summaryrefslogtreecommitdiff
path: root/include/linux
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2017-02-24 05:58:18 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2017-02-24 05:58:18 +0300
commitef96152e6a36e0510387cb174178b7982c1ae879 (patch)
treef2b881feb97893dd6e73380fe206bbfd5110559e /include/linux
parentd5500a074741b78b7f778b4ab3415d5ecdcda0a7 (diff)
parent64a577196d66b44e37384bc5c4d78c61f59d5b2a (diff)
downloadlinux-ef96152e6a36e0510387cb174178b7982c1ae879.tar.xz
Merge tag 'drm-for-v4.11-less-shouty' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie: "This is the main drm pull request for v4.11. Nothing too major, the tinydrm and mmu-less support should make writing smaller drivers easier for some of the simpler platforms, and there are a bunch of documentation updates. Intel grew displayport MST audio support which is hopefully useful to people, and FBC is on by default for GEN9+ (so people know where to look for regressions). AMDGPU has a lot of fixes that would like new firmware files installed for some GPUs. Other than that it's pretty scattered all over. I may have a follow up pull request as I know BenH has a bunch of AST rework and fixes and I'd like to get those in once they've been tested by AST, and I've got at least one pull request I'm just trying to get the author to fix up. Core: - drm_mm reworked - Connector list locking and iterators - Documentation updates - Format handling rework - MMU-less support for fbdev helpers - drm_crtc_from_index helper - Core CRC API - Remove drm_framebuffer_unregister_private - Debugfs cleanup - EDID/Infoframe fixes - Release callback - Tinydrm support (smaller drivers for simple hw) panel: - Add support for some new simple panels i915: - FBC by default for gen9+ - Shared dpll cleanups and docs - GEN8 powerdomain cleanup - DMC support on GLK - DP MST audio support - HuC loading support - GVT init ordering fixes - GVT IOMMU workaround fix amdgpu/radeon: - Power/clockgating improvements - Preliminary SR-IOV support - TTM buffer priority and eviction fixes - SI DPM quirks removed due to firmware fixes - Powerplay improvements - VCE/UVD powergating fixes - Cleanup SI GFX code to match CI/VI - Support for > 2 displays on 3/5 crtc asics - SI headless fixes nouveau: - Rework securre boot code in prep for GP10x secure boot - Channel recovery improvements - Initial power budget code - MMU rework preperation vmwgfx: - Bunch of fixes and cleanups exynos: - Runtime PM support for MIC driver - Cleanups to use atomic helpers - UHD Support for TM2/TM2E boards - Trigger mode fix for Rinato board etnaviv: - Shader performance fix - Command stream validator fixes - Command buffer suballocator rockchip: - CDN DisplayPort support - IOMMU support for arm64 platform imx-drm: - Fix i.MX5 TV encoder probing - Remove lower fb size limits msm: - Support for HW cursor on MDP5 devices - DSI encoder cleanup - GPU DT bindings cleanup sti: - stih410 cleanups - Create fbdev at binding - HQVDP fixes - Remove stih416 chip functionality - DVI/HDMI mode selection fixes - FPS statistic reporting omapdrm: - IRQ code cleanup dwi-hdmi bridge: - Cleanups and fixes adv-bridge: - Updates for nexus sii8520 bridge: - Add interlace mode support - Rework HDMI and lots of fixes qxl: - probing/teardown cleanups ZTE drm: - HDMI audio via SPDIF interface - Video Layer overlay plane support - Add TV encoder output device atmel-hlcdc: - Rework fbdev creation logic tegra: - OF node fix fsl-dcu: - Minor fixes mali-dp: - Assorted fixes sunxi: - Minor fix" [ This was the "fixed" pull, that still had build warnings due to people not even having build tested the result. I'm not a happy camper I've fixed the things I noticed up in this merge. - Linus ] * tag 'drm-for-v4.11-less-shouty' of git://people.freedesktop.org/~airlied/linux: (1177 commits) lib/Kconfig: make PRIME_NUMBERS not user selectable drm/tinydrm: helpers: Properly fix backlight dependency drm/tinydrm: mipi-dbi: Fix field width specifier warning drm/tinydrm: mipi-dbi: Silence: ‘cmd’ may be used uninitialized drm/sti: fix build warnings in sti_drv.c and sti_vtg.c files drm/amd/powerplay: fix PSI feature on Polars12 drm/amdgpu: refuse to reserve io mem for split VRAM buffers drm/ttm: fix use-after-free races in vm fault handling drm/tinydrm: Add support for Multi-Inno MI0283QT display dt-bindings: Add Multi-Inno MI0283QT binding dt-bindings: display/panel: Add common rotation property of: Add vendor prefix for Multi-Inno drm/tinydrm: Add MIPI DBI support drm/tinydrm: Add helper functions drm: Add DRM support for tiny LCD displays drm/amd/amdgpu: post card if there is real hw resetting performed drm/nouveau/tmr: provide backtrace when a timeout is hit drm/nouveau/pci/g92: Fix rearm drm/nouveau/drm/therm/fan: add a fallback if no fan control is specified in the vbios drm/nouveau/hwmon: expose power_max and power_crit ..
Diffstat (limited to 'include/linux')
-rw-r--r--include/linux/dma-buf.h224
-rw-r--r--include/linux/dma-fence.h52
-rw-r--r--include/linux/prime_numbers.h37
-rw-r--r--include/linux/reservation.h34
4 files changed, 312 insertions, 35 deletions
diff --git a/include/linux/dma-buf.h b/include/linux/dma-buf.h
index 8daeb3ce0016..bfb3704fc6fc 100644
--- a/include/linux/dma-buf.h
+++ b/include/linux/dma-buf.h
@@ -39,23 +39,6 @@ struct dma_buf_attachment;
/**
* struct dma_buf_ops - operations possible on struct dma_buf
- * @attach: [optional] allows different devices to 'attach' themselves to the
- * given buffer. It might return -EBUSY to signal that backing storage
- * is already allocated and incompatible with the requirements
- * of requesting device.
- * @detach: [optional] detach a given device from this buffer.
- * @map_dma_buf: returns list of scatter pages allocated, increases usecount
- * of the buffer. Requires atleast one attach to be called
- * before. Returned sg list should already be mapped into
- * _device_ address space. This call may sleep. May also return
- * -EINTR. Should return -EINVAL if attach hasn't been called yet.
- * @unmap_dma_buf: decreases usecount of buffer, might deallocate scatter
- * pages.
- * @release: release this buffer; to be called after the last dma_buf_put.
- * @begin_cpu_access: [optional] called before cpu access to invalidate cpu
- * caches and allocate backing storage (if not yet done)
- * respectively pin the object into memory.
- * @end_cpu_access: [optional] called after cpu access to flush caches.
* @kmap_atomic: maps a page from the buffer into kernel address
* space, users may not block until the subsequent unmap call.
* This callback must not sleep.
@@ -63,43 +46,206 @@ struct dma_buf_attachment;
* This Callback must not sleep.
* @kmap: maps a page from the buffer into kernel address space.
* @kunmap: [optional] unmaps a page from the buffer.
- * @mmap: used to expose the backing storage to userspace. Note that the
- * mapping needs to be coherent - if the exporter doesn't directly
- * support this, it needs to fake coherency by shooting down any ptes
- * when transitioning away from the cpu domain.
* @vmap: [optional] creates a virtual mapping for the buffer into kernel
* address space. Same restrictions as for vmap and friends apply.
* @vunmap: [optional] unmaps a vmap from the buffer
*/
struct dma_buf_ops {
+ /**
+ * @attach:
+ *
+ * This is called from dma_buf_attach() to make sure that a given
+ * &device can access the provided &dma_buf. Exporters which support
+ * buffer objects in special locations like VRAM or device-specific
+ * carveout areas should check whether the buffer could be move to
+ * system memory (or directly accessed by the provided device), and
+ * otherwise need to fail the attach operation.
+ *
+ * The exporter should also in general check whether the current
+ * allocation fullfills the DMA constraints of the new device. If this
+ * is not the case, and the allocation cannot be moved, it should also
+ * fail the attach operation.
+ *
+ * Any exporter-private housekeeping data can be stored in the
+ * &dma_buf_attachment.priv pointer.
+ *
+ * This callback is optional.
+ *
+ * Returns:
+ *
+ * 0 on success, negative error code on failure. It might return -EBUSY
+ * to signal that backing storage is already allocated and incompatible
+ * with the requirements of requesting device.
+ */
int (*attach)(struct dma_buf *, struct device *,
- struct dma_buf_attachment *);
+ struct dma_buf_attachment *);
+ /**
+ * @detach:
+ *
+ * This is called by dma_buf_detach() to release a &dma_buf_attachment.
+ * Provided so that exporters can clean up any housekeeping for an
+ * &dma_buf_attachment.
+ *
+ * This callback is optional.
+ */
void (*detach)(struct dma_buf *, struct dma_buf_attachment *);
- /* For {map,unmap}_dma_buf below, any specific buffer attributes
- * required should get added to device_dma_parameters accessible
- * via dev->dma_params.
+ /**
+ * @map_dma_buf:
+ *
+ * This is called by dma_buf_map_attachment() and is used to map a
+ * shared &dma_buf into device address space, and it is mandatory. It
+ * can only be called if @attach has been called successfully. This
+ * essentially pins the DMA buffer into place, and it cannot be moved
+ * any more
+ *
+ * This call may sleep, e.g. when the backing storage first needs to be
+ * allocated, or moved to a location suitable for all currently attached
+ * devices.
+ *
+ * Note that any specific buffer attributes required for this function
+ * should get added to device_dma_parameters accessible via
+ * &device.dma_params from the &dma_buf_attachment. The @attach callback
+ * should also check these constraints.
+ *
+ * If this is being called for the first time, the exporter can now
+ * choose to scan through the list of attachments for this buffer,
+ * collate the requirements of the attached devices, and choose an
+ * appropriate backing storage for the buffer.
+ *
+ * Based on enum dma_data_direction, it might be possible to have
+ * multiple users accessing at the same time (for reading, maybe), or
+ * any other kind of sharing that the exporter might wish to make
+ * available to buffer-users.
+ *
+ * Returns:
+ *
+ * A &sg_table scatter list of or the backing storage of the DMA buffer,
+ * already mapped into the device address space of the &device attached
+ * with the provided &dma_buf_attachment.
+ *
+ * On failure, returns a negative error value wrapped into a pointer.
+ * May also return -EINTR when a signal was received while being
+ * blocked.
*/
struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *,
- enum dma_data_direction);
+ enum dma_data_direction);
+ /**
+ * @unmap_dma_buf:
+ *
+ * This is called by dma_buf_unmap_attachment() and should unmap and
+ * release the &sg_table allocated in @map_dma_buf, and it is mandatory.
+ * It should also unpin the backing storage if this is the last mapping
+ * of the DMA buffer, it the exporter supports backing storage
+ * migration.
+ */
void (*unmap_dma_buf)(struct dma_buf_attachment *,
- struct sg_table *,
- enum dma_data_direction);
+ struct sg_table *,
+ enum dma_data_direction);
+
/* TODO: Add try_map_dma_buf version, to return immed with -EBUSY
* if the call would block.
*/
- /* after final dma_buf_put() */
+ /**
+ * @release:
+ *
+ * Called after the last dma_buf_put to release the &dma_buf, and
+ * mandatory.
+ */
void (*release)(struct dma_buf *);
+ /**
+ * @begin_cpu_access:
+ *
+ * This is called from dma_buf_begin_cpu_access() and allows the
+ * exporter to ensure that the memory is actually available for cpu
+ * access - the exporter might need to allocate or swap-in and pin the
+ * backing storage. The exporter also needs to ensure that cpu access is
+ * coherent for the access direction. The direction can be used by the
+ * exporter to optimize the cache flushing, i.e. access with a different
+ * direction (read instead of write) might return stale or even bogus
+ * data (e.g. when the exporter needs to copy the data to temporary
+ * storage).
+ *
+ * This callback is optional.
+ *
+ * FIXME: This is both called through the DMA_BUF_IOCTL_SYNC command
+ * from userspace (where storage shouldn't be pinned to avoid handing
+ * de-factor mlock rights to userspace) and for the kernel-internal
+ * users of the various kmap interfaces, where the backing storage must
+ * be pinned to guarantee that the atomic kmap calls can succeed. Since
+ * there's no in-kernel users of the kmap interfaces yet this isn't a
+ * real problem.
+ *
+ * Returns:
+ *
+ * 0 on success or a negative error code on failure. This can for
+ * example fail when the backing storage can't be allocated. Can also
+ * return -ERESTARTSYS or -EINTR when the call has been interrupted and
+ * needs to be restarted.
+ */
int (*begin_cpu_access)(struct dma_buf *, enum dma_data_direction);
+
+ /**
+ * @end_cpu_access:
+ *
+ * This is called from dma_buf_end_cpu_access() when the importer is
+ * done accessing the CPU. The exporter can use this to flush caches and
+ * unpin any resources pinned in @begin_cpu_access.
+ * The result of any dma_buf kmap calls after end_cpu_access is
+ * undefined.
+ *
+ * This callback is optional.
+ *
+ * Returns:
+ *
+ * 0 on success or a negative error code on failure. Can return
+ * -ERESTARTSYS or -EINTR when the call has been interrupted and needs
+ * to be restarted.
+ */
int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);
void *(*kmap_atomic)(struct dma_buf *, unsigned long);
void (*kunmap_atomic)(struct dma_buf *, unsigned long, void *);
void *(*kmap)(struct dma_buf *, unsigned long);
void (*kunmap)(struct dma_buf *, unsigned long, void *);
+ /**
+ * @mmap:
+ *
+ * This callback is used by the dma_buf_mmap() function
+ *
+ * Note that the mapping needs to be incoherent, userspace is expected
+ * to braket CPU access using the DMA_BUF_IOCTL_SYNC interface.
+ *
+ * Because dma-buf buffers have invariant size over their lifetime, the
+ * dma-buf core checks whether a vma is too large and rejects such
+ * mappings. The exporter hence does not need to duplicate this check.
+ * Drivers do not need to check this themselves.
+ *
+ * If an exporter needs to manually flush caches and hence needs to fake
+ * coherency for mmap support, it needs to be able to zap all the ptes
+ * pointing at the backing storage. Now linux mm needs a struct
+ * address_space associated with the struct file stored in vma->vm_file
+ * to do that with the function unmap_mapping_range. But the dma_buf
+ * framework only backs every dma_buf fd with the anon_file struct file,
+ * i.e. all dma_bufs share the same file.
+ *
+ * Hence exporters need to setup their own file (and address_space)
+ * association by setting vma->vm_file and adjusting vma->vm_pgoff in
+ * the dma_buf mmap callback. In the specific case of a gem driver the
+ * exporter could use the shmem file already provided by gem (and set
+ * vm_pgoff = 0). Exporters can then zap ptes by unmapping the
+ * corresponding range of the struct address_space associated with their
+ * own file.
+ *
+ * This callback is optional.
+ *
+ * Returns:
+ *
+ * 0 on success or a negative error code on failure.
+ */
int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);
void *(*vmap)(struct dma_buf *);
@@ -124,6 +270,15 @@ struct dma_buf_ops {
* @poll: for userspace poll support
* @cb_excl: for userspace poll support
* @cb_shared: for userspace poll support
+ *
+ * This represents a shared buffer, created by calling dma_buf_export(). The
+ * userspace representation is a normal file descriptor, which can be created by
+ * calling dma_buf_fd().
+ *
+ * Shared dma buffers are reference counted using dma_buf_put() and
+ * get_dma_buf().
+ *
+ * Device DMA access is handled by the separate &struct dma_buf_attachment.
*/
struct dma_buf {
size_t size;
@@ -160,6 +315,11 @@ struct dma_buf {
* This structure holds the attachment information between the dma_buf buffer
* and its user device(s). The list contains one attachment struct per device
* attached to the buffer.
+ *
+ * An attachment is created by calling dma_buf_attach(), and released again by
+ * calling dma_buf_detach(). The DMA mapping itself needed to initiate a
+ * transfer is created by dma_buf_map_attachment() and freed again by calling
+ * dma_buf_unmap_attachment().
*/
struct dma_buf_attachment {
struct dma_buf *dmabuf;
@@ -192,9 +352,11 @@ struct dma_buf_export_info {
};
/**
- * helper macro for exporters; zeros and fills in most common values
- *
+ * DEFINE_DMA_BUF_EXPORT_INFO - helper macro for exporters
* @name: export-info name
+ *
+ * DEFINE_DMA_BUF_EXPORT_INFO macro defines the &struct dma_buf_export_info,
+ * zeroes it out and pre-populates exp_name in it.
*/
#define DEFINE_DMA_BUF_EXPORT_INFO(name) \
struct dma_buf_export_info name = { .exp_name = KBUILD_MODNAME, \
diff --git a/include/linux/dma-fence.h b/include/linux/dma-fence.h
index d51a7d23c358..6048fa404e57 100644
--- a/include/linux/dma-fence.h
+++ b/include/linux/dma-fence.h
@@ -47,7 +47,7 @@ struct dma_fence_cb;
* can be compared to decide which fence would be signaled later.
* @flags: A mask of DMA_FENCE_FLAG_* defined below
* @timestamp: Timestamp when the fence was signaled.
- * @status: Optional, only valid if < 0, must be set before calling
+ * @error: Optional, only valid if < 0, must be set before calling
* dma_fence_signal, indicates that the fence has completed with an error.
*
* the flags member must be manipulated and read using the appropriate
@@ -79,7 +79,7 @@ struct dma_fence {
unsigned seqno;
unsigned long flags;
ktime_t timestamp;
- int status;
+ int error;
};
enum dma_fence_flag_bits {
@@ -133,7 +133,7 @@ struct dma_fence_cb {
* or some failure occurred that made it impossible to enable
* signaling. True indicates successful enabling.
*
- * fence->status may be set in enable_signaling, but only when false is
+ * fence->error may be set in enable_signaling, but only when false is
* returned.
*
* Calling dma_fence_signal before enable_signaling is called allows
@@ -145,7 +145,7 @@ struct dma_fence_cb {
* the second time will be a noop since it was already signaled.
*
* Notes on signaled:
- * May set fence->status if returning true.
+ * May set fence->error if returning true.
*
* Notes on wait:
* Must not be NULL, set to dma_fence_default_wait for default implementation.
@@ -378,6 +378,50 @@ static inline struct dma_fence *dma_fence_later(struct dma_fence *f1,
return dma_fence_is_signaled(f2) ? NULL : f2;
}
+/**
+ * dma_fence_get_status_locked - returns the status upon completion
+ * @fence: [in] the dma_fence to query
+ *
+ * Drivers can supply an optional error status condition before they signal
+ * the fence (to indicate whether the fence was completed due to an error
+ * rather than success). The value of the status condition is only valid
+ * if the fence has been signaled, dma_fence_get_status_locked() first checks
+ * the signal state before reporting the error status.
+ *
+ * Returns 0 if the fence has not yet been signaled, 1 if the fence has
+ * been signaled without an error condition, or a negative error code
+ * if the fence has been completed in err.
+ */
+static inline int dma_fence_get_status_locked(struct dma_fence *fence)
+{
+ if (dma_fence_is_signaled_locked(fence))
+ return fence->error ?: 1;
+ else
+ return 0;
+}
+
+int dma_fence_get_status(struct dma_fence *fence);
+
+/**
+ * dma_fence_set_error - flag an error condition on the fence
+ * @fence: [in] the dma_fence
+ * @error: [in] the error to store
+ *
+ * Drivers can supply an optional error status condition before they signal
+ * the fence, to indicate that the fence was completed due to an error
+ * rather than success. This must be set before signaling (so that the value
+ * is visible before any waiters on the signal callback are woken). This
+ * helper exists to help catching erroneous setting of #dma_fence.error.
+ */
+static inline void dma_fence_set_error(struct dma_fence *fence,
+ int error)
+{
+ BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
+ BUG_ON(error >= 0 || error < -MAX_ERRNO);
+
+ fence->error = error;
+}
+
signed long dma_fence_wait_timeout(struct dma_fence *,
bool intr, signed long timeout);
signed long dma_fence_wait_any_timeout(struct dma_fence **fences,
diff --git a/include/linux/prime_numbers.h b/include/linux/prime_numbers.h
new file mode 100644
index 000000000000..14ec4f567342
--- /dev/null
+++ b/include/linux/prime_numbers.h
@@ -0,0 +1,37 @@
+#ifndef __LINUX_PRIME_NUMBERS_H
+#define __LINUX_PRIME_NUMBERS_H
+
+#include <linux/types.h>
+
+bool is_prime_number(unsigned long x);
+unsigned long next_prime_number(unsigned long x);
+
+/**
+ * for_each_prime_number - iterate over each prime upto a value
+ * @prime: the current prime number in this iteration
+ * @max: the upper limit
+ *
+ * Starting from the first prime number 2 iterate over each prime number up to
+ * the @max value. On each iteration, @prime is set to the current prime number.
+ * @max should be less than ULONG_MAX to ensure termination. To begin with
+ * @prime set to 1 on the first iteration use for_each_prime_number_from()
+ * instead.
+ */
+#define for_each_prime_number(prime, max) \
+ for_each_prime_number_from((prime), 2, (max))
+
+/**
+ * for_each_prime_number_from - iterate over each prime upto a value
+ * @prime: the current prime number in this iteration
+ * @from: the initial value
+ * @max: the upper limit
+ *
+ * Starting from @from iterate over each successive prime number up to the
+ * @max value. On each iteration, @prime is set to the current prime number.
+ * @max should be less than ULONG_MAX, and @from less than @max, to ensure
+ * termination.
+ */
+#define for_each_prime_number_from(prime, from, max) \
+ for (prime = (from); prime <= (max); prime = next_prime_number(prime))
+
+#endif /* !__LINUX_PRIME_NUMBERS_H */
diff --git a/include/linux/reservation.h b/include/linux/reservation.h
index d9706a6f5ae2..2b5a4679daea 100644
--- a/include/linux/reservation.h
+++ b/include/linux/reservation.h
@@ -145,6 +145,40 @@ reservation_object_get_list(struct reservation_object *obj)
}
/**
+ * reservation_object_lock - lock the reservation object
+ * @obj: the reservation object
+ * @ctx: the locking context
+ *
+ * Locks the reservation object for exclusive access and modification. Note,
+ * that the lock is only against other writers, readers will run concurrently
+ * with a writer under RCU. The seqlock is used to notify readers if they
+ * overlap with a writer.
+ *
+ * As the reservation object may be locked by multiple parties in an
+ * undefined order, a #ww_acquire_ctx is passed to unwind if a cycle
+ * is detected. See ww_mutex_lock() and ww_acquire_init(). A reservation
+ * object may be locked by itself by passing NULL as @ctx.
+ */
+static inline int
+reservation_object_lock(struct reservation_object *obj,
+ struct ww_acquire_ctx *ctx)
+{
+ return ww_mutex_lock(&obj->lock, ctx);
+}
+
+/**
+ * reservation_object_unlock - unlock the reservation object
+ * @obj: the reservation object
+ *
+ * Unlocks the reservation object following exclusive access.
+ */
+static inline void
+reservation_object_unlock(struct reservation_object *obj)
+{
+ ww_mutex_unlock(&obj->lock);
+}
+
+/**
* reservation_object_get_excl - get the reservation object's
* exclusive fence, with update-side lock held
* @obj: the reservation object