diff options
author | Aravind Ramesh <aravind.ramesh@wdc.com> | 2020-07-16 15:56:56 +0300 |
---|---|---|
committer | Jaegeuk Kim <jaegeuk@kernel.org> | 2020-09-11 00:03:29 +0300 |
commit | de881df97768d07b342cbd1f8359b832afccace9 (patch) | |
tree | 5ed050780b9dd7c7e4e304c89ed7f7abc9c4e60c /fs/f2fs/gc.h | |
parent | 581cb3a26baf846ee9636214afaa5333919875b1 (diff) | |
download | linux-de881df97768d07b342cbd1f8359b832afccace9.tar.xz |
f2fs: support zone capacity less than zone size
NVMe Zoned Namespace devices can have zone-capacity less than zone-size.
Zone-capacity indicates the maximum number of sectors that are usable in
a zone beginning from the first sector of the zone. This makes the sectors
sectors after the zone-capacity till zone-size to be unusable.
This patch set tracks zone-size and zone-capacity in zoned devices and
calculate the usable blocks per segment and usable segments per section.
If zone-capacity is less than zone-size mark only those segments which
start before zone-capacity as free segments. All segments at and beyond
zone-capacity are treated as permanently used segments. In cases where
zone-capacity does not align with segment size the last segment will start
before zone-capacity and end beyond the zone-capacity of the zone. For
such spanning segments only sectors within the zone-capacity are used.
During writes and GC manage the usable segments in a section and usable
blocks per segment. Segments which are beyond zone-capacity are never
allocated, and do not need to be garbage collected, only the segments
which are before zone-capacity needs to garbage collected.
For spanning segments based on the number of usable blocks in that
segment, write to blocks only up to zone-capacity.
Zone-capacity is device specific and cannot be configured by the user.
Since NVMe ZNS device zones are sequentially write only, a block device
with conventional zones or any normal block device is needed along with
the ZNS device for the metadata operations of F2fs.
A typical nvme-cli output of a zoned device shows zone start and capacity
and write pointer as below:
SLBA: 0x0 WP: 0x0 Cap: 0x18800 State: EMPTY Type: SEQWRITE_REQ
SLBA: 0x20000 WP: 0x20000 Cap: 0x18800 State: EMPTY Type: SEQWRITE_REQ
SLBA: 0x40000 WP: 0x40000 Cap: 0x18800 State: EMPTY Type: SEQWRITE_REQ
Here zone size is 64MB, capacity is 49MB, WP is at zone start as the zones
are in EMPTY state. For each zone, only zone start + 49MB is usable area,
any lba/sector after 49MB cannot be read or written to, the drive will fail
any attempts to read/write. So, the second zone starts at 64MB and is
usable till 113MB (64 + 49) and the range between 113 and 128MB is
again unusable. The next zone starts at 128MB, and so on.
Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com>
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Diffstat (limited to 'fs/f2fs/gc.h')
-rw-r--r-- | fs/f2fs/gc.h | 44 |
1 files changed, 40 insertions, 4 deletions
diff --git a/fs/f2fs/gc.h b/fs/f2fs/gc.h index db3c61046aa4..ee5d7f30a1f8 100644 --- a/fs/f2fs/gc.h +++ b/fs/f2fs/gc.h @@ -44,13 +44,49 @@ struct gc_inode_list { /* * inline functions */ + +/* + * On a Zoned device zone-capacity can be less than zone-size and if + * zone-capacity is not aligned to f2fs segment size(2MB), then the segment + * starting just before zone-capacity has some blocks spanning across the + * zone-capacity, these blocks are not usable. + * Such spanning segments can be in free list so calculate the sum of usable + * blocks in currently free segments including normal and spanning segments. + */ +static inline block_t free_segs_blk_count_zoned(struct f2fs_sb_info *sbi) +{ + block_t free_seg_blks = 0; + struct free_segmap_info *free_i = FREE_I(sbi); + int j; + + spin_lock(&free_i->segmap_lock); + for (j = 0; j < MAIN_SEGS(sbi); j++) + if (!test_bit(j, free_i->free_segmap)) + free_seg_blks += f2fs_usable_blks_in_seg(sbi, j); + spin_unlock(&free_i->segmap_lock); + + return free_seg_blks; +} + +static inline block_t free_segs_blk_count(struct f2fs_sb_info *sbi) +{ + if (f2fs_sb_has_blkzoned(sbi)) + return free_segs_blk_count_zoned(sbi); + + return free_segments(sbi) << sbi->log_blocks_per_seg; +} + static inline block_t free_user_blocks(struct f2fs_sb_info *sbi) { - if (free_segments(sbi) < overprovision_segments(sbi)) + block_t free_blks, ovp_blks; + + free_blks = free_segs_blk_count(sbi); + ovp_blks = overprovision_segments(sbi) << sbi->log_blocks_per_seg; + + if (free_blks < ovp_blks) return 0; - else - return (free_segments(sbi) - overprovision_segments(sbi)) - << sbi->log_blocks_per_seg; + + return free_blks - ovp_blks; } static inline block_t limit_invalid_user_blocks(struct f2fs_sb_info *sbi) |