diff options
author | Martin KaFai Lau <kafai@fb.com> | 2019-04-27 02:39:39 +0300 |
---|---|---|
committer | Alexei Starovoitov <ast@kernel.org> | 2019-04-27 19:07:04 +0300 |
commit | 6ac99e8f23d4b10258406ca0dd7bffca5f31da9d (patch) | |
tree | b5f3d4885b1f7cf357ab86c397f65e8718c150b1 /include/uapi/linux/bpf.h | |
parent | 3745dc24aa7a6a45771a6b441194b857ac615cfc (diff) | |
download | linux-6ac99e8f23d4b10258406ca0dd7bffca5f31da9d.tar.xz |
bpf: Introduce bpf sk local storage
After allowing a bpf prog to
- directly read the skb->sk ptr
- get the fullsock bpf_sock by "bpf_sk_fullsock()"
- get the bpf_tcp_sock by "bpf_tcp_sock()"
- get the listener sock by "bpf_get_listener_sock()"
- avoid duplicating the fields of "(bpf_)sock" and "(bpf_)tcp_sock"
into different bpf running context.
this patch is another effort to make bpf's network programming
more intuitive to do (together with memory and performance benefit).
When bpf prog needs to store data for a sk, the current practice is to
define a map with the usual 4-tuples (src/dst ip/port) as the key.
If multiple bpf progs require to store different sk data, multiple maps
have to be defined. Hence, wasting memory to store the duplicated
keys (i.e. 4 tuples here) in each of the bpf map.
[ The smallest key could be the sk pointer itself which requires
some enhancement in the verifier and it is a separate topic. ]
Also, the bpf prog needs to clean up the elem when sk is freed.
Otherwise, the bpf map will become full and un-usable quickly.
The sk-free tracking currently could be done during sk state
transition (e.g. BPF_SOCK_OPS_STATE_CB).
The size of the map needs to be predefined which then usually ended-up
with an over-provisioned map in production. Even the map was re-sizable,
while the sk naturally come and go away already, this potential re-size
operation is arguably redundant if the data can be directly connected
to the sk itself instead of proxy-ing through a bpf map.
This patch introduces sk->sk_bpf_storage to provide local storage space
at sk for bpf prog to use. The space will be allocated when the first bpf
prog has created data for this particular sk.
The design optimizes the bpf prog's lookup (and then optionally followed by
an inline update). bpf_spin_lock should be used if the inline update needs
to be protected.
BPF_MAP_TYPE_SK_STORAGE:
-----------------------
To define a bpf "sk-local-storage", a BPF_MAP_TYPE_SK_STORAGE map (new in
this patch) needs to be created. Multiple BPF_MAP_TYPE_SK_STORAGE maps can
be created to fit different bpf progs' needs. The map enforces
BTF to allow printing the sk-local-storage during a system-wise
sk dump (e.g. "ss -ta") in the future.
The purpose of a BPF_MAP_TYPE_SK_STORAGE map is not for lookup/update/delete
a "sk-local-storage" data from a particular sk.
Think of the map as a meta-data (or "type") of a "sk-local-storage". This
particular "type" of "sk-local-storage" data can then be stored in any sk.
The main purposes of this map are mostly:
1. Define the size of a "sk-local-storage" type.
2. Provide a similar syscall userspace API as the map (e.g. lookup/update,
map-id, map-btf...etc.)
3. Keep track of all sk's storages of this "type" and clean them up
when the map is freed.
sk->sk_bpf_storage:
------------------
The main lookup/update/delete is done on sk->sk_bpf_storage (which
is a "struct bpf_sk_storage"). When doing a lookup,
the "map" pointer is now used as the "key" to search on the
sk_storage->list. The "map" pointer is actually serving
as the "type" of the "sk-local-storage" that is being
requested.
To allow very fast lookup, it should be as fast as looking up an
array at a stable-offset. At the same time, it is not ideal to
set a hard limit on the number of sk-local-storage "type" that the
system can have. Hence, this patch takes a cache approach.
The last search result from sk_storage->list is cached in
sk_storage->cache[] which is a stable sized array. Each
"sk-local-storage" type has a stable offset to the cache[] array.
In the future, a map's flag could be introduced to do cache
opt-out/enforcement if it became necessary.
The cache size is 16 (i.e. 16 types of "sk-local-storage").
Programs can share map. On the program side, having a few bpf_progs
running in the networking hotpath is already a lot. The bpf_prog
should have already consolidated the existing sock-key-ed map usage
to minimize the map lookup penalty. 16 has enough runway to grow.
All sk-local-storage data will be removed from sk->sk_bpf_storage
during sk destruction.
bpf_sk_storage_get() and bpf_sk_storage_delete():
------------------------------------------------
Instead of using bpf_map_(lookup|update|delete)_elem(),
the bpf prog needs to use the new helper bpf_sk_storage_get() and
bpf_sk_storage_delete(). The verifier can then enforce the
ARG_PTR_TO_SOCKET argument. The bpf_sk_storage_get() also allows to
"create" new elem if one does not exist in the sk. It is done by
the new BPF_SK_STORAGE_GET_F_CREATE flag. An optional value can also be
provided as the initial value during BPF_SK_STORAGE_GET_F_CREATE.
The BPF_MAP_TYPE_SK_STORAGE also supports bpf_spin_lock. Together,
it has eliminated the potential use cases for an equivalent
bpf_map_update_elem() API (for bpf_prog) in this patch.
Misc notes:
----------
1. map_get_next_key is not supported. From the userspace syscall
perspective, the map has the socket fd as the key while the map
can be shared by pinned-file or map-id.
Since btf is enforced, the existing "ss" could be enhanced to pretty
print the local-storage.
Supporting a kernel defined btf with 4 tuples as the return key could
be explored later also.
2. The sk->sk_lock cannot be acquired. Atomic operations is used instead.
e.g. cmpxchg is done on the sk->sk_bpf_storage ptr.
Please refer to the source code comments for the details in
synchronization cases and considerations.
3. The mem is charged to the sk->sk_omem_alloc as the sk filter does.
Benchmark:
---------
Here is the benchmark data collected by turning on
the "kernel.bpf_stats_enabled" sysctl.
Two bpf progs are tested:
One bpf prog with the usual bpf hashmap (max_entries = 8192) with the
sk ptr as the key. (verifier is modified to support sk ptr as the key
That should have shortened the key lookup time.)
Another bpf prog is with the new BPF_MAP_TYPE_SK_STORAGE.
Both are storing a "u32 cnt", do a lookup on "egress_skb/cgroup" for
each egress skb and then bump the cnt. netperf is used to drive
data with 4096 connected UDP sockets.
BPF_MAP_TYPE_HASH with a modifier verifier (152ns per bpf run)
27: cgroup_skb name egress_sk_map tag 74f56e832918070b run_time_ns 58280107540 run_cnt 381347633
loaded_at 2019-04-15T13:46:39-0700 uid 0
xlated 344B jited 258B memlock 4096B map_ids 16
btf_id 5
BPF_MAP_TYPE_SK_STORAGE in this patch (66ns per bpf run)
30: cgroup_skb name egress_sk_stora tag d4aa70984cc7bbf6 run_time_ns 25617093319 run_cnt 390989739
loaded_at 2019-04-15T13:47:54-0700 uid 0
xlated 168B jited 156B memlock 4096B map_ids 17
btf_id 6
Here is a high-level picture on how are the objects organized:
sk
┌──────┐
│ │
│ │
│ │
│*sk_bpf_storage─────▶ bpf_sk_storage
└──────┘ ┌───────┐
┌───────────┤ list │
│ │ │
│ │ │
│ │ │
│ └───────┘
│
│ elem
│ ┌────────┐
├─▶│ snode │
│ ├────────┤
│ │ data │ bpf_map
│ ├────────┤ ┌─────────┐
│ │map_node│◀─┬─────┤ list │
│ └────────┘ │ │ │
│ │ │ │
│ elem │ │ │
│ ┌────────┐ │ └─────────┘
└─▶│ snode │ │
├────────┤ │
bpf_map │ data │ │
┌─────────┐ ├────────┤ │
│ list ├───────▶│map_node│ │
│ │ └────────┘ │
│ │ │
│ │ elem │
└─────────┘ ┌────────┐ │
┌─▶│ snode │ │
│ ├────────┤ │
│ │ data │ │
│ ├────────┤ │
│ │map_node│◀─┘
│ └────────┘
│
│
│ ┌───────┐
sk └──────────│ list │
┌──────┐ │ │
│ │ │ │
│ │ │ │
│ │ └───────┘
│*sk_bpf_storage───────▶bpf_sk_storage
└──────┘
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to 'include/uapi/linux/bpf.h')
-rw-r--r-- | include/uapi/linux/bpf.h | 44 |
1 files changed, 43 insertions, 1 deletions
diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h index f7fa7a34a62d..72336bac7573 100644 --- a/include/uapi/linux/bpf.h +++ b/include/uapi/linux/bpf.h @@ -133,6 +133,7 @@ enum bpf_map_type { BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, BPF_MAP_TYPE_QUEUE, BPF_MAP_TYPE_STACK, + BPF_MAP_TYPE_SK_STORAGE, }; /* Note that tracing related programs such as @@ -2630,6 +2631,42 @@ union bpf_attr { * was provided. * * **-ERANGE** if resulting value was out of range. + * + * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags) + * Description + * Get a bpf-local-storage from a sk. + * + * Logically, it could be thought of getting the value from + * a *map* with *sk* as the **key**. From this + * perspective, the usage is not much different from + * **bpf_map_lookup_elem(map, &sk)** except this + * helper enforces the key must be a **bpf_fullsock()** + * and the map must be a BPF_MAP_TYPE_SK_STORAGE also. + * + * Underneath, the value is stored locally at *sk* instead of + * the map. The *map* is used as the bpf-local-storage **type**. + * The bpf-local-storage **type** (i.e. the *map*) is searched + * against all bpf-local-storages residing at sk. + * + * An optional *flags* (BPF_SK_STORAGE_GET_F_CREATE) can be + * used such that a new bpf-local-storage will be + * created if one does not exist. *value* can be used + * together with BPF_SK_STORAGE_GET_F_CREATE to specify + * the initial value of a bpf-local-storage. If *value* is + * NULL, the new bpf-local-storage will be zero initialized. + * Return + * A bpf-local-storage pointer is returned on success. + * + * **NULL** if not found or there was an error in adding + * a new bpf-local-storage. + * + * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk) + * Description + * Delete a bpf-local-storage from a sk. + * Return + * 0 on success. + * + * **-ENOENT** if the bpf-local-storage cannot be found. */ #define __BPF_FUNC_MAPPER(FN) \ FN(unspec), \ @@ -2738,7 +2775,9 @@ union bpf_attr { FN(sysctl_get_new_value), \ FN(sysctl_set_new_value), \ FN(strtol), \ - FN(strtoul), + FN(strtoul), \ + FN(sk_storage_get), \ + FN(sk_storage_delete), /* integer value in 'imm' field of BPF_CALL instruction selects which helper * function eBPF program intends to call @@ -2814,6 +2853,9 @@ enum bpf_func_id { /* BPF_FUNC_sysctl_get_name flags. */ #define BPF_F_SYSCTL_BASE_NAME (1ULL << 0) +/* BPF_FUNC_sk_storage_get flags */ +#define BPF_SK_STORAGE_GET_F_CREATE (1ULL << 0) + /* Mode for BPF_FUNC_skb_adjust_room helper. */ enum bpf_adj_room_mode { BPF_ADJ_ROOM_NET, |