1) + * Best Effort (CS0, AF1x, TOS2, and those not specified) + * Background Traffic (CS1) + * + * Total 4 traffic classes. + */ + + struct cake_sched_data *q = qdisc_priv(sch); + u32 mtu = psched_mtu(qdisc_dev(sch)); + u64 rate = q->rate_bps; + u32 quantum = 1024; + + q->tin_cnt = 4; + + /* codepoint to class mapping */ + q->tin_index = diffserv4; + q->tin_order = bulk_order; + + /* class characteristics */ + cake_set_rate(&q->tins[0], rate, mtu, + us_to_ns(q->target), us_to_ns(q->interval)); + cake_set_rate(&q->tins[1], rate >> 4, mtu, + us_to_ns(q->target), us_to_ns(q->interval)); + cake_set_rate(&q->tins[2], rate >> 1, mtu, + us_to_ns(q->target), us_to_ns(q->interval)); + cake_set_rate(&q->tins[3], rate >> 2, mtu, + us_to_ns(q->target), us_to_ns(q->interval)); + + /* priority weights */ + q->tins[0].tin_quantum_prio = quantum; + q->tins[1].tin_quantum_prio = quantum >> 4; + q->tins[2].tin_quantum_prio = quantum << 2; + q->tins[3].tin_quantum_prio = quantum << 4; + + /* bandwidth-sharing weights */ + q->tins[0].tin_quantum_band = quantum; + q->tins[1].tin_quantum_band = quantum >> 4; + q->tins[2].tin_quantum_band = quantum >> 1; + q->tins[3].tin_quantum_band = quantum >> 2; + + return 0; +} + +static int cake_config_diffserv3(struct Qdisc *sch) +{ +/* Simplified Diffserv structure with 3 tins. + * Low Priority (CS1) + * Best Effort + * Latency Sensitive (TOS4, VA, EF, CS6, CS7) + */ + struct cake_sched_data *q = qdisc_priv(sch); + u32 mtu = psched_mtu(qdisc_dev(sch)); + u64 rate = q->rate_bps; + u32 quantum = 1024; + + q->tin_cnt = 3; + + /* codepoint to class mapping */ + q->tin_index = diffserv3; + q->tin_order = bulk_order; + + /* class characteristics */ + cake_set_rate(&q->tins[0], rate, mtu, + us_to_ns(q->target), us_to_ns(q->interval)); + cake_set_rate(&q->tins[1], rate >> 4, mtu, + us_to_ns(q->target), us_to_ns(q->interval)); + cake_set_rate(&q->tins[2], rate >> 2, mtu, + us_to_ns(q->target), us_to_ns(q->interval)); + + /* priority weights */ + q->tins[0].tin_quantum_prio = quantum; + q->tins[1].tin_quantum_prio = quantum >> 4; + q->tins[2].tin_quantum_prio = quantum << 4; + + /* bandwidth-sharing weights */ + q->tins[0].tin_quantum_band = quantum; + q->tins[1].tin_quantum_band = quantum >> 4; + q->tins[2].tin_quantum_band = quantum >> 2; + + return 0; +} + +static void cake_reconfigure(struct Qdisc *sch) +{ + struct cake_sched_data *q = qdisc_priv(sch); + int c, ft; + + switch (q->tin_mode) { + case CAKE_DIFFSERV_BESTEFFORT: + ft = cake_config_besteffort(sch); + break; + + case CAKE_DIFFSERV_PRECEDENCE: + ft = cake_config_precedence(sch); + break; + + case CAKE_DIFFSERV_DIFFSERV8: + ft = cake_config_diffserv8(sch); + break; + + case CAKE_DIFFSERV_DIFFSERV4: + ft = cake_config_diffserv4(sch); + break; + + case CAKE_DIFFSERV_DIFFSERV3: + default: + ft = cake_config_diffserv3(sch); + break; + } + + for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) { + cake_clear_tin(sch, c); + q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time; + } + + q->rate_ns = q->tins[ft].tin_rate_ns; + q->rate_shft = q->tins[ft].tin_rate_shft; + + if (q->buffer_config_limit) { + q->buffer_limit = q->buffer_config_limit; + } else if (q->rate_bps) { + u64 t = q->rate_bps * q->interval; + + do_div(t, USEC_PER_SEC / 4); + q->buffer_limit = max_t(u32, t, 4U << 20); + } else { + q->buffer_limit = ~0; + } + + sch->flags &= ~TCQ_F_CAN_BYPASS; + + q->buffer_limit = min(q->buffer_limit, + max(sch->limit * psched_mtu(qdisc_dev(sch)), + q->buffer_config_limit)); +} + +static int cake_change(struct Qdisc *sch, struct nlattr *opt, + struct netlink_ext_ack *extack) +{ + struct cake_sched_data *q = qdisc_priv(sch); + struct nlattr *tb[TCA_CAKE_MAX + 1]; + int err; + + if (!opt) + return -EINVAL; + + err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, extack); + if (err < 0) + return err; + + if (tb[TCA_CAKE_NAT]) { +#if IS_ENABLED(CONFIG_NF_CONNTRACK) + q->flow_mode &= ~CAKE_FLOW_NAT_FLAG; + q->flow_mode |= CAKE_FLOW_NAT_FLAG * + !!nla_get_u32(tb[TCA_CAKE_NAT]); +#else + NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT], + "No conntrack support in kernel"); + return -EOPNOTSUPP; +#endif + } + + if (tb[TCA_CAKE_BASE_RATE64]) + q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]); + + if (tb[TCA_CAKE_DIFFSERV_MODE]) + q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]); + + if (tb[TCA_CAKE_WASH]) { + if (!!nla_get_u32(tb[TCA_CAKE_WASH])) + q->rate_flags |= CAKE_FLAG_WASH; + else + q->rate_flags &= ~CAKE_FLAG_WASH; + } + + if (tb[TCA_CAKE_FLOW_MODE]) + q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) | + (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) & + CAKE_FLOW_MASK)); + + if (tb[TCA_CAKE_ATM]) + q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]); + + if (tb[TCA_CAKE_OVERHEAD]) { + q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]); + q->rate_flags |= CAKE_FLAG_OVERHEAD; + + q->max_netlen = 0; + q->max_adjlen = 0; + q->min_netlen = ~0; + q->min_adjlen = ~0; + } + + if (tb[TCA_CAKE_RAW]) { + q->rate_flags &= ~CAKE_FLAG_OVERHEAD; + + q->max_netlen = 0; + q->max_adjlen = 0; + q->min_netlen = ~0; + q->min_adjlen = ~0; + } + + if (tb[TCA_CAKE_MPU]) + q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]); + + if (tb[TCA_CAKE_RTT]) { + q->interval = nla_get_u32(tb[TCA_CAKE_RTT]); + + if (!q->interval) + q->interval = 1; + } + + if (tb[TCA_CAKE_TARGET]) { + q->target = nla_get_u32(tb[TCA_CAKE_TARGET]); + + if (!q->target) + q->target = 1; + } + + if (tb[TCA_CAKE_AUTORATE]) { + if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE])) + q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS; + else + q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS; + } + + if (tb[TCA_CAKE_INGRESS]) { + if (!!nla_get_u32(tb[TCA_CAKE_INGRESS])) + q->rate_flags |= CAKE_FLAG_INGRESS; + else + q->rate_flags &= ~CAKE_FLAG_INGRESS; + } + + if (tb[TCA_CAKE_ACK_FILTER]) + q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]); + + if (tb[TCA_CAKE_MEMORY]) + q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]); + + if (tb[TCA_CAKE_SPLIT_GSO]) { + if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO])) + q->rate_flags |= CAKE_FLAG_SPLIT_GSO; + else + q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO; + } + + if (q->tins) { + sch_tree_lock(sch); + cake_reconfigure(sch); + sch_tree_unlock(sch); + } + + return 0; +} + +static void cake_destroy(struct Qdisc *sch) +{ + struct cake_sched_data *q = qdisc_priv(sch); + + qdisc_watchdog_cancel(&q->watchdog); + tcf_block_put(q->block); + kvfree(q->tins); +} + +static int cake_init(struct Qdisc *sch, struct nlattr *opt, + struct netlink_ext_ack *extack) +{ + struct cake_sched_data *q = qdisc_priv(sch); + int i, j, err; + + sch->limit = 10240; + q->tin_mode = CAKE_DIFFSERV_DIFFSERV3; + q->flow_mode = CAKE_FLOW_TRIPLE; + + q->rate_bps = 0; /* unlimited by default */ + + q->interval = 100000; /* 100ms default */ + q->target = 5000; /* 5ms: codel RFC argues + * for 5 to 10% of interval + */ + q->rate_flags |= CAKE_FLAG_SPLIT_GSO; + q->cur_tin = 0; + q->cur_flow = 0; + + qdisc_watchdog_init(&q->watchdog, sch); + + if (opt) { + int err = cake_change(sch, opt, extack); + + if (err) + return err; + } + + err = tcf_block_get(&q->block, &q->filter_list, sch, extack); + if (err) + return err; + + quantum_div[0] = ~0; + for (i = 1; i <= CAKE_QUEUES; i++) + quantum_div[i] = 65535 / i; + + q->tins = kvzalloc(CAKE_MAX_TINS * sizeof(struct cake_tin_data), + GFP_KERNEL); + if (!q->tins) + goto nomem; + + for (i = 0; i < CAKE_MAX_TINS; i++) { + struct cake_tin_data *b = q->tins + i; + + INIT_LIST_HEAD(&b->new_flows); + INIT_LIST_HEAD(&b->old_flows); + INIT_LIST_HEAD(&b->decaying_flows); + b->sparse_flow_count = 0; + b->bulk_flow_count = 0; + b->decaying_flow_count = 0; + + for (j = 0; j < CAKE_QUEUES; j++) { + struct cake_flow *flow = b->flows + j; + u32 k = j * CAKE_MAX_TINS + i; + + INIT_LIST_HEAD(&flow->flowchain); + cobalt_vars_init(&flow->cvars); + + q->overflow_heap[k].t = i; + q->overflow_heap[k].b = j; + b->overflow_idx[j] = k; + } + } + + cake_reconfigure(sch); + q->avg_peak_bandwidth = q->rate_bps; + q->min_netlen = ~0; + q->min_adjlen = ~0; + return 0; + +nomem: + cake_destroy(sch); + return -ENOMEM; +} + +static int cake_dump(struct Qdisc *sch, struct sk_buff *skb) +{ + struct cake_sched_data *q = qdisc_priv(sch); + struct nlattr *opts; + + opts = nla_nest_start(skb, TCA_OPTIONS); + if (!opts) + goto nla_put_failure; + + if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps, + TCA_CAKE_PAD)) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, + q->flow_mode & CAKE_FLOW_MASK)) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval)) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target)) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit)) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_AUTORATE, + !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS))) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_INGRESS, + !!(q->rate_flags & CAKE_FLAG_INGRESS))) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter)) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_NAT, + !!(q->flow_mode & CAKE_FLOW_NAT_FLAG))) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode)) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_WASH, + !!(q->rate_flags & CAKE_FLAG_WASH))) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead)) + goto nla_put_failure; + + if (!(q->rate_flags & CAKE_FLAG_OVERHEAD)) + if (nla_put_u32(skb, TCA_CAKE_RAW, 0)) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode)) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu)) + goto nla_put_failure; + + if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO, + !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO))) + goto nla_put_failure; + + return nla_nest_end(skb, opts); + +nla_put_failure: + return -1; +} + +static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d) +{ + struct nlattr *stats = nla_nest_start(d->skb, TCA_STATS_APP); + struct cake_sched_data *q = qdisc_priv(sch); + struct nlattr *tstats, *ts; + int i; + + if (!stats) + return -1; + +#define PUT_STAT_U32(attr, data) do { \ + if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ + goto nla_put_failure; \ + } while (0) +#define PUT_STAT_U64(attr, data) do { \ + if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \ + data, TCA_CAKE_STATS_PAD)) \ + goto nla_put_failure; \ + } while (0) + + PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth); + PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit); + PUT_STAT_U32(MEMORY_USED, q->buffer_max_used); + PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16)); + PUT_STAT_U32(MAX_NETLEN, q->max_netlen); + PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen); + PUT_STAT_U32(MIN_NETLEN, q->min_netlen); + PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen); + +#undef PUT_STAT_U32 +#undef PUT_STAT_U64 + + tstats = nla_nest_start(d->skb, TCA_CAKE_STATS_TIN_STATS); + if (!tstats) + goto nla_put_failure; + +#define PUT_TSTAT_U32(attr, data) do { \ + if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \ + goto nla_put_failure; \ + } while (0) +#define PUT_TSTAT_U64(attr, data) do { \ + if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \ + data, TCA_CAKE_TIN_STATS_PAD)) \ + goto nla_put_failure; \ + } while (0) + + for (i = 0; i < q->tin_cnt; i++) { + struct cake_tin_data *b = &q->tins[q->tin_order[i]]; + + ts = nla_nest_start(d->skb, i + 1); + if (!ts) + goto nla_put_failure; + + PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps); + PUT_TSTAT_U64(SENT_BYTES64, b->bytes); + PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog); + + PUT_TSTAT_U32(TARGET_US, + ktime_to_us(ns_to_ktime(b->cparams.target))); + PUT_TSTAT_U32(INTERVAL_US, + ktime_to_us(ns_to_ktime(b->cparams.interval))); + + PUT_TSTAT_U32(SENT_PACKETS, b->packets); + PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped); + PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark); + PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops); + + PUT_TSTAT_U32(PEAK_DELAY_US, + ktime_to_us(ns_to_ktime(b->peak_delay))); + PUT_TSTAT_U32(AVG_DELAY_US, + ktime_to_us(ns_to_ktime(b->avge_delay))); + PUT_TSTAT_U32(BASE_DELAY_US, + ktime_to_us(ns_to_ktime(b->base_delay))); + + PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits); + PUT_TSTAT_U32(WAY_MISSES, b->way_misses); + PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions); + + PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count + + b->decaying_flow_count); + PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count); + PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count); + PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen); + + PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum); + nla_nest_end(d->skb, ts); + } + +#undef PUT_TSTAT_U32 +#undef PUT_TSTAT_U64 + + nla_nest_end(d->skb, tstats); + return nla_nest_end(d->skb, stats); + +nla_put_failure: + nla_nest_cancel(d->skb, stats); + return -1; +} + +static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg) +{ + return NULL; +} + +static unsigned long cake_find(struct Qdisc *sch, u32 classid) +{ + return 0; +} + +static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent, + u32 classid) +{ + return 0; +} + +static void cake_unbind(struct Qdisc *q, unsigned long cl) +{ +} + +static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl, + struct netlink_ext_ack *extack) +{ + struct cake_sched_data *q = qdisc_priv(sch); + + if (cl) + return NULL; + return q->block; +} + +static int cake_dump_class(struct Qdisc *sch, unsigned long cl, + struct sk_buff *skb, struct tcmsg *tcm) +{ + tcm->tcm_handle |= TC_H_MIN(cl); + return 0; +} + +static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl, + struct gnet_dump *d) +{ + struct cake_sched_data *q = qdisc_priv(sch); + const struct cake_flow *flow = NULL; + struct gnet_stats_queue qs = { 0 }; + struct nlattr *stats; + u32 idx = cl - 1; + + if (idx < CAKE_QUEUES * q->tin_cnt) { + const struct cake_tin_data *b = \ + &q->tins[q->tin_order[idx / CAKE_QUEUES]]; + const struct sk_buff *skb; + + flow = &b->flows[idx % CAKE_QUEUES]; + + if (flow->head) { + sch_tree_lock(sch); + skb = flow->head; + while (skb) { + qs.qlen++; + skb = skb->next; + } + sch_tree_unlock(sch); + } + qs.backlog = b->backlogs[idx % CAKE_QUEUES]; + qs.drops = flow->dropped; + } + if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0) + return -1; + if (flow) { + ktime_t now = ktime_get(); + + stats = nla_nest_start(d->skb, TCA_STATS_APP); + if (!stats) + return -1; + +#define PUT_STAT_U32(attr, data) do { \ + if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ + goto nla_put_failure; \ + } while (0) +#define PUT_STAT_S32(attr, data) do { \ + if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ + goto nla_put_failure; \ + } while (0) + + PUT_STAT_S32(DEFICIT, flow->deficit); + PUT_STAT_U32(DROPPING, flow->cvars.dropping); + PUT_STAT_U32(COBALT_COUNT, flow->cvars.count); + PUT_STAT_U32(P_DROP, flow->cvars.p_drop); + if (flow->cvars.p_drop) { + PUT_STAT_S32(BLUE_TIMER_US, + ktime_to_us( + ktime_sub(now, + flow->cvars.blue_timer))); + } + if (flow->cvars.dropping) { + PUT_STAT_S32(DROP_NEXT_US, + ktime_to_us( + ktime_sub(now, + flow->cvars.drop_next))); + } + + if (nla_nest_end(d->skb, stats) < 0) + return -1; + } + + return 0; + +nla_put_failure: + nla_nest_cancel(d->skb, stats); + return -1; +} + +static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg) +{ + struct cake_sched_data *q = qdisc_priv(sch); + unsigned int i, j; + + if (arg->stop) + return; + + for (i = 0; i < q->tin_cnt; i++) { + struct cake_tin_data *b = &q->tins[q->tin_order[i]]; + + for (j = 0; j < CAKE_QUEUES; j++) { + if (list_empty(&b->flows[j].flowchain) || + arg->count < arg->skip) { + arg->count++; + continue; + } + if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) { + arg->stop = 1; + break; + } + arg->count++; + } + } +} + +static const struct Qdisc_class_ops cake_class_ops = { + .leaf = cake_leaf, + .find = cake_find, + .tcf_block = cake_tcf_block, + .bind_tcf = cake_bind, + .unbind_tcf = cake_unbind, + .dump = cake_dump_class, + .dump_stats = cake_dump_class_stats, + .walk = cake_walk, +}; + +static struct Qdisc_ops cake_qdisc_ops __read_mostly = { + .cl_ops = &cake_class_ops, + .id = "cake", + .priv_size = sizeof(struct cake_sched_data), + .enqueue = cake_enqueue, + .dequeue = cake_dequeue, + .peek = qdisc_peek_dequeued, + .init = cake_init, + .reset = cake_reset, + .destroy = cake_destroy, + .change = cake_change, + .dump = cake_dump, + .dump_stats = cake_dump_stats, + .owner = THIS_MODULE, +}; + +static int __init cake_module_init(void) +{ + return register_qdisc(&cake_qdisc_ops); +} + +static void __exit cake_module_exit(void) +{ + unregister_qdisc(&cake_qdisc_ops); +} + +module_init(cake_module_init) +module_exit(cake_module_exit) +MODULE_AUTHOR("Jonathan Morton"); +MODULE_LICENSE("Dual BSD/GPL"); +MODULE_DESCRIPTION("The CAKE shaper."); |