summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand
diff options
context:
space:
mode:
authorBoris Brezillon <boris.brezillon@bootlin.com>2018-04-04 23:11:36 +0300
committerBoris Brezillon <boris.brezillon@bootlin.com>2018-04-04 23:11:36 +0300
commita88b5f38338db9cf2b8868e3645c30da655ac139 (patch)
treea3f77c786d0fc68a7f8421947ba3684f4e231a6c /drivers/mtd/nand
parent7c0ed565d2a90ba45ea3f895cf625c0091451960 (diff)
parent097ccca726ffedb277c104aba45c59d075969e51 (diff)
downloadlinux-a88b5f38338db9cf2b8868e3645c30da655ac139.tar.xz
Merge tag 'nand/for-4.17' of git://git.infradead.org/linux-mtd into mtd/next
Core changes: * Prepare arrival of the SPI NAND subsystem by implementing a generic (interface-agnostic) layer to ease manipulation of NAND devices * Move onenand code base to the drivers/mtd/nand/ dir * Rework timing mode selection * Provide a generic way for NAND chip drivers to flag a specific GET/SET FEATURE operation as supported/unsupported * Stop embedding ONFI/JEDEC param page in nand_chip Driver changes: * Rework/cleanup of the mxc driver * Various cleanups in the vf610 driver * Migrate the fsmc and vf610 to ->exec_op() * Get rid of the pxa driver (replaced by marvell_nand) * Support ->setup_data_interface() in the GPMI driver * Fix probe error path in several drivers * Remove support for unused hw_syndrome mode in sunxi_nand * Various minor improvements
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r--drivers/mtd/nand/Kconfig580
-rw-r--r--drivers/mtd/nand/Makefile72
-rw-r--r--drivers/mtd/nand/bbt.c130
-rw-r--r--drivers/mtd/nand/bf5xx_nand.c862
-rw-r--r--drivers/mtd/nand/core.c244
-rw-r--r--drivers/mtd/nand/onenand/Kconfig71
-rw-r--r--drivers/mtd/nand/onenand/Makefile14
-rw-r--r--drivers/mtd/nand/onenand/generic.c116
-rw-r--r--drivers/mtd/nand/onenand/omap2.c660
-rw-r--r--drivers/mtd/nand/onenand/onenand_base.c4014
-rw-r--r--drivers/mtd/nand/onenand/onenand_bbt.c248
-rw-r--r--drivers/mtd/nand/onenand/samsung.c1012
-rw-r--r--drivers/mtd/nand/onenand/samsung.h59
-rw-r--r--drivers/mtd/nand/pxa3xx_nand.c2105
-rw-r--r--drivers/mtd/nand/raw/Kconfig537
-rw-r--r--drivers/mtd/nand/raw/Makefile66
-rw-r--r--drivers/mtd/nand/raw/ams-delta.c (renamed from drivers/mtd/nand/ams-delta.c)13
-rw-r--r--drivers/mtd/nand/raw/atmel/Makefile (renamed from drivers/mtd/nand/atmel/Makefile)0
-rw-r--r--drivers/mtd/nand/raw/atmel/nand-controller.c (renamed from drivers/mtd/nand/atmel/nand-controller.c)4
-rw-r--r--drivers/mtd/nand/raw/atmel/pmecc.c (renamed from drivers/mtd/nand/atmel/pmecc.c)4
-rw-r--r--drivers/mtd/nand/raw/atmel/pmecc.h (renamed from drivers/mtd/nand/atmel/pmecc.h)4
-rw-r--r--drivers/mtd/nand/raw/au1550nd.c (renamed from drivers/mtd/nand/au1550nd.c)2
-rw-r--r--drivers/mtd/nand/raw/bcm47xxnflash/Makefile (renamed from drivers/mtd/nand/bcm47xxnflash/Makefile)0
-rw-r--r--drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h (renamed from drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h)0
-rw-r--r--drivers/mtd/nand/raw/bcm47xxnflash/main.c (renamed from drivers/mtd/nand/bcm47xxnflash/main.c)0
-rw-r--r--drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c (renamed from drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c)4
-rw-r--r--drivers/mtd/nand/raw/brcmnand/Makefile (renamed from drivers/mtd/nand/brcmnand/Makefile)0
-rw-r--r--drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c (renamed from drivers/mtd/nand/brcmnand/bcm63138_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c (renamed from drivers/mtd/nand/brcmnand/bcm6368_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/brcmnand/brcmnand.c (renamed from drivers/mtd/nand/brcmnand/brcmnand.c)6
-rw-r--r--drivers/mtd/nand/raw/brcmnand/brcmnand.h (renamed from drivers/mtd/nand/brcmnand/brcmnand.h)0
-rw-r--r--drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c (renamed from drivers/mtd/nand/brcmnand/brcmstb_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/brcmnand/iproc_nand.c (renamed from drivers/mtd/nand/brcmnand/iproc_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/cafe_nand.c (renamed from drivers/mtd/nand/cafe_nand.c)14
-rw-r--r--drivers/mtd/nand/raw/cmx270_nand.c (renamed from drivers/mtd/nand/cmx270_nand.c)4
-rw-r--r--drivers/mtd/nand/raw/cs553x_nand.c (renamed from drivers/mtd/nand/cs553x_nand.c)11
-rw-r--r--drivers/mtd/nand/raw/davinci_nand.c (renamed from drivers/mtd/nand/davinci_nand.c)5
-rw-r--r--drivers/mtd/nand/raw/denali.c (renamed from drivers/mtd/nand/denali.c)4
-rw-r--r--drivers/mtd/nand/raw/denali.h (renamed from drivers/mtd/nand/denali.h)0
-rw-r--r--drivers/mtd/nand/raw/denali_dt.c (renamed from drivers/mtd/nand/denali_dt.c)0
-rw-r--r--drivers/mtd/nand/raw/denali_pci.c (renamed from drivers/mtd/nand/denali_pci.c)0
-rw-r--r--drivers/mtd/nand/raw/diskonchip.c (renamed from drivers/mtd/nand/diskonchip.c)78
-rw-r--r--drivers/mtd/nand/raw/docg4.c (renamed from drivers/mtd/nand/docg4.c)4
-rw-r--r--drivers/mtd/nand/raw/fsl_elbc_nand.c (renamed from drivers/mtd/nand/fsl_elbc_nand.c)8
-rw-r--r--drivers/mtd/nand/raw/fsl_ifc_nand.c (renamed from drivers/mtd/nand/fsl_ifc_nand.c)6
-rw-r--r--drivers/mtd/nand/raw/fsl_upm.c (renamed from drivers/mtd/nand/fsl_upm.c)0
-rw-r--r--drivers/mtd/nand/raw/fsmc_nand.c (renamed from drivers/mtd/nand/fsmc_nand.c)252
-rw-r--r--drivers/mtd/nand/raw/gpio.c (renamed from drivers/mtd/nand/gpio.c)2
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/Makefile (renamed from drivers/mtd/nand/gpmi-nand/Makefile)0
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/bch-regs.h (renamed from drivers/mtd/nand/gpmi-nand/bch-regs.h)0
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c (renamed from drivers/mtd/nand/gpmi-nand/gpmi-lib.c)793
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c (renamed from drivers/mtd/nand/gpmi-nand/gpmi-nand.c)82
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h (renamed from drivers/mtd/nand/gpmi-nand/gpmi-nand.h)131
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h (renamed from drivers/mtd/nand/gpmi-nand/gpmi-regs.h)5
-rw-r--r--drivers/mtd/nand/raw/hisi504_nand.c (renamed from drivers/mtd/nand/hisi504_nand.c)4
-rw-r--r--drivers/mtd/nand/raw/jz4740_nand.c (renamed from drivers/mtd/nand/jz4740_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/jz4780_bch.c (renamed from drivers/mtd/nand/jz4780_bch.c)0
-rw-r--r--drivers/mtd/nand/raw/jz4780_bch.h (renamed from drivers/mtd/nand/jz4780_bch.h)0
-rw-r--r--drivers/mtd/nand/raw/jz4780_nand.c (renamed from drivers/mtd/nand/jz4780_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/lpc32xx_mlc.c (renamed from drivers/mtd/nand/lpc32xx_mlc.c)0
-rw-r--r--drivers/mtd/nand/raw/lpc32xx_slc.c (renamed from drivers/mtd/nand/lpc32xx_slc.c)0
-rw-r--r--drivers/mtd/nand/raw/marvell_nand.c (renamed from drivers/mtd/nand/marvell_nand.c)92
-rw-r--r--drivers/mtd/nand/raw/mpc5121_nfc.c (renamed from drivers/mtd/nand/mpc5121_nfc.c)9
-rw-r--r--drivers/mtd/nand/raw/mtk_ecc.c (renamed from drivers/mtd/nand/mtk_ecc.c)0
-rw-r--r--drivers/mtd/nand/raw/mtk_ecc.h (renamed from drivers/mtd/nand/mtk_ecc.h)0
-rw-r--r--drivers/mtd/nand/raw/mtk_nand.c (renamed from drivers/mtd/nand/mtk_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/mxc_nand.c (renamed from drivers/mtd/nand/mxc_nand.c)544
-rw-r--r--drivers/mtd/nand/raw/nand_amd.c (renamed from drivers/mtd/nand/nand_amd.c)0
-rw-r--r--drivers/mtd/nand/raw/nand_base.c (renamed from drivers/mtd/nand/nand_base.c)318
-rw-r--r--drivers/mtd/nand/raw/nand_bbt.c (renamed from drivers/mtd/nand/nand_bbt.c)0
-rw-r--r--drivers/mtd/nand/raw/nand_bch.c (renamed from drivers/mtd/nand/nand_bch.c)12
-rw-r--r--drivers/mtd/nand/raw/nand_ecc.c (renamed from drivers/mtd/nand/nand_ecc.c)22
-rw-r--r--drivers/mtd/nand/raw/nand_hynix.c (renamed from drivers/mtd/nand/nand_hynix.c)0
-rw-r--r--drivers/mtd/nand/raw/nand_ids.c (renamed from drivers/mtd/nand/nand_ids.c)0
-rw-r--r--drivers/mtd/nand/raw/nand_macronix.c (renamed from drivers/mtd/nand/nand_macronix.c)13
-rw-r--r--drivers/mtd/nand/raw/nand_micron.c (renamed from drivers/mtd/nand/nand_micron.c)41
-rw-r--r--drivers/mtd/nand/raw/nand_samsung.c (renamed from drivers/mtd/nand/nand_samsung.c)0
-rw-r--r--drivers/mtd/nand/raw/nand_timings.c (renamed from drivers/mtd/nand/nand_timings.c)12
-rw-r--r--drivers/mtd/nand/raw/nand_toshiba.c (renamed from drivers/mtd/nand/nand_toshiba.c)26
-rw-r--r--drivers/mtd/nand/raw/nandsim.c (renamed from drivers/mtd/nand/nandsim.c)15
-rw-r--r--drivers/mtd/nand/raw/ndfc.c (renamed from drivers/mtd/nand/ndfc.c)0
-rw-r--r--drivers/mtd/nand/raw/nuc900_nand.c (renamed from drivers/mtd/nand/nuc900_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/omap2.c (renamed from drivers/mtd/nand/omap2.c)5
-rw-r--r--drivers/mtd/nand/raw/omap_elm.c (renamed from drivers/mtd/nand/omap_elm.c)0
-rw-r--r--drivers/mtd/nand/raw/orion_nand.c (renamed from drivers/mtd/nand/orion_nand.c)2
-rw-r--r--drivers/mtd/nand/raw/oxnas_nand.c (renamed from drivers/mtd/nand/oxnas_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/pasemi_nand.c (renamed from drivers/mtd/nand/pasemi_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/plat_nand.c (renamed from drivers/mtd/nand/plat_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/qcom_nandc.c (renamed from drivers/mtd/nand/qcom_nandc.c)4
-rw-r--r--drivers/mtd/nand/raw/r852.c (renamed from drivers/mtd/nand/r852.c)5
-rw-r--r--drivers/mtd/nand/raw/r852.h (renamed from drivers/mtd/nand/r852.h)9
-rw-r--r--drivers/mtd/nand/raw/s3c2410.c (renamed from drivers/mtd/nand/s3c2410.c)27
-rw-r--r--drivers/mtd/nand/raw/sh_flctl.c (renamed from drivers/mtd/nand/sh_flctl.c)10
-rw-r--r--drivers/mtd/nand/raw/sharpsl.c (renamed from drivers/mtd/nand/sharpsl.c)2
-rw-r--r--drivers/mtd/nand/raw/sm_common.c (renamed from drivers/mtd/nand/sm_common.c)5
-rw-r--r--drivers/mtd/nand/raw/sm_common.h (renamed from drivers/mtd/nand/sm_common.h)0
-rw-r--r--drivers/mtd/nand/raw/socrates_nand.c (renamed from drivers/mtd/nand/socrates_nand.c)2
-rw-r--r--drivers/mtd/nand/raw/sunxi_nand.c (renamed from drivers/mtd/nand/sunxi_nand.c)155
-rw-r--r--drivers/mtd/nand/raw/tango_nand.c (renamed from drivers/mtd/nand/tango_nand.c)4
-rw-r--r--drivers/mtd/nand/raw/tmio_nand.c (renamed from drivers/mtd/nand/tmio_nand.c)0
-rw-r--r--drivers/mtd/nand/raw/txx9ndfmc.c (renamed from drivers/mtd/nand/txx9ndfmc.c)0
-rw-r--r--drivers/mtd/nand/raw/vf610_nfc.c (renamed from drivers/mtd/nand/vf610_nfc.c)677
-rw-r--r--drivers/mtd/nand/raw/xway_nand.c (renamed from drivers/mtd/nand/xway_nand.c)0
103 files changed, 8737 insertions, 5504 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index e6b8c59f2c0d..88c7d3b4ff8b 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -1,580 +1,6 @@
-config MTD_NAND_ECC
+config MTD_NAND_CORE
tristate
-config MTD_NAND_ECC_SMC
- bool "NAND ECC Smart Media byte order"
- depends on MTD_NAND_ECC
- default n
- help
- Software ECC according to the Smart Media Specification.
- The original Linux implementation had byte 0 and 1 swapped.
+source "drivers/mtd/nand/onenand/Kconfig"
-
-menuconfig MTD_NAND
- tristate "NAND Device Support"
- depends on MTD
- select MTD_NAND_ECC
- help
- This enables support for accessing all type of NAND flash
- devices. For further information see
- <http://www.linux-mtd.infradead.org/doc/nand.html>.
-
-if MTD_NAND
-
-config MTD_NAND_BCH
- tristate
- select BCH
- depends on MTD_NAND_ECC_BCH
- default MTD_NAND
-
-config MTD_NAND_ECC_BCH
- bool "Support software BCH ECC"
- default n
- help
- This enables support for software BCH error correction. Binary BCH
- codes are more powerful and cpu intensive than traditional Hamming
- ECC codes. They are used with NAND devices requiring more than 1 bit
- of error correction.
-
-config MTD_SM_COMMON
- tristate
- default n
-
-config MTD_NAND_DENALI
- tristate
-
-config MTD_NAND_DENALI_PCI
- tristate "Support Denali NAND controller on Intel Moorestown"
- select MTD_NAND_DENALI
- depends on HAS_DMA && PCI
- help
- Enable the driver for NAND flash on Intel Moorestown, using the
- Denali NAND controller core.
-
-config MTD_NAND_DENALI_DT
- tristate "Support Denali NAND controller as a DT device"
- select MTD_NAND_DENALI
- depends on HAS_DMA && HAVE_CLK && OF
- help
- Enable the driver for NAND flash on platforms using a Denali NAND
- controller as a DT device.
-
-config MTD_NAND_GPIO
- tristate "GPIO assisted NAND Flash driver"
- depends on GPIOLIB || COMPILE_TEST
- depends on HAS_IOMEM
- help
- This enables a NAND flash driver where control signals are
- connected to GPIO pins, and commands and data are communicated
- via a memory mapped interface.
-
-config MTD_NAND_AMS_DELTA
- tristate "NAND Flash device on Amstrad E3"
- depends on MACH_AMS_DELTA
- default y
- help
- Support for NAND flash on Amstrad E3 (Delta).
-
-config MTD_NAND_OMAP2
- tristate "NAND Flash device on OMAP2, OMAP3, OMAP4 and Keystone"
- depends on (ARCH_OMAP2PLUS || ARCH_KEYSTONE)
- help
- Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4
- and Keystone platforms.
-
-config MTD_NAND_OMAP_BCH
- depends on MTD_NAND_OMAP2
- bool "Support hardware based BCH error correction"
- default n
- select BCH
- help
- This config enables the ELM hardware engine, which can be used to
- locate and correct errors when using BCH ECC scheme. This offloads
- the cpu from doing ECC error searching and correction. However some
- legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine
- so this is optional for them.
-
-config MTD_NAND_OMAP_BCH_BUILD
- def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH
-
-config MTD_NAND_RICOH
- tristate "Ricoh xD card reader"
- default n
- depends on PCI
- select MTD_SM_COMMON
- help
- Enable support for Ricoh R5C852 xD card reader
- You also need to enable ether
- NAND SSFDC (SmartMedia) read only translation layer' or new
- expermental, readwrite
- 'SmartMedia/xD new translation layer'
-
-config MTD_NAND_AU1550
- tristate "Au1550/1200 NAND support"
- depends on MIPS_ALCHEMY
- help
- This enables the driver for the NAND flash controller on the
- AMD/Alchemy 1550 SOC.
-
-config MTD_NAND_BF5XX
- tristate "Blackfin on-chip NAND Flash Controller driver"
- depends on BF54x || BF52x
- help
- This enables the Blackfin on-chip NAND flash controller
-
- No board specific support is done by this driver, each board
- must advertise a platform_device for the driver to attach.
-
- This driver can also be built as a module. If so, the module
- will be called bf5xx-nand.
-
-config MTD_NAND_BF5XX_HWECC
- bool "BF5XX NAND Hardware ECC"
- default y
- depends on MTD_NAND_BF5XX
- help
- Enable the use of the BF5XX's internal ECC generator when
- using NAND.
-
-config MTD_NAND_BF5XX_BOOTROM_ECC
- bool "Use Blackfin BootROM ECC Layout"
- default n
- depends on MTD_NAND_BF5XX_HWECC
- help
- If you wish to modify NAND pages and allow the Blackfin on-chip
- BootROM to boot from them, say Y here. This is only necessary
- if you are booting U-Boot out of NAND and you wish to update
- U-Boot from Linux' userspace. Otherwise, you should say N here.
-
- If unsure, say N.
-
-config MTD_NAND_S3C2410
- tristate "NAND Flash support for Samsung S3C SoCs"
- depends on ARCH_S3C24XX || ARCH_S3C64XX
- help
- This enables the NAND flash controller on the S3C24xx and S3C64xx
- SoCs
-
- No board specific support is done by this driver, each board
- must advertise a platform_device for the driver to attach.
-
-config MTD_NAND_S3C2410_DEBUG
- bool "Samsung S3C NAND driver debug"
- depends on MTD_NAND_S3C2410
- help
- Enable debugging of the S3C NAND driver
-
-config MTD_NAND_NDFC
- tristate "NDFC NanD Flash Controller"
- depends on 4xx
- select MTD_NAND_ECC_SMC
- help
- NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
-
-config MTD_NAND_S3C2410_CLKSTOP
- bool "Samsung S3C NAND IDLE clock stop"
- depends on MTD_NAND_S3C2410
- default n
- help
- Stop the clock to the NAND controller when there is no chip
- selected to save power. This will mean there is a small delay
- when the is NAND chip selected or released, but will save
- approximately 5mA of power when there is nothing happening.
-
-config MTD_NAND_TANGO
- tristate "NAND Flash support for Tango chips"
- depends on ARCH_TANGO || COMPILE_TEST
- depends on HAS_DMA
- help
- Enables the NAND Flash controller on Tango chips.
-
-config MTD_NAND_DISKONCHIP
- tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)"
- depends on HAS_IOMEM
- select REED_SOLOMON
- select REED_SOLOMON_DEC16
- help
- This is a reimplementation of M-Systems DiskOnChip 2000,
- Millennium and Millennium Plus as a standard NAND device driver,
- as opposed to the earlier self-contained MTD device drivers.
- This should enable, among other things, proper JFFS2 operation on
- these devices.
-
-config MTD_NAND_DISKONCHIP_PROBE_ADVANCED
- bool "Advanced detection options for DiskOnChip"
- depends on MTD_NAND_DISKONCHIP
- help
- This option allows you to specify nonstandard address at which to
- probe for a DiskOnChip, or to change the detection options. You
- are unlikely to need any of this unless you are using LinuxBIOS.
- Say 'N'.
-
-config MTD_NAND_DISKONCHIP_PROBE_ADDRESS
- hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED
- depends on MTD_NAND_DISKONCHIP
- default "0"
- ---help---
- By default, the probe for DiskOnChip devices will look for a
- DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
- This option allows you to specify a single address at which to probe
- for the device, which is useful if you have other devices in that
- range which get upset when they are probed.
-
- (Note that on PowerPC, the normal probe will only check at
- 0xE4000000.)
-
- Normally, you should leave this set to zero, to allow the probe at
- the normal addresses.
-
-config MTD_NAND_DISKONCHIP_PROBE_HIGH
- bool "Probe high addresses"
- depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED
- help
- By default, the probe for DiskOnChip devices will look for a
- DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
- This option changes to make it probe between 0xFFFC8000 and
- 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be
- useful to you. Say 'N'.
-
-config MTD_NAND_DISKONCHIP_BBTWRITE
- bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
- depends on MTD_NAND_DISKONCHIP
- help
- On DiskOnChip devices shipped with the INFTL filesystem (Millennium
- and 2000 TSOP/Alon), Linux reserves some space at the end of the
- device for the Bad Block Table (BBT). If you have existing INFTL
- data on your device (created by non-Linux tools such as M-Systems'
- DOS drivers), your data might overlap the area Linux wants to use for
- the BBT. If this is a concern for you, leave this option disabled and
- Linux will not write BBT data into this area.
- The downside of leaving this option disabled is that if bad blocks
- are detected by Linux, they will not be recorded in the BBT, which
- could cause future problems.
- Once you enable this option, new filesystems (INFTL or others, created
- in Linux or other operating systems) will not use the reserved area.
- The only reason not to enable this option is to prevent damage to
- preexisting filesystems.
- Even if you leave this disabled, you can enable BBT writes at module
- load time (assuming you build diskonchip as a module) with the module
- parameter "inftl_bbt_write=1".
-
-config MTD_NAND_DOCG4
- tristate "Support for DiskOnChip G4"
- depends on HAS_IOMEM
- select BCH
- select BITREVERSE
- help
- Support for diskonchip G4 nand flash, found in various smartphones and
- PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba
- Portege G900, Asus P526, and O2 XDA Zinc.
-
- With this driver you will be able to use UBI and create a ubifs on the
- device, so you may wish to consider enabling UBI and UBIFS as well.
-
- These devices ship with the Mys/Sandisk SAFTL formatting, for which
- there is currently no mtd parser, so you may want to use command line
- partitioning to segregate write-protected blocks. On the Treo680, the
- first five erase blocks (256KiB each) are write-protected, followed
- by the block containing the saftl partition table. This is probably
- typical.
-
-config MTD_NAND_SHARPSL
- tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)"
- depends on ARCH_PXA
-
-config MTD_NAND_CAFE
- tristate "NAND support for OLPC CAFÉ chip"
- depends on PCI
- select REED_SOLOMON
- select REED_SOLOMON_DEC16
- help
- Use NAND flash attached to the CAFÉ chip designed for the OLPC
- laptop.
-
-config MTD_NAND_CS553X
- tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)"
- depends on X86_32
- depends on !UML && HAS_IOMEM
- help
- The CS553x companion chips for the AMD Geode processor
- include NAND flash controllers with built-in hardware ECC
- capabilities; enabling this option will allow you to use
- these. The driver will check the MSRs to verify that the
- controller is enabled for NAND, and currently requires that
- the controller be in MMIO mode.
-
- If you say "m", the module will be called cs553x_nand.
-
-config MTD_NAND_ATMEL
- tristate "Support for NAND Flash / SmartMedia on AT91"
- depends on ARCH_AT91
- select MFD_ATMEL_SMC
- help
- Enables support for NAND Flash / Smart Media Card interface
- on Atmel AT91 processors.
-
-config MTD_NAND_PXA3xx
- tristate "NAND support on PXA3xx and Armada 370/XP"
- depends on !MTD_NAND_MARVELL
- depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU
- help
-
- This enables the driver for the NAND flash device found on
- PXA3xx processors (NFCv1) and also on 32-bit Armada
- platforms (XP, 370, 375, 38x, 39x) and 64-bit Armada
- platforms (7K, 8K) (NFCv2).
-
-config MTD_NAND_MARVELL
- tristate "NAND controller support on Marvell boards"
- depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
- COMPILE_TEST
- depends on HAS_IOMEM
- help
- This enables the NAND flash controller driver for Marvell boards,
- including:
- - PXA3xx processors (NFCv1)
- - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
- - 64-bit Aramda platforms (7k, 8k) (NFCv2)
-
-config MTD_NAND_SLC_LPC32XX
- tristate "NXP LPC32xx SLC Controller"
- depends on ARCH_LPC32XX
- help
- Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell
- chips) NAND controller. This is the default for the PHYTEC 3250
- reference board which contains a NAND256R3A2CZA6 chip.
-
- Please check the actual NAND chip connected and its support
- by the SLC NAND controller.
-
-config MTD_NAND_MLC_LPC32XX
- tristate "NXP LPC32xx MLC Controller"
- depends on ARCH_LPC32XX
- help
- Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND
- controller. This is the default for the WORK92105 controller
- board.
-
- Please check the actual NAND chip connected and its support
- by the MLC NAND controller.
-
-config MTD_NAND_CM_X270
- tristate "Support for NAND Flash on CM-X270 modules"
- depends on MACH_ARMCORE
-
-config MTD_NAND_PASEMI
- tristate "NAND support for PA Semi PWRficient"
- depends on PPC_PASEMI
- help
- Enables support for NAND Flash interface on PA Semi PWRficient
- based boards
-
-config MTD_NAND_TMIO
- tristate "NAND Flash device on Toshiba Mobile IO Controller"
- depends on MFD_TMIO
- help
- Support for NAND flash connected to a Toshiba Mobile IO
- Controller in some PDAs, including the Sharp SL6000x.
-
-config MTD_NAND_NANDSIM
- tristate "Support for NAND Flash Simulator"
- help
- The simulator may simulate various NAND flash chips for the
- MTD nand layer.
-
-config MTD_NAND_GPMI_NAND
- tristate "GPMI NAND Flash Controller driver"
- depends on MTD_NAND && MXS_DMA
- help
- Enables NAND Flash support for IMX23, IMX28 or IMX6.
- The GPMI controller is very powerful, with the help of BCH
- module, it can do the hardware ECC. The GPMI supports several
- NAND flashs at the same time.
-
-config MTD_NAND_BRCMNAND
- tristate "Broadcom STB NAND controller"
- depends on ARM || ARM64 || MIPS
- help
- Enables the Broadcom NAND controller driver. The controller was
- originally designed for Set-Top Box but is used on various BCM7xxx,
- BCM3xxx, BCM63xxx, iProc/Cygnus and more.
-
-config MTD_NAND_BCM47XXNFLASH
- tristate "Support for NAND flash on BCM4706 BCMA bus"
- depends on BCMA_NFLASH
- help
- BCMA bus can have various flash memories attached, they are
- registered by bcma as platform devices. This enables driver for
- NAND flash memories. For now only BCM4706 is supported.
-
-config MTD_NAND_PLATFORM
- tristate "Support for generic platform NAND driver"
- depends on HAS_IOMEM
- help
- This implements a generic NAND driver for on-SOC platform
- devices. You will need to provide platform-specific functions
- via platform_data.
-
-config MTD_NAND_ORION
- tristate "NAND Flash support for Marvell Orion SoC"
- depends on PLAT_ORION
- help
- This enables the NAND flash controller on Orion machines.
-
- No board specific support is done by this driver, each board
- must advertise a platform_device for the driver to attach.
-
-config MTD_NAND_OXNAS
- tristate "NAND Flash support for Oxford Semiconductor SoC"
- depends on ARCH_OXNAS || COMPILE_TEST
- depends on HAS_IOMEM
- help
- This enables the NAND flash controller on Oxford Semiconductor SoCs.
-
-config MTD_NAND_FSL_ELBC
- tristate "NAND support for Freescale eLBC controllers"
- depends on FSL_SOC
- select FSL_LBC
- help
- Various Freescale chips, including the 8313, include a NAND Flash
- Controller Module with built-in hardware ECC capabilities.
- Enabling this option will enable you to use this to control
- external NAND devices.
-
-config MTD_NAND_FSL_IFC
- tristate "NAND support for Freescale IFC controller"
- depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A
- select FSL_IFC
- select MEMORY
- help
- Various Freescale chips e.g P1010, include a NAND Flash machine
- with built-in hardware ECC capabilities.
- Enabling this option will enable you to use this to control
- external NAND devices.
-
-config MTD_NAND_FSL_UPM
- tristate "Support for NAND on Freescale UPM"
- depends on PPC_83xx || PPC_85xx
- select FSL_LBC
- help
- Enables support for NAND Flash chips wired onto Freescale PowerPC
- processor localbus with User-Programmable Machine support.
-
-config MTD_NAND_MPC5121_NFC
- tristate "MPC5121 built-in NAND Flash Controller support"
- depends on PPC_MPC512x
- help
- This enables the driver for the NAND flash controller on the
- MPC5121 SoC.
-
-config MTD_NAND_VF610_NFC
- tristate "Support for Freescale NFC for VF610/MPC5125"
- depends on (SOC_VF610 || COMPILE_TEST)
- depends on HAS_IOMEM
- help
- Enables support for NAND Flash Controller on some Freescale
- processors like the VF610, MPC5125, MCF54418 or Kinetis K70.
- The driver supports a maximum 2k page size. With 2k pages and
- 64 bytes or more of OOB, hardware ECC with up to 32-bit error
- correction is supported. Hardware ECC is only enabled through
- device tree.
-
-config MTD_NAND_MXC
- tristate "MXC NAND support"
- depends on ARCH_MXC
- help
- This enables the driver for the NAND flash controller on the
- MXC processors.
-
-config MTD_NAND_SH_FLCTL
- tristate "Support for NAND on Renesas SuperH FLCTL"
- depends on SUPERH || COMPILE_TEST
- depends on HAS_IOMEM
- depends on HAS_DMA
- help
- Several Renesas SuperH CPU has FLCTL. This option enables support
- for NAND Flash using FLCTL.
-
-config MTD_NAND_DAVINCI
- tristate "Support NAND on DaVinci/Keystone SoC"
- depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF)
- help
- Enable the driver for NAND flash chips on Texas Instruments
- DaVinci/Keystone processors.
-
-config MTD_NAND_TXX9NDFMC
- tristate "NAND Flash support for TXx9 SoC"
- depends on SOC_TX4938 || SOC_TX4939
- help
- This enables the NAND flash controller on the TXx9 SoCs.
-
-config MTD_NAND_SOCRATES
- tristate "Support for NAND on Socrates board"
- depends on SOCRATES
- help
- Enables support for NAND Flash chips wired onto Socrates board.
-
-config MTD_NAND_NUC900
- tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards."
- depends on ARCH_W90X900
- help
- This enables the driver for the NAND Flash on evaluation board based
- on w90p910 / NUC9xx.
-
-config MTD_NAND_JZ4740
- tristate "Support for JZ4740 SoC NAND controller"
- depends on MACH_JZ4740
- help
- Enables support for NAND Flash on JZ4740 SoC based boards.
-
-config MTD_NAND_JZ4780
- tristate "Support for NAND on JZ4780 SoC"
- depends on MACH_JZ4780 && JZ4780_NEMC
- help
- Enables support for NAND Flash connected to the NEMC on JZ4780 SoC
- based boards, using the BCH controller for hardware error correction.
-
-config MTD_NAND_FSMC
- tristate "Support for NAND on ST Micros FSMC"
- depends on OF
- depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300
- help
- Enables support for NAND Flash chips on the ST Microelectronics
- Flexible Static Memory Controller (FSMC)
-
-config MTD_NAND_XWAY
- bool "Support for NAND on Lantiq XWAY SoC"
- depends on LANTIQ && SOC_TYPE_XWAY
- help
- Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
- to the External Bus Unit (EBU).
-
-config MTD_NAND_SUNXI
- tristate "Support for NAND on Allwinner SoCs"
- depends on ARCH_SUNXI
- help
- Enables support for NAND Flash chips on Allwinner SoCs.
-
-config MTD_NAND_HISI504
- tristate "Support for NAND controller on Hisilicon SoC Hip04"
- depends on ARCH_HISI || COMPILE_TEST
- depends on HAS_DMA
- help
- Enables support for NAND controller on Hisilicon SoC Hip04.
-
-config MTD_NAND_QCOM
- tristate "Support for NAND on QCOM SoCs"
- depends on ARCH_QCOM
- help
- Enables support for NAND flash chips on SoCs containing the EBI2 NAND
- controller. This controller is found on IPQ806x SoC.
-
-config MTD_NAND_MTK
- tristate "Support for NAND controller on MTK SoCs"
- depends on ARCH_MEDIATEK || COMPILE_TEST
- depends on HAS_DMA
- help
- Enables support for NAND controller on MTK SoCs.
- This controller is found on mt27xx, mt81xx, mt65xx SoCs.
-
-endif # MTD_NAND
+source "drivers/mtd/nand/raw/Kconfig"
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 921634ba400c..3f0cb87f1a57 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -1,71 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
-#
-# linux/drivers/nand/Makefile
-#
-obj-$(CONFIG_MTD_NAND) += nand.o
-obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o
-obj-$(CONFIG_MTD_NAND_BCH) += nand_bch.o
-obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o
+nandcore-objs := core.o bbt.o
+obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o
-obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o
-obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o
-obj-$(CONFIG_MTD_NAND_DENALI) += denali.o
-obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o
-obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o
-obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o
-obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o
-obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o
-obj-$(CONFIG_MTD_NAND_TANGO) += tango_nand.o
-obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o
-obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o
-obj-$(CONFIG_MTD_NAND_DOCG4) += docg4.o
-obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o
-obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o
-obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o
-obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o
-obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
-obj-$(CONFIG_MTD_NAND_ATMEL) += atmel/
-obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
-omap2_nand-objs := omap2.o
-obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o
-obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD) += omap_elm.o
-obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
-obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o
-obj-$(CONFIG_MTD_NAND_MARVELL) += marvell_nand.o
-obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o
-obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o
-obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o
-obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o
-obj-$(CONFIG_MTD_NAND_OXNAS) += oxnas_nand.o
-obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o
-obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o
-obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o
-obj-$(CONFIG_MTD_NAND_SLC_LPC32XX) += lpc32xx_slc.o
-obj-$(CONFIG_MTD_NAND_MLC_LPC32XX) += lpc32xx_mlc.o
-obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o
-obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o
-obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o
-obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o
-obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o
-obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o
-obj-$(CONFIG_MTD_NAND_VF610_NFC) += vf610_nfc.o
-obj-$(CONFIG_MTD_NAND_RICOH) += r852.o
-obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o
-obj-$(CONFIG_MTD_NAND_JZ4780) += jz4780_nand.o jz4780_bch.o
-obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/
-obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o
-obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
-obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
-obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
-obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
-obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
-obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
-
-nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
-nand-objs += nand_amd.o
-nand-objs += nand_hynix.o
-nand-objs += nand_macronix.o
-nand-objs += nand_micron.o
-nand-objs += nand_samsung.o
-nand-objs += nand_toshiba.o
+obj-y += onenand/
+obj-y += raw/
diff --git a/drivers/mtd/nand/bbt.c b/drivers/mtd/nand/bbt.c
new file mode 100644
index 000000000000..56cde38b92c0
--- /dev/null
+++ b/drivers/mtd/nand/bbt.c
@@ -0,0 +1,130 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017 Free Electrons
+ *
+ * Authors:
+ * Boris Brezillon <boris.brezillon@free-electrons.com>
+ * Peter Pan <peterpandong@micron.com>
+ */
+
+#define pr_fmt(fmt) "nand-bbt: " fmt
+
+#include <linux/mtd/nand.h>
+#include <linux/slab.h>
+
+/**
+ * nanddev_bbt_init() - Initialize the BBT (Bad Block Table)
+ * @nand: NAND device
+ *
+ * Initialize the in-memory BBT.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_bbt_init(struct nand_device *nand)
+{
+ unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+ unsigned int nblocks = nanddev_neraseblocks(nand);
+ unsigned int nwords = DIV_ROUND_UP(nblocks * bits_per_block,
+ BITS_PER_LONG);
+
+ nand->bbt.cache = kzalloc(nwords, GFP_KERNEL);
+ if (!nand->bbt.cache)
+ return -ENOMEM;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_init);
+
+/**
+ * nanddev_bbt_cleanup() - Cleanup the BBT (Bad Block Table)
+ * @nand: NAND device
+ *
+ * Undoes what has been done in nanddev_bbt_init()
+ */
+void nanddev_bbt_cleanup(struct nand_device *nand)
+{
+ kfree(nand->bbt.cache);
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_cleanup);
+
+/**
+ * nanddev_bbt_update() - Update a BBT
+ * @nand: nand device
+ *
+ * Update the BBT. Currently a NOP function since on-flash bbt is not yet
+ * supported.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_bbt_update(struct nand_device *nand)
+{
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_update);
+
+/**
+ * nanddev_bbt_get_block_status() - Return the status of an eraseblock
+ * @nand: nand device
+ * @entry: the BBT entry
+ *
+ * Return: a positive number nand_bbt_block_status status or -%ERANGE if @entry
+ * is bigger than the BBT size.
+ */
+int nanddev_bbt_get_block_status(const struct nand_device *nand,
+ unsigned int entry)
+{
+ unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+ unsigned long *pos = nand->bbt.cache +
+ ((entry * bits_per_block) / BITS_PER_LONG);
+ unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG;
+ unsigned long status;
+
+ if (entry >= nanddev_neraseblocks(nand))
+ return -ERANGE;
+
+ status = pos[0] >> offs;
+ if (bits_per_block + offs > BITS_PER_LONG)
+ status |= pos[1] << (BITS_PER_LONG - offs);
+
+ return status & GENMASK(bits_per_block - 1, 0);
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_get_block_status);
+
+/**
+ * nanddev_bbt_set_block_status() - Update the status of an eraseblock in the
+ * in-memory BBT
+ * @nand: nand device
+ * @entry: the BBT entry to update
+ * @status: the new status
+ *
+ * Update an entry of the in-memory BBT. If you want to push the updated BBT
+ * the NAND you should call nanddev_bbt_update().
+ *
+ * Return: 0 in case of success or -%ERANGE if @entry is bigger than the BBT
+ * size.
+ */
+int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
+ enum nand_bbt_block_status status)
+{
+ unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+ unsigned long *pos = nand->bbt.cache +
+ ((entry * bits_per_block) / BITS_PER_LONG);
+ unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG;
+ unsigned long val = status & GENMASK(bits_per_block - 1, 0);
+
+ if (entry >= nanddev_neraseblocks(nand))
+ return -ERANGE;
+
+ pos[0] &= ~GENMASK(offs + bits_per_block - 1, offs);
+ pos[0] |= val << offs;
+
+ if (bits_per_block + offs > BITS_PER_LONG) {
+ unsigned int rbits = bits_per_block + offs - BITS_PER_LONG;
+
+ pos[1] &= ~GENMASK(rbits - 1, 0);
+ pos[1] |= val >> rbits;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_set_block_status);
diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c
deleted file mode 100644
index 87bbd177b3e5..000000000000
--- a/drivers/mtd/nand/bf5xx_nand.c
+++ /dev/null
@@ -1,862 +0,0 @@
-/* linux/drivers/mtd/nand/bf5xx_nand.c
- *
- * Copyright 2006-2008 Analog Devices Inc.
- * http://blackfin.uclinux.org/
- * Bryan Wu <bryan.wu@analog.com>
- *
- * Blackfin BF5xx on-chip NAND flash controller driver
- *
- * Derived from drivers/mtd/nand/s3c2410.c
- * Copyright (c) 2007 Ben Dooks <ben@simtec.co.uk>
- *
- * Derived from drivers/mtd/nand/cafe.c
- * Copyright © 2006 Red Hat, Inc.
- * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
- *
- * Changelog:
- * 12-Jun-2007 Bryan Wu: Initial version
- * 18-Jul-2007 Bryan Wu:
- * - ECC_HW and ECC_SW supported
- * - DMA supported in ECC_HW
- * - YAFFS tested as rootfs in both ECC_HW and ECC_SW
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-*/
-
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/string.h>
-#include <linux/ioport.h>
-#include <linux/platform_device.h>
-#include <linux/delay.h>
-#include <linux/dma-mapping.h>
-#include <linux/err.h>
-#include <linux/slab.h>
-#include <linux/io.h>
-#include <linux/bitops.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
-#include <linux/mtd/partitions.h>
-
-#include <asm/blackfin.h>
-#include <asm/dma.h>
-#include <asm/cacheflush.h>
-#include <asm/nand.h>
-#include <asm/portmux.h>
-
-#define DRV_NAME "bf5xx-nand"
-#define DRV_VERSION "1.2"
-#define DRV_AUTHOR "Bryan Wu <bryan.wu@analog.com>"
-#define DRV_DESC "BF5xx on-chip NAND FLash Controller Driver"
-
-/* NFC_STAT Masks */
-#define NBUSY 0x01 /* Not Busy */
-#define WB_FULL 0x02 /* Write Buffer Full */
-#define PG_WR_STAT 0x04 /* Page Write Pending */
-#define PG_RD_STAT 0x08 /* Page Read Pending */
-#define WB_EMPTY 0x10 /* Write Buffer Empty */
-
-/* NFC_IRQSTAT Masks */
-#define NBUSYIRQ 0x01 /* Not Busy IRQ */
-#define WB_OVF 0x02 /* Write Buffer Overflow */
-#define WB_EDGE 0x04 /* Write Buffer Edge Detect */
-#define RD_RDY 0x08 /* Read Data Ready */
-#define WR_DONE 0x10 /* Page Write Done */
-
-/* NFC_RST Masks */
-#define ECC_RST 0x01 /* ECC (and NFC counters) Reset */
-
-/* NFC_PGCTL Masks */
-#define PG_RD_START 0x01 /* Page Read Start */
-#define PG_WR_START 0x02 /* Page Write Start */
-
-#ifdef CONFIG_MTD_NAND_BF5XX_HWECC
-static int hardware_ecc = 1;
-#else
-static int hardware_ecc;
-#endif
-
-static const unsigned short bfin_nfc_pin_req[] =
- {P_NAND_CE,
- P_NAND_RB,
- P_NAND_D0,
- P_NAND_D1,
- P_NAND_D2,
- P_NAND_D3,
- P_NAND_D4,
- P_NAND_D5,
- P_NAND_D6,
- P_NAND_D7,
- P_NAND_WE,
- P_NAND_RE,
- P_NAND_CLE,
- P_NAND_ALE,
- 0};
-
-#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
-static int bootrom_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section > 7)
- return -ERANGE;
-
- oobregion->offset = section * 8;
- oobregion->length = 3;
-
- return 0;
-}
-
-static int bootrom_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section > 7)
- return -ERANGE;
-
- oobregion->offset = (section * 8) + 3;
- oobregion->length = 5;
-
- return 0;
-}
-
-static const struct mtd_ooblayout_ops bootrom_ooblayout_ops = {
- .ecc = bootrom_ooblayout_ecc,
- .free = bootrom_ooblayout_free,
-};
-#endif
-
-/*
- * Data structures for bf5xx nand flash controller driver
- */
-
-/* bf5xx nand info */
-struct bf5xx_nand_info {
- /* mtd info */
- struct nand_hw_control controller;
- struct nand_chip chip;
-
- /* platform info */
- struct bf5xx_nand_platform *platform;
-
- /* device info */
- struct device *device;
-
- /* DMA stuff */
- struct completion dma_completion;
-};
-
-/*
- * Conversion functions
- */
-static struct bf5xx_nand_info *mtd_to_nand_info(struct mtd_info *mtd)
-{
- return container_of(mtd_to_nand(mtd), struct bf5xx_nand_info,
- chip);
-}
-
-static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev)
-{
- return platform_get_drvdata(pdev);
-}
-
-static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev)
-{
- return dev_get_platdata(&pdev->dev);
-}
-
-/*
- * struct nand_chip interface function pointers
- */
-
-/*
- * bf5xx_nand_hwcontrol
- *
- * Issue command and address cycles to the chip
- */
-static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd,
- unsigned int ctrl)
-{
- if (cmd == NAND_CMD_NONE)
- return;
-
- while (bfin_read_NFC_STAT() & WB_FULL)
- cpu_relax();
-
- if (ctrl & NAND_CLE)
- bfin_write_NFC_CMD(cmd);
- else if (ctrl & NAND_ALE)
- bfin_write_NFC_ADDR(cmd);
- SSYNC();
-}
-
-/*
- * bf5xx_nand_devready()
- *
- * returns 0 if the nand is busy, 1 if it is ready
- */
-static int bf5xx_nand_devready(struct mtd_info *mtd)
-{
- unsigned short val = bfin_read_NFC_STAT();
-
- if ((val & NBUSY) == NBUSY)
- return 1;
- else
- return 0;
-}
-
-/*
- * ECC functions
- * These allow the bf5xx to use the controller's ECC
- * generator block to ECC the data as it passes through
- */
-
-/*
- * ECC error correction function
- */
-static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
-{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- u32 syndrome[5];
- u32 calced, stored;
- int i;
- unsigned short failing_bit, failing_byte;
- u_char data;
-
- calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16);
- stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16);
-
- syndrome[0] = (calced ^ stored);
-
- /*
- * syndrome 0: all zero
- * No error in data
- * No action
- */
- if (!syndrome[0] || !calced || !stored)
- return 0;
-
- /*
- * sysdrome 0: only one bit is one
- * ECC data was incorrect
- * No action
- */
- if (hweight32(syndrome[0]) == 1) {
- dev_err(info->device, "ECC data was incorrect!\n");
- return -EBADMSG;
- }
-
- syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF);
- syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF);
- syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF);
- syndrome[4] = syndrome[2] ^ syndrome[3];
-
- for (i = 0; i < 5; i++)
- dev_info(info->device, "syndrome[%d] 0x%08x\n", i, syndrome[i]);
-
- dev_info(info->device,
- "calced[0x%08x], stored[0x%08x]\n",
- calced, stored);
-
- /*
- * sysdrome 0: exactly 11 bits are one, each parity
- * and parity' pair is 1 & 0 or 0 & 1.
- * 1-bit correctable error
- * Correct the error
- */
- if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) {
- dev_info(info->device,
- "1-bit correctable error, correct it.\n");
- dev_info(info->device,
- "syndrome[1] 0x%08x\n", syndrome[1]);
-
- failing_bit = syndrome[1] & 0x7;
- failing_byte = syndrome[1] >> 0x3;
- data = *(dat + failing_byte);
- data = data ^ (0x1 << failing_bit);
- *(dat + failing_byte) = data;
-
- return 1;
- }
-
- /*
- * sysdrome 0: random data
- * More than 1-bit error, non-correctable error
- * Discard data, mark bad block
- */
- dev_err(info->device,
- "More than 1-bit error, non-correctable error.\n");
- dev_err(info->device,
- "Please discard data, mark bad block\n");
-
- return -EBADMSG;
-}
-
-static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int ret, bitflips = 0;
-
- ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
- if (ret < 0)
- return ret;
-
- bitflips = ret;
-
- /* If ecc size is 512, correct second 256 bytes */
- if (chip->ecc.size == 512) {
- dat += 256;
- read_ecc += 3;
- calc_ecc += 3;
- ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc);
- if (ret < 0)
- return ret;
-
- bitflips += ret;
- }
-
- return bitflips;
-}
-
-static void bf5xx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
-{
- return;
-}
-
-static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd,
- const u_char *dat, u_char *ecc_code)
-{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct nand_chip *chip = mtd_to_nand(mtd);
- u16 ecc0, ecc1;
- u32 code[2];
- u8 *p;
-
- /* first 3 bytes ECC code for 256 page size */
- ecc0 = bfin_read_NFC_ECC0();
- ecc1 = bfin_read_NFC_ECC1();
-
- code[0] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
-
- dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]);
-
- p = (u8 *) code;
- memcpy(ecc_code, p, 3);
-
- /* second 3 bytes ECC code for 512 ecc size */
- if (chip->ecc.size == 512) {
- ecc0 = bfin_read_NFC_ECC2();
- ecc1 = bfin_read_NFC_ECC3();
- code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11);
-
- /* second 3 bytes in ecc_code for second 256
- * bytes of 512 page size
- */
- p = (u8 *) (code + 1);
- memcpy((ecc_code + 3), p, 3);
- dev_dbg(info->device, "returning ecc 0x%08x\n", code[1]);
- }
-
- return 0;
-}
-
-/*
- * PIO mode for buffer writing and reading
- */
-static void bf5xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
- int i;
- unsigned short val;
-
- /*
- * Data reads are requested by first writing to NFC_DATA_RD
- * and then reading back from NFC_READ.
- */
- for (i = 0; i < len; i++) {
- while (bfin_read_NFC_STAT() & WB_FULL)
- cpu_relax();
-
- /* Contents do not matter */
- bfin_write_NFC_DATA_RD(0x0000);
- SSYNC();
-
- while ((bfin_read_NFC_IRQSTAT() & RD_RDY) != RD_RDY)
- cpu_relax();
-
- buf[i] = bfin_read_NFC_READ();
-
- val = bfin_read_NFC_IRQSTAT();
- val |= RD_RDY;
- bfin_write_NFC_IRQSTAT(val);
- SSYNC();
- }
-}
-
-static uint8_t bf5xx_nand_read_byte(struct mtd_info *mtd)
-{
- uint8_t val;
-
- bf5xx_nand_read_buf(mtd, &val, 1);
-
- return val;
-}
-
-static void bf5xx_nand_write_buf(struct mtd_info *mtd,
- const uint8_t *buf, int len)
-{
- int i;
-
- for (i = 0; i < len; i++) {
- while (bfin_read_NFC_STAT() & WB_FULL)
- cpu_relax();
-
- bfin_write_NFC_DATA_WR(buf[i]);
- SSYNC();
- }
-}
-
-static void bf5xx_nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
-{
- int i;
- u16 *p = (u16 *) buf;
- len >>= 1;
-
- /*
- * Data reads are requested by first writing to NFC_DATA_RD
- * and then reading back from NFC_READ.
- */
- bfin_write_NFC_DATA_RD(0x5555);
-
- SSYNC();
-
- for (i = 0; i < len; i++)
- p[i] = bfin_read_NFC_READ();
-}
-
-static void bf5xx_nand_write_buf16(struct mtd_info *mtd,
- const uint8_t *buf, int len)
-{
- int i;
- u16 *p = (u16 *) buf;
- len >>= 1;
-
- for (i = 0; i < len; i++)
- bfin_write_NFC_DATA_WR(p[i]);
-
- SSYNC();
-}
-
-/*
- * DMA functions for buffer writing and reading
- */
-static irqreturn_t bf5xx_nand_dma_irq(int irq, void *dev_id)
-{
- struct bf5xx_nand_info *info = dev_id;
-
- clear_dma_irqstat(CH_NFC);
- disable_dma(CH_NFC);
- complete(&info->dma_completion);
-
- return IRQ_HANDLED;
-}
-
-static void bf5xx_nand_dma_rw(struct mtd_info *mtd,
- uint8_t *buf, int is_read)
-{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct nand_chip *chip = mtd_to_nand(mtd);
- unsigned short val;
-
- dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n",
- mtd, buf, is_read);
-
- /*
- * Before starting a dma transfer, be sure to invalidate/flush
- * the cache over the address range of your DMA buffer to
- * prevent cache coherency problems. Otherwise very subtle bugs
- * can be introduced to your driver.
- */
- if (is_read)
- invalidate_dcache_range((unsigned int)buf,
- (unsigned int)(buf + chip->ecc.size));
- else
- flush_dcache_range((unsigned int)buf,
- (unsigned int)(buf + chip->ecc.size));
-
- /*
- * This register must be written before each page is
- * transferred to generate the correct ECC register
- * values.
- */
- bfin_write_NFC_RST(ECC_RST);
- SSYNC();
- while (bfin_read_NFC_RST() & ECC_RST)
- cpu_relax();
-
- disable_dma(CH_NFC);
- clear_dma_irqstat(CH_NFC);
-
- /* setup DMA register with Blackfin DMA API */
- set_dma_config(CH_NFC, 0x0);
- set_dma_start_addr(CH_NFC, (unsigned long) buf);
-
- /* The DMAs have different size on BF52x and BF54x */
-#ifdef CONFIG_BF52x
- set_dma_x_count(CH_NFC, (chip->ecc.size >> 1));
- set_dma_x_modify(CH_NFC, 2);
- val = DI_EN | WDSIZE_16;
-#endif
-
-#ifdef CONFIG_BF54x
- set_dma_x_count(CH_NFC, (chip->ecc.size >> 2));
- set_dma_x_modify(CH_NFC, 4);
- val = DI_EN | WDSIZE_32;
-#endif
- /* setup write or read operation */
- if (is_read)
- val |= WNR;
- set_dma_config(CH_NFC, val);
- enable_dma(CH_NFC);
-
- /* Start PAGE read/write operation */
- if (is_read)
- bfin_write_NFC_PGCTL(PG_RD_START);
- else
- bfin_write_NFC_PGCTL(PG_WR_START);
- wait_for_completion(&info->dma_completion);
-}
-
-static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd,
- uint8_t *buf, int len)
-{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len);
-
- if (len == chip->ecc.size)
- bf5xx_nand_dma_rw(mtd, buf, 1);
- else
- bf5xx_nand_read_buf(mtd, buf, len);
-}
-
-static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd,
- const uint8_t *buf, int len)
-{
- struct bf5xx_nand_info *info = mtd_to_nand_info(mtd);
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len);
-
- if (len == chip->ecc.size)
- bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0);
- else
- bf5xx_nand_write_buf(mtd, buf, len);
-}
-
-static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
-{
- nand_read_page_op(chip, page, 0, NULL, 0);
-
- bf5xx_nand_read_buf(mtd, buf, mtd->writesize);
- bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- return 0;
-}
-
-static int bf5xx_nand_write_page_raw(struct mtd_info *mtd,
- struct nand_chip *chip, const uint8_t *buf, int oob_required,
- int page)
-{
- nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
- bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- return nand_prog_page_end_op(chip);
-}
-
-/*
- * System initialization functions
- */
-static int bf5xx_nand_dma_init(struct bf5xx_nand_info *info)
-{
- int ret;
-
- /* Do not use dma */
- if (!hardware_ecc)
- return 0;
-
- init_completion(&info->dma_completion);
-
- /* Request NFC DMA channel */
- ret = request_dma(CH_NFC, "BF5XX NFC driver");
- if (ret < 0) {
- dev_err(info->device, " unable to get DMA channel\n");
- return ret;
- }
-
-#ifdef CONFIG_BF54x
- /* Setup DMAC1 channel mux for NFC which shared with SDH */
- bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() & ~1);
- SSYNC();
-#endif
-
- set_dma_callback(CH_NFC, bf5xx_nand_dma_irq, info);
-
- /* Turn off the DMA channel first */
- disable_dma(CH_NFC);
- return 0;
-}
-
-static void bf5xx_nand_dma_remove(struct bf5xx_nand_info *info)
-{
- /* Free NFC DMA channel */
- if (hardware_ecc)
- free_dma(CH_NFC);
-}
-
-/*
- * BF5XX NFC hardware initialization
- * - pin mux setup
- * - clear interrupt status
- */
-static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info)
-{
- int err = 0;
- unsigned short val;
- struct bf5xx_nand_platform *plat = info->platform;
-
- /* setup NFC_CTL register */
- dev_info(info->device,
- "data_width=%d, wr_dly=%d, rd_dly=%d\n",
- (plat->data_width ? 16 : 8),
- plat->wr_dly, plat->rd_dly);
-
- val = (1 << NFC_PG_SIZE_OFFSET) |
- (plat->data_width << NFC_NWIDTH_OFFSET) |
- (plat->rd_dly << NFC_RDDLY_OFFSET) |
- (plat->wr_dly << NFC_WRDLY_OFFSET);
- dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val);
-
- bfin_write_NFC_CTL(val);
- SSYNC();
-
- /* clear interrupt status */
- bfin_write_NFC_IRQMASK(0x0);
- SSYNC();
- val = bfin_read_NFC_IRQSTAT();
- bfin_write_NFC_IRQSTAT(val);
- SSYNC();
-
- /* DMA initialization */
- if (bf5xx_nand_dma_init(info))
- err = -ENXIO;
-
- return err;
-}
-
-/*
- * Device management interface
- */
-static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info)
-{
- struct mtd_info *mtd = nand_to_mtd(&info->chip);
- struct mtd_partition *parts = info->platform->partitions;
- int nr = info->platform->nr_partitions;
-
- return mtd_device_register(mtd, parts, nr);
-}
-
-static int bf5xx_nand_remove(struct platform_device *pdev)
-{
- struct bf5xx_nand_info *info = to_nand_info(pdev);
-
- /* first thing we need to do is release all our mtds
- * and their partitions, then go through freeing the
- * resources used
- */
- nand_release(nand_to_mtd(&info->chip));
-
- peripheral_free_list(bfin_nfc_pin_req);
- bf5xx_nand_dma_remove(info);
-
- return 0;
-}
-
-static int bf5xx_nand_scan(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int ret;
-
- ret = nand_scan_ident(mtd, 1, NULL);
- if (ret)
- return ret;
-
- if (hardware_ecc) {
- /*
- * for nand with page size > 512B, think it as several sections with 512B
- */
- if (likely(mtd->writesize >= 512)) {
- chip->ecc.size = 512;
- chip->ecc.bytes = 6;
- chip->ecc.strength = 2;
- } else {
- chip->ecc.size = 256;
- chip->ecc.bytes = 3;
- chip->ecc.strength = 1;
- bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET));
- SSYNC();
- }
- }
-
- return nand_scan_tail(mtd);
-}
-
-/*
- * bf5xx_nand_probe
- *
- * called by device layer when it finds a device matching
- * one our driver can handled. This code checks to see if
- * it can allocate all necessary resources then calls the
- * nand layer to look for devices
- */
-static int bf5xx_nand_probe(struct platform_device *pdev)
-{
- struct bf5xx_nand_platform *plat = to_nand_plat(pdev);
- struct bf5xx_nand_info *info = NULL;
- struct nand_chip *chip = NULL;
- struct mtd_info *mtd = NULL;
- int err = 0;
-
- dev_dbg(&pdev->dev, "(%p)\n", pdev);
-
- if (!plat) {
- dev_err(&pdev->dev, "no platform specific information\n");
- return -EINVAL;
- }
-
- if (peripheral_request_list(bfin_nfc_pin_req, DRV_NAME)) {
- dev_err(&pdev->dev, "requesting Peripherals failed\n");
- return -EFAULT;
- }
-
- info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
- if (info == NULL) {
- err = -ENOMEM;
- goto out_err;
- }
-
- platform_set_drvdata(pdev, info);
-
- nand_hw_control_init(&info->controller);
-
- info->device = &pdev->dev;
- info->platform = plat;
-
- /* initialise chip data struct */
- chip = &info->chip;
- mtd = nand_to_mtd(&info->chip);
-
- if (plat->data_width)
- chip->options |= NAND_BUSWIDTH_16;
-
- chip->options |= NAND_CACHEPRG | NAND_SKIP_BBTSCAN;
-
- chip->read_buf = (plat->data_width) ?
- bf5xx_nand_read_buf16 : bf5xx_nand_read_buf;
- chip->write_buf = (plat->data_width) ?
- bf5xx_nand_write_buf16 : bf5xx_nand_write_buf;
-
- chip->read_byte = bf5xx_nand_read_byte;
-
- chip->cmd_ctrl = bf5xx_nand_hwcontrol;
- chip->dev_ready = bf5xx_nand_devready;
-
- nand_set_controller_data(chip, mtd);
- chip->controller = &info->controller;
-
- chip->IO_ADDR_R = (void __iomem *) NFC_READ;
- chip->IO_ADDR_W = (void __iomem *) NFC_DATA_WR;
-
- chip->chip_delay = 0;
-
- /* initialise mtd info data struct */
- mtd->dev.parent = &pdev->dev;
-
- /* initialise the hardware */
- err = bf5xx_nand_hw_init(info);
- if (err)
- goto out_err;
-
- /* setup hardware ECC data struct */
- if (hardware_ecc) {
-#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
- mtd_set_ooblayout(mtd, &bootrom_ooblayout_ops);
-#endif
- chip->read_buf = bf5xx_nand_dma_read_buf;
- chip->write_buf = bf5xx_nand_dma_write_buf;
- chip->ecc.calculate = bf5xx_nand_calculate_ecc;
- chip->ecc.correct = bf5xx_nand_correct_data;
- chip->ecc.mode = NAND_ECC_HW;
- chip->ecc.hwctl = bf5xx_nand_enable_hwecc;
- chip->ecc.read_page_raw = bf5xx_nand_read_page_raw;
- chip->ecc.write_page_raw = bf5xx_nand_write_page_raw;
- } else {
- chip->ecc.mode = NAND_ECC_SOFT;
- chip->ecc.algo = NAND_ECC_HAMMING;
- }
-
- /* scan hardware nand chip and setup mtd info data struct */
- if (bf5xx_nand_scan(mtd)) {
- err = -ENXIO;
- goto out_err_nand_scan;
- }
-
-#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC
- chip->badblockpos = 63;
-#endif
-
- /* add NAND partition */
- bf5xx_nand_add_partition(info);
-
- dev_dbg(&pdev->dev, "initialised ok\n");
- return 0;
-
-out_err_nand_scan:
- bf5xx_nand_dma_remove(info);
-out_err:
- peripheral_free_list(bfin_nfc_pin_req);
-
- return err;
-}
-
-/* driver device registration */
-static struct platform_driver bf5xx_nand_driver = {
- .probe = bf5xx_nand_probe,
- .remove = bf5xx_nand_remove,
- .driver = {
- .name = DRV_NAME,
- },
-};
-
-module_platform_driver(bf5xx_nand_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR(DRV_AUTHOR);
-MODULE_DESCRIPTION(DRV_DESC);
-MODULE_ALIAS("platform:" DRV_NAME);
diff --git a/drivers/mtd/nand/core.c b/drivers/mtd/nand/core.c
new file mode 100644
index 000000000000..d0cd6f8635d7
--- /dev/null
+++ b/drivers/mtd/nand/core.c
@@ -0,0 +1,244 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017 Free Electrons
+ *
+ * Authors:
+ * Boris Brezillon <boris.brezillon@free-electrons.com>
+ * Peter Pan <peterpandong@micron.com>
+ */
+
+#define pr_fmt(fmt) "nand: " fmt
+
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+
+/**
+ * nanddev_isbad() - Check if a block is bad
+ * @nand: NAND device
+ * @pos: position pointing to the block we want to check
+ *
+ * Return: true if the block is bad, false otherwise.
+ */
+bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+ if (nanddev_bbt_is_initialized(nand)) {
+ unsigned int entry;
+ int status;
+
+ entry = nanddev_bbt_pos_to_entry(nand, pos);
+ status = nanddev_bbt_get_block_status(nand, entry);
+ /* Lazy block status retrieval */
+ if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) {
+ if (nand->ops->isbad(nand, pos))
+ status = NAND_BBT_BLOCK_FACTORY_BAD;
+ else
+ status = NAND_BBT_BLOCK_GOOD;
+
+ nanddev_bbt_set_block_status(nand, entry, status);
+ }
+
+ if (status == NAND_BBT_BLOCK_WORN ||
+ status == NAND_BBT_BLOCK_FACTORY_BAD)
+ return true;
+
+ return false;
+ }
+
+ return nand->ops->isbad(nand, pos);
+}
+EXPORT_SYMBOL_GPL(nanddev_isbad);
+
+/**
+ * nanddev_markbad() - Mark a block as bad
+ * @nand: NAND device
+ * @pos: position of the block to mark bad
+ *
+ * Mark a block bad. This function is updating the BBT if available and
+ * calls the low-level markbad hook (nand->ops->markbad()).
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ unsigned int entry;
+ int ret = 0;
+
+ if (nanddev_isbad(nand, pos))
+ return 0;
+
+ ret = nand->ops->markbad(nand, pos);
+ if (ret)
+ pr_warn("failed to write BBM to block @%llx (err = %d)\n",
+ nanddev_pos_to_offs(nand, pos), ret);
+
+ if (!nanddev_bbt_is_initialized(nand))
+ goto out;
+
+ entry = nanddev_bbt_pos_to_entry(nand, pos);
+ ret = nanddev_bbt_set_block_status(nand, entry, NAND_BBT_BLOCK_WORN);
+ if (ret)
+ goto out;
+
+ ret = nanddev_bbt_update(nand);
+
+out:
+ if (!ret)
+ mtd->ecc_stats.badblocks++;
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(nanddev_markbad);
+
+/**
+ * nanddev_isreserved() - Check whether an eraseblock is reserved or not
+ * @nand: NAND device
+ * @pos: NAND position to test
+ *
+ * Checks whether the eraseblock pointed by @pos is reserved or not.
+ *
+ * Return: true if the eraseblock is reserved, false otherwise.
+ */
+bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos)
+{
+ unsigned int entry;
+ int status;
+
+ if (!nanddev_bbt_is_initialized(nand))
+ return false;
+
+ /* Return info from the table */
+ entry = nanddev_bbt_pos_to_entry(nand, pos);
+ status = nanddev_bbt_get_block_status(nand, entry);
+ return status == NAND_BBT_BLOCK_RESERVED;
+}
+EXPORT_SYMBOL_GPL(nanddev_isreserved);
+
+/**
+ * nanddev_erase() - Erase a NAND portion
+ * @nand: NAND device
+ * @pos: position of the block to erase
+ *
+ * Erases the block if it's not bad.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos)
+{
+ if (nanddev_isbad(nand, pos) || nanddev_isreserved(nand, pos)) {
+ pr_warn("attempt to erase a bad/reserved block @%llx\n",
+ nanddev_pos_to_offs(nand, pos));
+ return -EIO;
+ }
+
+ return nand->ops->erase(nand, pos);
+}
+EXPORT_SYMBOL_GPL(nanddev_erase);
+
+/**
+ * nanddev_mtd_erase() - Generic mtd->_erase() implementation for NAND devices
+ * @mtd: MTD device
+ * @einfo: erase request
+ *
+ * This is a simple mtd->_erase() implementation iterating over all blocks
+ * concerned by @einfo and calling nand->ops->erase() on each of them.
+ *
+ * Note that mtd->_erase should not be directly assigned to this helper,
+ * because there's no locking here. NAND specialized layers should instead
+ * implement there own wrapper around nanddev_mtd_erase() taking the
+ * appropriate lock before calling nanddev_mtd_erase().
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ struct nand_pos pos, last;
+ int ret;
+
+ nanddev_offs_to_pos(nand, einfo->addr, &pos);
+ nanddev_offs_to_pos(nand, einfo->addr + einfo->len - 1, &last);
+ while (nanddev_pos_cmp(&pos, &last) <= 0) {
+ ret = nanddev_erase(nand, &pos);
+ if (ret) {
+ einfo->fail_addr = nanddev_pos_to_offs(nand, &pos);
+ einfo->state = MTD_ERASE_FAILED;
+
+ return ret;
+ }
+
+ nanddev_pos_next_eraseblock(nand, &pos);
+ }
+
+ einfo->state = MTD_ERASE_DONE;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_mtd_erase);
+
+/**
+ * nanddev_init() - Initialize a NAND device
+ * @nand: NAND device
+ * @ops: NAND device operations
+ * @owner: NAND device owner
+ *
+ * Initializes a NAND device object. Consistency checks are done on @ops and
+ * @nand->memorg. Also takes care of initializing the BBT.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
+ struct module *owner)
+{
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ struct nand_memory_organization *memorg = nanddev_get_memorg(nand);
+
+ if (!nand || !ops)
+ return -EINVAL;
+
+ if (!ops->erase || !ops->markbad || !ops->isbad)
+ return -EINVAL;
+
+ if (!memorg->bits_per_cell || !memorg->pagesize ||
+ !memorg->pages_per_eraseblock || !memorg->eraseblocks_per_lun ||
+ !memorg->planes_per_lun || !memorg->luns_per_target ||
+ !memorg->ntargets)
+ return -EINVAL;
+
+ nand->rowconv.eraseblock_addr_shift =
+ fls(memorg->pages_per_eraseblock - 1);
+ nand->rowconv.lun_addr_shift = fls(memorg->eraseblocks_per_lun - 1) +
+ nand->rowconv.eraseblock_addr_shift;
+
+ nand->ops = ops;
+
+ mtd->type = memorg->bits_per_cell == 1 ?
+ MTD_NANDFLASH : MTD_MLCNANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH;
+ mtd->erasesize = memorg->pagesize * memorg->pages_per_eraseblock;
+ mtd->writesize = memorg->pagesize;
+ mtd->writebufsize = memorg->pagesize;
+ mtd->oobsize = memorg->oobsize;
+ mtd->size = nanddev_size(nand);
+ mtd->owner = owner;
+
+ return nanddev_bbt_init(nand);
+}
+EXPORT_SYMBOL_GPL(nanddev_init);
+
+/**
+ * nanddev_cleanup() - Release resources allocated in nanddev_init()
+ * @nand: NAND device
+ *
+ * Basically undoes what has been done in nanddev_init().
+ */
+void nanddev_cleanup(struct nand_device *nand)
+{
+ if (nanddev_bbt_is_initialized(nand))
+ nanddev_bbt_cleanup(nand);
+}
+EXPORT_SYMBOL_GPL(nanddev_cleanup);
+
+MODULE_DESCRIPTION("Generic NAND framework");
+MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/onenand/Kconfig b/drivers/mtd/nand/onenand/Kconfig
new file mode 100644
index 000000000000..9dc15748947b
--- /dev/null
+++ b/drivers/mtd/nand/onenand/Kconfig
@@ -0,0 +1,71 @@
+menuconfig MTD_ONENAND
+ tristate "OneNAND Device Support"
+ depends on MTD
+ depends on HAS_IOMEM
+ help
+ This enables support for accessing all type of OneNAND flash
+ devices.
+
+if MTD_ONENAND
+
+config MTD_ONENAND_VERIFY_WRITE
+ bool "Verify OneNAND page writes"
+ help
+ This adds an extra check when data is written to the flash. The
+ OneNAND flash device internally checks only bits transitioning
+ from 1 to 0. There is a rare possibility that even though the
+ device thinks the write was successful, a bit could have been
+ flipped accidentally due to device wear or something else.
+
+config MTD_ONENAND_GENERIC
+ tristate "OneNAND Flash device via platform device driver"
+ help
+ Support for OneNAND flash via platform device driver.
+
+config MTD_ONENAND_OMAP2
+ tristate "OneNAND on OMAP2/OMAP3 support"
+ depends on ARCH_OMAP2 || ARCH_OMAP3
+ depends on OF || COMPILE_TEST
+ help
+ Support for a OneNAND flash device connected to an OMAP2/OMAP3 SoC
+ via the GPMC memory controller.
+ Enable dmaengine and gpiolib for better performance.
+
+config MTD_ONENAND_SAMSUNG
+ tristate "OneNAND on Samsung SOC controller support"
+ depends on ARCH_S3C64XX || ARCH_S5PV210 || ARCH_EXYNOS4
+ help
+ Support for a OneNAND flash device connected to an Samsung SOC.
+ S3C64XX uses command mapping method.
+ S5PC110/S5PC210 use generic OneNAND method.
+
+config MTD_ONENAND_OTP
+ bool "OneNAND OTP Support"
+ help
+ One Block of the NAND Flash Array memory is reserved as
+ a One-Time Programmable Block memory area.
+ Also, 1st Block of NAND Flash Array can be used as OTP.
+
+ The OTP block can be read, programmed and locked using the same
+ operations as any other NAND Flash Array memory block.
+ OTP block cannot be erased.
+
+ OTP block is fully-guaranteed to be a valid block.
+
+config MTD_ONENAND_2X_PROGRAM
+ bool "OneNAND 2X program support"
+ help
+ The 2X Program is an extension of Program Operation.
+ Since the device is equipped with two DataRAMs, and two-plane NAND
+ Flash memory array, these two component enables simultaneous program
+ of 4KiB. Plane1 has only even blocks such as block0, block2, block4
+ while Plane2 has only odd blocks such as block1, block3, block5.
+ So MTD regards it as 4KiB page size and 256KiB block size
+
+ Now the following chips support it. (KFXXX16Q2M)
+ Demux: KFG2G16Q2M, KFH4G16Q2M, KFW8G16Q2M,
+ Mux: KFM2G16Q2M, KFN4G16Q2M,
+
+ And more recent chips
+
+endif # MTD_ONENAND
diff --git a/drivers/mtd/nand/onenand/Makefile b/drivers/mtd/nand/onenand/Makefile
new file mode 100644
index 000000000000..f8b624aca9cc
--- /dev/null
+++ b/drivers/mtd/nand/onenand/Makefile
@@ -0,0 +1,14 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Makefile for the OneNAND MTD
+#
+
+# Core functionality.
+obj-$(CONFIG_MTD_ONENAND) += onenand.o
+
+# Board specific.
+obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o
+obj-$(CONFIG_MTD_ONENAND_OMAP2) += omap2.o
+obj-$(CONFIG_MTD_ONENAND_SAMSUNG) += samsung.o
+
+onenand-objs = onenand_base.o onenand_bbt.o
diff --git a/drivers/mtd/nand/onenand/generic.c b/drivers/mtd/nand/onenand/generic.c
new file mode 100644
index 000000000000..d5ccaf943b91
--- /dev/null
+++ b/drivers/mtd/nand/onenand/generic.c
@@ -0,0 +1,116 @@
+/*
+ * Copyright (c) 2005 Samsung Electronics
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Overview:
+ * This is a device driver for the OneNAND flash for generic boards.
+ */
+
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/io.h>
+
+/*
+ * Note: Driver name and platform data format have been updated!
+ *
+ * This version of the driver is named "onenand-flash" and takes struct
+ * onenand_platform_data as platform data. The old ARM-specific version
+ * with the name "onenand" used to take struct flash_platform_data.
+ */
+#define DRIVER_NAME "onenand-flash"
+
+struct onenand_info {
+ struct mtd_info mtd;
+ struct onenand_chip onenand;
+};
+
+static int generic_onenand_probe(struct platform_device *pdev)
+{
+ struct onenand_info *info;
+ struct onenand_platform_data *pdata = dev_get_platdata(&pdev->dev);
+ struct resource *res = pdev->resource;
+ unsigned long size = resource_size(res);
+ int err;
+
+ info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ if (!request_mem_region(res->start, size, dev_name(&pdev->dev))) {
+ err = -EBUSY;
+ goto out_free_info;
+ }
+
+ info->onenand.base = ioremap(res->start, size);
+ if (!info->onenand.base) {
+ err = -ENOMEM;
+ goto out_release_mem_region;
+ }
+
+ info->onenand.mmcontrol = pdata ? pdata->mmcontrol : NULL;
+ info->onenand.irq = platform_get_irq(pdev, 0);
+
+ info->mtd.dev.parent = &pdev->dev;
+ info->mtd.priv = &info->onenand;
+
+ if (onenand_scan(&info->mtd, 1)) {
+ err = -ENXIO;
+ goto out_iounmap;
+ }
+
+ err = mtd_device_parse_register(&info->mtd, NULL, NULL,
+ pdata ? pdata->parts : NULL,
+ pdata ? pdata->nr_parts : 0);
+
+ platform_set_drvdata(pdev, info);
+
+ return 0;
+
+out_iounmap:
+ iounmap(info->onenand.base);
+out_release_mem_region:
+ release_mem_region(res->start, size);
+out_free_info:
+ kfree(info);
+
+ return err;
+}
+
+static int generic_onenand_remove(struct platform_device *pdev)
+{
+ struct onenand_info *info = platform_get_drvdata(pdev);
+ struct resource *res = pdev->resource;
+ unsigned long size = resource_size(res);
+
+ if (info) {
+ onenand_release(&info->mtd);
+ release_mem_region(res->start, size);
+ iounmap(info->onenand.base);
+ kfree(info);
+ }
+
+ return 0;
+}
+
+static struct platform_driver generic_onenand_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ },
+ .probe = generic_onenand_probe,
+ .remove = generic_onenand_remove,
+};
+
+module_platform_driver(generic_onenand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Glue layer for OneNAND flash on generic boards");
+MODULE_ALIAS("platform:" DRIVER_NAME);
diff --git a/drivers/mtd/nand/onenand/omap2.c b/drivers/mtd/nand/onenand/omap2.c
new file mode 100644
index 000000000000..9c159f0dd9a6
--- /dev/null
+++ b/drivers/mtd/nand/onenand/omap2.c
@@ -0,0 +1,660 @@
+/*
+ * OneNAND driver for OMAP2 / OMAP3
+ *
+ * Copyright © 2005-2006 Nokia Corporation
+ *
+ * Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä
+ * IRQ and DMA support written by Timo Teras
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; see the file COPYING. If not, write to the Free Software
+ * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ */
+
+#include <linux/device.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_device.h>
+#include <linux/omap-gpmc.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/gpio/consumer.h>
+
+#include <asm/mach/flash.h>
+
+#define DRIVER_NAME "omap2-onenand"
+
+#define ONENAND_BUFRAM_SIZE (1024 * 5)
+
+struct omap2_onenand {
+ struct platform_device *pdev;
+ int gpmc_cs;
+ unsigned long phys_base;
+ struct gpio_desc *int_gpiod;
+ struct mtd_info mtd;
+ struct onenand_chip onenand;
+ struct completion irq_done;
+ struct completion dma_done;
+ struct dma_chan *dma_chan;
+};
+
+static void omap2_onenand_dma_complete_func(void *completion)
+{
+ complete(completion);
+}
+
+static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id)
+{
+ struct omap2_onenand *c = dev_id;
+
+ complete(&c->irq_done);
+
+ return IRQ_HANDLED;
+}
+
+static inline unsigned short read_reg(struct omap2_onenand *c, int reg)
+{
+ return readw(c->onenand.base + reg);
+}
+
+static inline void write_reg(struct omap2_onenand *c, unsigned short value,
+ int reg)
+{
+ writew(value, c->onenand.base + reg);
+}
+
+static int omap2_onenand_set_cfg(struct omap2_onenand *c,
+ bool sr, bool sw,
+ int latency, int burst_len)
+{
+ unsigned short reg = ONENAND_SYS_CFG1_RDY | ONENAND_SYS_CFG1_INT;
+
+ reg |= latency << ONENAND_SYS_CFG1_BRL_SHIFT;
+
+ switch (burst_len) {
+ case 0: /* continuous */
+ break;
+ case 4:
+ reg |= ONENAND_SYS_CFG1_BL_4;
+ break;
+ case 8:
+ reg |= ONENAND_SYS_CFG1_BL_8;
+ break;
+ case 16:
+ reg |= ONENAND_SYS_CFG1_BL_16;
+ break;
+ case 32:
+ reg |= ONENAND_SYS_CFG1_BL_32;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (latency > 5)
+ reg |= ONENAND_SYS_CFG1_HF;
+ if (latency > 7)
+ reg |= ONENAND_SYS_CFG1_VHF;
+ if (sr)
+ reg |= ONENAND_SYS_CFG1_SYNC_READ;
+ if (sw)
+ reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
+
+ write_reg(c, reg, ONENAND_REG_SYS_CFG1);
+
+ return 0;
+}
+
+static int omap2_onenand_get_freq(int ver)
+{
+ switch ((ver >> 4) & 0xf) {
+ case 0:
+ return 40;
+ case 1:
+ return 54;
+ case 2:
+ return 66;
+ case 3:
+ return 83;
+ case 4:
+ return 104;
+ }
+
+ return -EINVAL;
+}
+
+static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr)
+{
+ printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n",
+ msg, state, ctrl, intr);
+}
+
+static void wait_warn(char *msg, int state, unsigned int ctrl,
+ unsigned int intr)
+{
+ printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x "
+ "intr 0x%04x\n", msg, state, ctrl, intr);
+}
+
+static int omap2_onenand_wait(struct mtd_info *mtd, int state)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ unsigned int intr = 0;
+ unsigned int ctrl, ctrl_mask;
+ unsigned long timeout;
+ u32 syscfg;
+
+ if (state == FL_RESETING || state == FL_PREPARING_ERASE ||
+ state == FL_VERIFYING_ERASE) {
+ int i = 21;
+ unsigned int intr_flags = ONENAND_INT_MASTER;
+
+ switch (state) {
+ case FL_RESETING:
+ intr_flags |= ONENAND_INT_RESET;
+ break;
+ case FL_PREPARING_ERASE:
+ intr_flags |= ONENAND_INT_ERASE;
+ break;
+ case FL_VERIFYING_ERASE:
+ i = 101;
+ break;
+ }
+
+ while (--i) {
+ udelay(1);
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ if (intr & ONENAND_INT_MASTER)
+ break;
+ }
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ wait_err("controller error", state, ctrl, intr);
+ return -EIO;
+ }
+ if ((intr & intr_flags) == intr_flags)
+ return 0;
+ /* Continue in wait for interrupt branch */
+ }
+
+ if (state != FL_READING) {
+ int result;
+
+ /* Turn interrupts on */
+ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+ if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) {
+ syscfg |= ONENAND_SYS_CFG1_IOBE;
+ write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
+ /* Add a delay to let GPIO settle */
+ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+ }
+
+ reinit_completion(&c->irq_done);
+ result = gpiod_get_value(c->int_gpiod);
+ if (result < 0) {
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ wait_err("gpio error", state, ctrl, intr);
+ return result;
+ } else if (result == 0) {
+ int retry_cnt = 0;
+retry:
+ if (!wait_for_completion_io_timeout(&c->irq_done,
+ msecs_to_jiffies(20))) {
+ /* Timeout after 20ms */
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ if (ctrl & ONENAND_CTRL_ONGO &&
+ !this->ongoing) {
+ /*
+ * The operation seems to be still going
+ * so give it some more time.
+ */
+ retry_cnt += 1;
+ if (retry_cnt < 3)
+ goto retry;
+ intr = read_reg(c,
+ ONENAND_REG_INTERRUPT);
+ wait_err("timeout", state, ctrl, intr);
+ return -EIO;
+ }
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ if ((intr & ONENAND_INT_MASTER) == 0)
+ wait_warn("timeout", state, ctrl, intr);
+ }
+ }
+ } else {
+ int retry_cnt = 0;
+
+ /* Turn interrupts off */
+ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+ syscfg &= ~ONENAND_SYS_CFG1_IOBE;
+ write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
+
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (1) {
+ if (time_before(jiffies, timeout)) {
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ if (intr & ONENAND_INT_MASTER)
+ break;
+ } else {
+ /* Timeout after 20ms */
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ if (ctrl & ONENAND_CTRL_ONGO) {
+ /*
+ * The operation seems to be still going
+ * so give it some more time.
+ */
+ retry_cnt += 1;
+ if (retry_cnt < 3) {
+ timeout = jiffies +
+ msecs_to_jiffies(20);
+ continue;
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+
+ if (intr & ONENAND_INT_READ) {
+ int ecc = read_reg(c, ONENAND_REG_ECC_STATUS);
+
+ if (ecc) {
+ unsigned int addr1, addr8;
+
+ addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1);
+ addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8);
+ if (ecc & ONENAND_ECC_2BIT_ALL) {
+ printk(KERN_ERR "onenand_wait: ECC error = "
+ "0x%04x, addr1 %#x, addr8 %#x\n",
+ ecc, addr1, addr8);
+ mtd->ecc_stats.failed++;
+ return -EBADMSG;
+ } else if (ecc & ONENAND_ECC_1BIT_ALL) {
+ printk(KERN_NOTICE "onenand_wait: correctable "
+ "ECC error = 0x%04x, addr1 %#x, "
+ "addr8 %#x\n", ecc, addr1, addr8);
+ mtd->ecc_stats.corrected++;
+ }
+ }
+ } else if (state == FL_READING) {
+ wait_err("timeout", state, ctrl, intr);
+ return -EIO;
+ }
+
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ wait_err("controller error", state, ctrl, intr);
+ if (ctrl & ONENAND_CTRL_LOCK)
+ printk(KERN_ERR "onenand_wait: "
+ "Device is write protected!!!\n");
+ return -EIO;
+ }
+
+ ctrl_mask = 0xFE9F;
+ if (this->ongoing)
+ ctrl_mask &= ~0x8000;
+
+ if (ctrl & ctrl_mask)
+ wait_warn("unexpected controller status", state, ctrl, intr);
+
+ return 0;
+}
+
+static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (ONENAND_CURRENT_BUFFERRAM(this)) {
+ if (area == ONENAND_DATARAM)
+ return this->writesize;
+ if (area == ONENAND_SPARERAM)
+ return mtd->oobsize;
+ }
+
+ return 0;
+}
+
+static inline int omap2_onenand_dma_transfer(struct omap2_onenand *c,
+ dma_addr_t src, dma_addr_t dst,
+ size_t count)
+{
+ struct dma_async_tx_descriptor *tx;
+ dma_cookie_t cookie;
+
+ tx = dmaengine_prep_dma_memcpy(c->dma_chan, dst, src, count, 0);
+ if (!tx) {
+ dev_err(&c->pdev->dev, "Failed to prepare DMA memcpy\n");
+ return -EIO;
+ }
+
+ reinit_completion(&c->dma_done);
+
+ tx->callback = omap2_onenand_dma_complete_func;
+ tx->callback_param = &c->dma_done;
+
+ cookie = tx->tx_submit(tx);
+ if (dma_submit_error(cookie)) {
+ dev_err(&c->pdev->dev, "Failed to do DMA tx_submit\n");
+ return -EIO;
+ }
+
+ dma_async_issue_pending(c->dma_chan);
+
+ if (!wait_for_completion_io_timeout(&c->dma_done,
+ msecs_to_jiffies(20))) {
+ dmaengine_terminate_sync(c->dma_chan);
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ dma_addr_t dma_src, dma_dst;
+ int bram_offset;
+ void *buf = (void *)buffer;
+ size_t xtra;
+ int ret;
+
+ bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+ if (bram_offset & 3 || (size_t)buf & 3 || count < 384)
+ goto out_copy;
+
+ /* panic_write() may be in an interrupt context */
+ if (in_interrupt() || oops_in_progress)
+ goto out_copy;
+
+ if (buf >= high_memory) {
+ struct page *p1;
+
+ if (((size_t)buf & PAGE_MASK) !=
+ ((size_t)(buf + count - 1) & PAGE_MASK))
+ goto out_copy;
+ p1 = vmalloc_to_page(buf);
+ if (!p1)
+ goto out_copy;
+ buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK);
+ }
+
+ xtra = count & 3;
+ if (xtra) {
+ count -= xtra;
+ memcpy(buf + count, this->base + bram_offset + count, xtra);
+ }
+
+ dma_src = c->phys_base + bram_offset;
+ dma_dst = dma_map_single(&c->pdev->dev, buf, count, DMA_FROM_DEVICE);
+ if (dma_mapping_error(&c->pdev->dev, dma_dst)) {
+ dev_err(&c->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n",
+ count);
+ goto out_copy;
+ }
+
+ ret = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count);
+ dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE);
+
+ if (ret) {
+ dev_err(&c->pdev->dev, "timeout waiting for DMA\n");
+ goto out_copy;
+ }
+
+ return 0;
+
+out_copy:
+ memcpy(buf, this->base + bram_offset, count);
+ return 0;
+}
+
+static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer,
+ int offset, size_t count)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ dma_addr_t dma_src, dma_dst;
+ int bram_offset;
+ void *buf = (void *)buffer;
+ int ret;
+
+ bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+ if (bram_offset & 3 || (size_t)buf & 3 || count < 384)
+ goto out_copy;
+
+ /* panic_write() may be in an interrupt context */
+ if (in_interrupt() || oops_in_progress)
+ goto out_copy;
+
+ if (buf >= high_memory) {
+ struct page *p1;
+
+ if (((size_t)buf & PAGE_MASK) !=
+ ((size_t)(buf + count - 1) & PAGE_MASK))
+ goto out_copy;
+ p1 = vmalloc_to_page(buf);
+ if (!p1)
+ goto out_copy;
+ buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK);
+ }
+
+ dma_src = dma_map_single(&c->pdev->dev, buf, count, DMA_TO_DEVICE);
+ dma_dst = c->phys_base + bram_offset;
+ if (dma_mapping_error(&c->pdev->dev, dma_src)) {
+ dev_err(&c->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n",
+ count);
+ return -1;
+ }
+
+ ret = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count);
+ dma_unmap_single(&c->pdev->dev, dma_src, count, DMA_TO_DEVICE);
+
+ if (ret) {
+ dev_err(&c->pdev->dev, "timeout waiting for DMA\n");
+ goto out_copy;
+ }
+
+ return 0;
+
+out_copy:
+ memcpy(this->base + bram_offset, buf, count);
+ return 0;
+}
+
+static void omap2_onenand_shutdown(struct platform_device *pdev)
+{
+ struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
+
+ /* With certain content in the buffer RAM, the OMAP boot ROM code
+ * can recognize the flash chip incorrectly. Zero it out before
+ * soft reset.
+ */
+ memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE);
+}
+
+static int omap2_onenand_probe(struct platform_device *pdev)
+{
+ u32 val;
+ dma_cap_mask_t mask;
+ int freq, latency, r;
+ struct resource *res;
+ struct omap2_onenand *c;
+ struct gpmc_onenand_info info;
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev->of_node;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res) {
+ dev_err(dev, "error getting memory resource\n");
+ return -EINVAL;
+ }
+
+ r = of_property_read_u32(np, "reg", &val);
+ if (r) {
+ dev_err(dev, "reg not found in DT\n");
+ return r;
+ }
+
+ c = devm_kzalloc(dev, sizeof(struct omap2_onenand), GFP_KERNEL);
+ if (!c)
+ return -ENOMEM;
+
+ init_completion(&c->irq_done);
+ init_completion(&c->dma_done);
+ c->gpmc_cs = val;
+ c->phys_base = res->start;
+
+ c->onenand.base = devm_ioremap_resource(dev, res);
+ if (IS_ERR(c->onenand.base))
+ return PTR_ERR(c->onenand.base);
+
+ c->int_gpiod = devm_gpiod_get_optional(dev, "int", GPIOD_IN);
+ if (IS_ERR(c->int_gpiod)) {
+ r = PTR_ERR(c->int_gpiod);
+ /* Just try again if this happens */
+ if (r != -EPROBE_DEFER)
+ dev_err(dev, "error getting gpio: %d\n", r);
+ return r;
+ }
+
+ if (c->int_gpiod) {
+ r = devm_request_irq(dev, gpiod_to_irq(c->int_gpiod),
+ omap2_onenand_interrupt,
+ IRQF_TRIGGER_RISING, "onenand", c);
+ if (r)
+ return r;
+
+ c->onenand.wait = omap2_onenand_wait;
+ }
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_MEMCPY, mask);
+
+ c->dma_chan = dma_request_channel(mask, NULL, NULL);
+ if (c->dma_chan) {
+ c->onenand.read_bufferram = omap2_onenand_read_bufferram;
+ c->onenand.write_bufferram = omap2_onenand_write_bufferram;
+ }
+
+ c->pdev = pdev;
+ c->mtd.priv = &c->onenand;
+ c->mtd.dev.parent = dev;
+ mtd_set_of_node(&c->mtd, dev->of_node);
+
+ dev_info(dev, "initializing on CS%d (0x%08lx), va %p, %s mode\n",
+ c->gpmc_cs, c->phys_base, c->onenand.base,
+ c->dma_chan ? "DMA" : "PIO");
+
+ if ((r = onenand_scan(&c->mtd, 1)) < 0)
+ goto err_release_dma;
+
+ freq = omap2_onenand_get_freq(c->onenand.version_id);
+ if (freq > 0) {
+ switch (freq) {
+ case 104:
+ latency = 7;
+ break;
+ case 83:
+ latency = 6;
+ break;
+ case 66:
+ latency = 5;
+ break;
+ case 56:
+ latency = 4;
+ break;
+ default: /* 40 MHz or lower */
+ latency = 3;
+ break;
+ }
+
+ r = gpmc_omap_onenand_set_timings(dev, c->gpmc_cs,
+ freq, latency, &info);
+ if (r)
+ goto err_release_onenand;
+
+ r = omap2_onenand_set_cfg(c, info.sync_read, info.sync_write,
+ latency, info.burst_len);
+ if (r)
+ goto err_release_onenand;
+
+ if (info.sync_read || info.sync_write)
+ dev_info(dev, "optimized timings for %d MHz\n", freq);
+ }
+
+ r = mtd_device_register(&c->mtd, NULL, 0);
+ if (r)
+ goto err_release_onenand;
+
+ platform_set_drvdata(pdev, c);
+
+ return 0;
+
+err_release_onenand:
+ onenand_release(&c->mtd);
+err_release_dma:
+ if (c->dma_chan)
+ dma_release_channel(c->dma_chan);
+
+ return r;
+}
+
+static int omap2_onenand_remove(struct platform_device *pdev)
+{
+ struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
+
+ onenand_release(&c->mtd);
+ if (c->dma_chan)
+ dma_release_channel(c->dma_chan);
+ omap2_onenand_shutdown(pdev);
+
+ return 0;
+}
+
+static const struct of_device_id omap2_onenand_id_table[] = {
+ { .compatible = "ti,omap2-onenand", },
+ {},
+};
+MODULE_DEVICE_TABLE(of, omap2_onenand_id_table);
+
+static struct platform_driver omap2_onenand_driver = {
+ .probe = omap2_onenand_probe,
+ .remove = omap2_onenand_remove,
+ .shutdown = omap2_onenand_shutdown,
+ .driver = {
+ .name = DRIVER_NAME,
+ .of_match_table = omap2_onenand_id_table,
+ },
+};
+
+module_platform_driver(omap2_onenand_driver);
+
+MODULE_ALIAS("platform:" DRIVER_NAME);
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>");
+MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3");
diff --git a/drivers/mtd/nand/onenand/onenand_base.c b/drivers/mtd/nand/onenand/onenand_base.c
new file mode 100644
index 000000000000..b7105192cb12
--- /dev/null
+++ b/drivers/mtd/nand/onenand/onenand_base.c
@@ -0,0 +1,4014 @@
+/*
+ * Copyright © 2005-2009 Samsung Electronics
+ * Copyright © 2007 Nokia Corporation
+ *
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * Credits:
+ * Adrian Hunter <ext-adrian.hunter@nokia.com>:
+ * auto-placement support, read-while load support, various fixes
+ *
+ * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
+ * Flex-OneNAND support
+ * Amul Kumar Saha <amul.saha at samsung.com>
+ * OTP support
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/slab.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/jiffies.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/io.h>
+
+/*
+ * Multiblock erase if number of blocks to erase is 2 or more.
+ * Maximum number of blocks for simultaneous erase is 64.
+ */
+#define MB_ERASE_MIN_BLK_COUNT 2
+#define MB_ERASE_MAX_BLK_COUNT 64
+
+/* Default Flex-OneNAND boundary and lock respectively */
+static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
+
+module_param_array(flex_bdry, int, NULL, 0400);
+MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
+ "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
+ "DIE_BDRY: SLC boundary of the die"
+ "LOCK: Locking information for SLC boundary"
+ " : 0->Set boundary in unlocked status"
+ " : 1->Set boundary in locked status");
+
+/* Default OneNAND/Flex-OneNAND OTP options*/
+static int otp;
+
+module_param(otp, int, 0400);
+MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
+ "Syntax : otp=LOCK_TYPE"
+ "LOCK_TYPE : Keys issued, for specific OTP Lock type"
+ " : 0 -> Default (No Blocks Locked)"
+ " : 1 -> OTP Block lock"
+ " : 2 -> 1st Block lock"
+ " : 3 -> BOTH OTP Block and 1st Block lock");
+
+/*
+ * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
+ * For now, we expose only 64 out of 80 ecc bytes
+ */
+static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ if (section > 7)
+ return -ERANGE;
+
+ oobregion->offset = (section * 16) + 6;
+ oobregion->length = 10;
+
+ return 0;
+}
+
+static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ if (section > 7)
+ return -ERANGE;
+
+ oobregion->offset = (section * 16) + 2;
+ oobregion->length = 4;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
+ .ecc = flexonenand_ooblayout_ecc,
+ .free = flexonenand_ooblayout_free,
+};
+
+/*
+ * onenand_oob_128 - oob info for OneNAND with 4KB page
+ *
+ * Based on specification:
+ * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
+ *
+ */
+static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ if (section > 7)
+ return -ERANGE;
+
+ oobregion->offset = (section * 16) + 7;
+ oobregion->length = 9;
+
+ return 0;
+}
+
+static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ if (section >= 8)
+ return -ERANGE;
+
+ /*
+ * free bytes are using the spare area fields marked as
+ * "Managed by internal ECC logic for Logical Sector Number area"
+ */
+ oobregion->offset = (section * 16) + 2;
+ oobregion->length = 3;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
+ .ecc = onenand_ooblayout_128_ecc,
+ .free = onenand_ooblayout_128_free,
+};
+
+/**
+ * onenand_oob_32_64 - oob info for large (2KB) page
+ */
+static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ if (section > 3)
+ return -ERANGE;
+
+ oobregion->offset = (section * 16) + 8;
+ oobregion->length = 5;
+
+ return 0;
+}
+
+static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ int sections = (mtd->oobsize / 32) * 2;
+
+ if (section >= sections)
+ return -ERANGE;
+
+ if (section & 1) {
+ oobregion->offset = ((section - 1) * 16) + 14;
+ oobregion->length = 2;
+ } else {
+ oobregion->offset = (section * 16) + 2;
+ oobregion->length = 3;
+ }
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
+ .ecc = onenand_ooblayout_32_64_ecc,
+ .free = onenand_ooblayout_32_64_free,
+};
+
+static const unsigned char ffchars[] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
+};
+
+/**
+ * onenand_readw - [OneNAND Interface] Read OneNAND register
+ * @param addr address to read
+ *
+ * Read OneNAND register
+ */
+static unsigned short onenand_readw(void __iomem *addr)
+{
+ return readw(addr);
+}
+
+/**
+ * onenand_writew - [OneNAND Interface] Write OneNAND register with value
+ * @param value value to write
+ * @param addr address to write
+ *
+ * Write OneNAND register with value
+ */
+static void onenand_writew(unsigned short value, void __iomem *addr)
+{
+ writew(value, addr);
+}
+
+/**
+ * onenand_block_address - [DEFAULT] Get block address
+ * @param this onenand chip data structure
+ * @param block the block
+ * @return translated block address if DDP, otherwise same
+ *
+ * Setup Start Address 1 Register (F100h)
+ */
+static int onenand_block_address(struct onenand_chip *this, int block)
+{
+ /* Device Flash Core select, NAND Flash Block Address */
+ if (block & this->density_mask)
+ return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
+
+ return block;
+}
+
+/**
+ * onenand_bufferram_address - [DEFAULT] Get bufferram address
+ * @param this onenand chip data structure
+ * @param block the block
+ * @return set DBS value if DDP, otherwise 0
+ *
+ * Setup Start Address 2 Register (F101h) for DDP
+ */
+static int onenand_bufferram_address(struct onenand_chip *this, int block)
+{
+ /* Device BufferRAM Select */
+ if (block & this->density_mask)
+ return ONENAND_DDP_CHIP1;
+
+ return ONENAND_DDP_CHIP0;
+}
+
+/**
+ * onenand_page_address - [DEFAULT] Get page address
+ * @param page the page address
+ * @param sector the sector address
+ * @return combined page and sector address
+ *
+ * Setup Start Address 8 Register (F107h)
+ */
+static int onenand_page_address(int page, int sector)
+{
+ /* Flash Page Address, Flash Sector Address */
+ int fpa, fsa;
+
+ fpa = page & ONENAND_FPA_MASK;
+ fsa = sector & ONENAND_FSA_MASK;
+
+ return ((fpa << ONENAND_FPA_SHIFT) | fsa);
+}
+
+/**
+ * onenand_buffer_address - [DEFAULT] Get buffer address
+ * @param dataram1 DataRAM index
+ * @param sectors the sector address
+ * @param count the number of sectors
+ * @return the start buffer value
+ *
+ * Setup Start Buffer Register (F200h)
+ */
+static int onenand_buffer_address(int dataram1, int sectors, int count)
+{
+ int bsa, bsc;
+
+ /* BufferRAM Sector Address */
+ bsa = sectors & ONENAND_BSA_MASK;
+
+ if (dataram1)
+ bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
+ else
+ bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
+
+ /* BufferRAM Sector Count */
+ bsc = count & ONENAND_BSC_MASK;
+
+ return ((bsa << ONENAND_BSA_SHIFT) | bsc);
+}
+
+/**
+ * flexonenand_block- For given address return block number
+ * @param this - OneNAND device structure
+ * @param addr - Address for which block number is needed
+ */
+static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
+{
+ unsigned boundary, blk, die = 0;
+
+ if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
+ die = 1;
+ addr -= this->diesize[0];
+ }
+
+ boundary = this->boundary[die];
+
+ blk = addr >> (this->erase_shift - 1);
+ if (blk > boundary)
+ blk = (blk + boundary + 1) >> 1;
+
+ blk += die ? this->density_mask : 0;
+ return blk;
+}
+
+inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
+{
+ if (!FLEXONENAND(this))
+ return addr >> this->erase_shift;
+ return flexonenand_block(this, addr);
+}
+
+/**
+ * flexonenand_addr - Return address of the block
+ * @this: OneNAND device structure
+ * @block: Block number on Flex-OneNAND
+ *
+ * Return address of the block
+ */
+static loff_t flexonenand_addr(struct onenand_chip *this, int block)
+{
+ loff_t ofs = 0;
+ int die = 0, boundary;
+
+ if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
+ block -= this->density_mask;
+ die = 1;
+ ofs = this->diesize[0];
+ }
+
+ boundary = this->boundary[die];
+ ofs += (loff_t)block << (this->erase_shift - 1);
+ if (block > (boundary + 1))
+ ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
+ return ofs;
+}
+
+loff_t onenand_addr(struct onenand_chip *this, int block)
+{
+ if (!FLEXONENAND(this))
+ return (loff_t)block << this->erase_shift;
+ return flexonenand_addr(this, block);
+}
+EXPORT_SYMBOL(onenand_addr);
+
+/**
+ * onenand_get_density - [DEFAULT] Get OneNAND density
+ * @param dev_id OneNAND device ID
+ *
+ * Get OneNAND density from device ID
+ */
+static inline int onenand_get_density(int dev_id)
+{
+ int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
+ return (density & ONENAND_DEVICE_DENSITY_MASK);
+}
+
+/**
+ * flexonenand_region - [Flex-OneNAND] Return erase region of addr
+ * @param mtd MTD device structure
+ * @param addr address whose erase region needs to be identified
+ */
+int flexonenand_region(struct mtd_info *mtd, loff_t addr)
+{
+ int i;
+
+ for (i = 0; i < mtd->numeraseregions; i++)
+ if (addr < mtd->eraseregions[i].offset)
+ break;
+ return i - 1;
+}
+EXPORT_SYMBOL(flexonenand_region);
+
+/**
+ * onenand_command - [DEFAULT] Send command to OneNAND device
+ * @param mtd MTD device structure
+ * @param cmd the command to be sent
+ * @param addr offset to read from or write to
+ * @param len number of bytes to read or write
+ *
+ * Send command to OneNAND device. This function is used for middle/large page
+ * devices (1KB/2KB Bytes per page)
+ */
+static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ int value, block, page;
+
+ /* Address translation */
+ switch (cmd) {
+ case ONENAND_CMD_UNLOCK:
+ case ONENAND_CMD_LOCK:
+ case ONENAND_CMD_LOCK_TIGHT:
+ case ONENAND_CMD_UNLOCK_ALL:
+ block = -1;
+ page = -1;
+ break;
+
+ case FLEXONENAND_CMD_PI_ACCESS:
+ /* addr contains die index */
+ block = addr * this->density_mask;
+ page = -1;
+ break;
+
+ case ONENAND_CMD_ERASE:
+ case ONENAND_CMD_MULTIBLOCK_ERASE:
+ case ONENAND_CMD_ERASE_VERIFY:
+ case ONENAND_CMD_BUFFERRAM:
+ case ONENAND_CMD_OTP_ACCESS:
+ block = onenand_block(this, addr);
+ page = -1;
+ break;
+
+ case FLEXONENAND_CMD_READ_PI:
+ cmd = ONENAND_CMD_READ;
+ block = addr * this->density_mask;
+ page = 0;
+ break;
+
+ default:
+ block = onenand_block(this, addr);
+ if (FLEXONENAND(this))
+ page = (int) (addr - onenand_addr(this, block))>>\
+ this->page_shift;
+ else
+ page = (int) (addr >> this->page_shift);
+ if (ONENAND_IS_2PLANE(this)) {
+ /* Make the even block number */
+ block &= ~1;
+ /* Is it the odd plane? */
+ if (addr & this->writesize)
+ block++;
+ page >>= 1;
+ }
+ page &= this->page_mask;
+ break;
+ }
+
+ /* NOTE: The setting order of the registers is very important! */
+ if (cmd == ONENAND_CMD_BUFFERRAM) {
+ /* Select DataRAM for DDP */
+ value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+
+ if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
+ /* It is always BufferRAM0 */
+ ONENAND_SET_BUFFERRAM0(this);
+ else
+ /* Switch to the next data buffer */
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+
+ return 0;
+ }
+
+ if (block != -1) {
+ /* Write 'DFS, FBA' of Flash */
+ value = onenand_block_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+
+ /* Select DataRAM for DDP */
+ value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+ }
+
+ if (page != -1) {
+ /* Now we use page size operation */
+ int sectors = 0, count = 0;
+ int dataram;
+
+ switch (cmd) {
+ case FLEXONENAND_CMD_RECOVER_LSB:
+ case ONENAND_CMD_READ:
+ case ONENAND_CMD_READOOB:
+ if (ONENAND_IS_4KB_PAGE(this))
+ /* It is always BufferRAM0 */
+ dataram = ONENAND_SET_BUFFERRAM0(this);
+ else
+ dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
+ break;
+
+ default:
+ if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
+ cmd = ONENAND_CMD_2X_PROG;
+ dataram = ONENAND_CURRENT_BUFFERRAM(this);
+ break;
+ }
+
+ /* Write 'FPA, FSA' of Flash */
+ value = onenand_page_address(page, sectors);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
+
+ /* Write 'BSA, BSC' of DataRAM */
+ value = onenand_buffer_address(dataram, sectors, count);
+ this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
+ }
+
+ /* Interrupt clear */
+ this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
+
+ /* Write command */
+ this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
+
+ return 0;
+}
+
+/**
+ * onenand_read_ecc - return ecc status
+ * @param this onenand chip structure
+ */
+static inline int onenand_read_ecc(struct onenand_chip *this)
+{
+ int ecc, i, result = 0;
+
+ if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
+ return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
+
+ for (i = 0; i < 4; i++) {
+ ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
+ if (likely(!ecc))
+ continue;
+ if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
+ return ONENAND_ECC_2BIT_ALL;
+ else
+ result = ONENAND_ECC_1BIT_ALL;
+ }
+
+ return result;
+}
+
+/**
+ * onenand_wait - [DEFAULT] wait until the command is done
+ * @param mtd MTD device structure
+ * @param state state to select the max. timeout value
+ *
+ * Wait for command done. This applies to all OneNAND command
+ * Read can take up to 30us, erase up to 2ms and program up to 350us
+ * according to general OneNAND specs
+ */
+static int onenand_wait(struct mtd_info *mtd, int state)
+{
+ struct onenand_chip * this = mtd->priv;
+ unsigned long timeout;
+ unsigned int flags = ONENAND_INT_MASTER;
+ unsigned int interrupt = 0;
+ unsigned int ctrl;
+
+ /* The 20 msec is enough */
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (time_before(jiffies, timeout)) {
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+
+ if (interrupt & flags)
+ break;
+
+ if (state != FL_READING && state != FL_PREPARING_ERASE)
+ cond_resched();
+ }
+ /* To get correct interrupt status in timeout case */
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+
+ ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+
+ /*
+ * In the Spec. it checks the controller status first
+ * However if you get the correct information in case of
+ * power off recovery (POR) test, it should read ECC status first
+ */
+ if (interrupt & ONENAND_INT_READ) {
+ int ecc = onenand_read_ecc(this);
+ if (ecc) {
+ if (ecc & ONENAND_ECC_2BIT_ALL) {
+ printk(KERN_ERR "%s: ECC error = 0x%04x\n",
+ __func__, ecc);
+ mtd->ecc_stats.failed++;
+ return -EBADMSG;
+ } else if (ecc & ONENAND_ECC_1BIT_ALL) {
+ printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
+ __func__, ecc);
+ mtd->ecc_stats.corrected++;
+ }
+ }
+ } else if (state == FL_READING) {
+ printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
+ __func__, ctrl, interrupt);
+ return -EIO;
+ }
+
+ if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
+ printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
+ __func__, ctrl, interrupt);
+ return -EIO;
+ }
+
+ if (!(interrupt & ONENAND_INT_MASTER)) {
+ printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
+ __func__, ctrl, interrupt);
+ return -EIO;
+ }
+
+ /* If there's controller error, it's a real error */
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ printk(KERN_ERR "%s: controller error = 0x%04x\n",
+ __func__, ctrl);
+ if (ctrl & ONENAND_CTRL_LOCK)
+ printk(KERN_ERR "%s: it's locked error.\n", __func__);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/*
+ * onenand_interrupt - [DEFAULT] onenand interrupt handler
+ * @param irq onenand interrupt number
+ * @param dev_id interrupt data
+ *
+ * complete the work
+ */
+static irqreturn_t onenand_interrupt(int irq, void *data)
+{
+ struct onenand_chip *this = data;
+
+ /* To handle shared interrupt */
+ if (!this->complete.done)
+ complete(&this->complete);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * onenand_interrupt_wait - [DEFAULT] wait until the command is done
+ * @param mtd MTD device structure
+ * @param state state to select the max. timeout value
+ *
+ * Wait for command done.
+ */
+static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ wait_for_completion(&this->complete);
+
+ return onenand_wait(mtd, state);
+}
+
+/*
+ * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
+ * @param mtd MTD device structure
+ * @param state state to select the max. timeout value
+ *
+ * Try interrupt based wait (It is used one-time)
+ */
+static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned long remain, timeout;
+
+ /* We use interrupt wait first */
+ this->wait = onenand_interrupt_wait;
+
+ timeout = msecs_to_jiffies(100);
+ remain = wait_for_completion_timeout(&this->complete, timeout);
+ if (!remain) {
+ printk(KERN_INFO "OneNAND: There's no interrupt. "
+ "We use the normal wait\n");
+
+ /* Release the irq */
+ free_irq(this->irq, this);
+
+ this->wait = onenand_wait;
+ }
+
+ return onenand_wait(mtd, state);
+}
+
+/*
+ * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
+ * @param mtd MTD device structure
+ *
+ * There's two method to wait onenand work
+ * 1. polling - read interrupt status register
+ * 2. interrupt - use the kernel interrupt method
+ */
+static void onenand_setup_wait(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int syscfg;
+
+ init_completion(&this->complete);
+
+ if (this->irq <= 0) {
+ this->wait = onenand_wait;
+ return;
+ }
+
+ if (request_irq(this->irq, &onenand_interrupt,
+ IRQF_SHARED, "onenand", this)) {
+ /* If we can't get irq, use the normal wait */
+ this->wait = onenand_wait;
+ return;
+ }
+
+ /* Enable interrupt */
+ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+ syscfg |= ONENAND_SYS_CFG1_IOBE;
+ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+
+ this->wait = onenand_try_interrupt_wait;
+}
+
+/**
+ * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @return offset given area
+ *
+ * Return BufferRAM offset given area
+ */
+static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (ONENAND_CURRENT_BUFFERRAM(this)) {
+ /* Note: the 'this->writesize' is a real page size */
+ if (area == ONENAND_DATARAM)
+ return this->writesize;
+ if (area == ONENAND_SPARERAM)
+ return mtd->oobsize;
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @param buffer the databuffer to put/get data
+ * @param offset offset to read from or write to
+ * @param count number of bytes to read/write
+ *
+ * Read the BufferRAM area
+ */
+static int onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset, size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *bufferram;
+
+ bufferram = this->base + area;
+
+ bufferram += onenand_bufferram_offset(mtd, area);
+
+ if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+ unsigned short word;
+
+ /* Align with word(16-bit) size */
+ count--;
+
+ /* Read word and save byte */
+ word = this->read_word(bufferram + offset + count);
+ buffer[count] = (word & 0xff);
+ }
+
+ memcpy(buffer, bufferram + offset, count);
+
+ return 0;
+}
+
+/**
+ * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @param buffer the databuffer to put/get data
+ * @param offset offset to read from or write to
+ * @param count number of bytes to read/write
+ *
+ * Read the BufferRAM area with Sync. Burst Mode
+ */
+static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset, size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *bufferram;
+
+ bufferram = this->base + area;
+
+ bufferram += onenand_bufferram_offset(mtd, area);
+
+ this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
+
+ if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+ unsigned short word;
+
+ /* Align with word(16-bit) size */
+ count--;
+
+ /* Read word and save byte */
+ word = this->read_word(bufferram + offset + count);
+ buffer[count] = (word & 0xff);
+ }
+
+ memcpy(buffer, bufferram + offset, count);
+
+ this->mmcontrol(mtd, 0);
+
+ return 0;
+}
+
+/**
+ * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @param buffer the databuffer to put/get data
+ * @param offset offset to read from or write to
+ * @param count number of bytes to read/write
+ *
+ * Write the BufferRAM area
+ */
+static int onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer, int offset, size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *bufferram;
+
+ bufferram = this->base + area;
+
+ bufferram += onenand_bufferram_offset(mtd, area);
+
+ if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+ unsigned short word;
+ int byte_offset;
+
+ /* Align with word(16-bit) size */
+ count--;
+
+ /* Calculate byte access offset */
+ byte_offset = offset + count;
+
+ /* Read word and save byte */
+ word = this->read_word(bufferram + byte_offset);
+ word = (word & ~0xff) | buffer[count];
+ this->write_word(word, bufferram + byte_offset);
+ }
+
+ memcpy(bufferram + offset, buffer, count);
+
+ return 0;
+}
+
+/**
+ * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
+ * @param mtd MTD data structure
+ * @param addr address to check
+ * @return blockpage address
+ *
+ * Get blockpage address at 2x program mode
+ */
+static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
+{
+ struct onenand_chip *this = mtd->priv;
+ int blockpage, block, page;
+
+ /* Calculate the even block number */
+ block = (int) (addr >> this->erase_shift) & ~1;
+ /* Is it the odd plane? */
+ if (addr & this->writesize)
+ block++;
+ page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
+ blockpage = (block << 7) | page;
+
+ return blockpage;
+}
+
+/**
+ * onenand_check_bufferram - [GENERIC] Check BufferRAM information
+ * @param mtd MTD data structure
+ * @param addr address to check
+ * @return 1 if there are valid data, otherwise 0
+ *
+ * Check bufferram if there is data we required
+ */
+static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
+{
+ struct onenand_chip *this = mtd->priv;
+ int blockpage, found = 0;
+ unsigned int i;
+
+ if (ONENAND_IS_2PLANE(this))
+ blockpage = onenand_get_2x_blockpage(mtd, addr);
+ else
+ blockpage = (int) (addr >> this->page_shift);
+
+ /* Is there valid data? */
+ i = ONENAND_CURRENT_BUFFERRAM(this);
+ if (this->bufferram[i].blockpage == blockpage)
+ found = 1;
+ else {
+ /* Check another BufferRAM */
+ i = ONENAND_NEXT_BUFFERRAM(this);
+ if (this->bufferram[i].blockpage == blockpage) {
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+ found = 1;
+ }
+ }
+
+ if (found && ONENAND_IS_DDP(this)) {
+ /* Select DataRAM for DDP */
+ int block = onenand_block(this, addr);
+ int value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+ }
+
+ return found;
+}
+
+/**
+ * onenand_update_bufferram - [GENERIC] Update BufferRAM information
+ * @param mtd MTD data structure
+ * @param addr address to update
+ * @param valid valid flag
+ *
+ * Update BufferRAM information
+ */
+static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
+ int valid)
+{
+ struct onenand_chip *this = mtd->priv;
+ int blockpage;
+ unsigned int i;
+
+ if (ONENAND_IS_2PLANE(this))
+ blockpage = onenand_get_2x_blockpage(mtd, addr);
+ else
+ blockpage = (int) (addr >> this->page_shift);
+
+ /* Invalidate another BufferRAM */
+ i = ONENAND_NEXT_BUFFERRAM(this);
+ if (this->bufferram[i].blockpage == blockpage)
+ this->bufferram[i].blockpage = -1;
+
+ /* Update BufferRAM */
+ i = ONENAND_CURRENT_BUFFERRAM(this);
+ if (valid)
+ this->bufferram[i].blockpage = blockpage;
+ else
+ this->bufferram[i].blockpage = -1;
+}
+
+/**
+ * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
+ * @param mtd MTD data structure
+ * @param addr start address to invalidate
+ * @param len length to invalidate
+ *
+ * Invalidate BufferRAM information
+ */
+static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
+ unsigned int len)
+{
+ struct onenand_chip *this = mtd->priv;
+ int i;
+ loff_t end_addr = addr + len;
+
+ /* Invalidate BufferRAM */
+ for (i = 0; i < MAX_BUFFERRAM; i++) {
+ loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
+ if (buf_addr >= addr && buf_addr < end_addr)
+ this->bufferram[i].blockpage = -1;
+ }
+}
+
+/**
+ * onenand_get_device - [GENERIC] Get chip for selected access
+ * @param mtd MTD device structure
+ * @param new_state the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static int onenand_get_device(struct mtd_info *mtd, int new_state)
+{
+ struct onenand_chip *this = mtd->priv;
+ DECLARE_WAITQUEUE(wait, current);
+
+ /*
+ * Grab the lock and see if the device is available
+ */
+ while (1) {
+ spin_lock(&this->chip_lock);
+ if (this->state == FL_READY) {
+ this->state = new_state;
+ spin_unlock(&this->chip_lock);
+ if (new_state != FL_PM_SUSPENDED && this->enable)
+ this->enable(mtd);
+ break;
+ }
+ if (new_state == FL_PM_SUSPENDED) {
+ spin_unlock(&this->chip_lock);
+ return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
+ }
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(&this->wq, &wait);
+ spin_unlock(&this->chip_lock);
+ schedule();
+ remove_wait_queue(&this->wq, &wait);
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_release_device - [GENERIC] release chip
+ * @param mtd MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+static void onenand_release_device(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (this->state != FL_PM_SUSPENDED && this->disable)
+ this->disable(mtd);
+ /* Release the chip */
+ spin_lock(&this->chip_lock);
+ this->state = FL_READY;
+ wake_up(&this->wq);
+ spin_unlock(&this->chip_lock);
+}
+
+/**
+ * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
+ * @param mtd MTD device structure
+ * @param buf destination address
+ * @param column oob offset to read from
+ * @param thislen oob length to read
+ */
+static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
+ int thislen)
+{
+ struct onenand_chip *this = mtd->priv;
+ int ret;
+
+ this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
+ mtd->oobsize);
+ ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
+ column, thislen);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+/**
+ * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
+ * @param mtd MTD device structure
+ * @param addr address to recover
+ * @param status return value from onenand_wait / onenand_bbt_wait
+ *
+ * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
+ * lower page address and MSB page has higher page address in paired pages.
+ * If power off occurs during MSB page program, the paired LSB page data can
+ * become corrupt. LSB page recovery read is a way to read LSB page though page
+ * data are corrupted. When uncorrectable error occurs as a result of LSB page
+ * read after power up, issue LSB page recovery read.
+ */
+static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
+{
+ struct onenand_chip *this = mtd->priv;
+ int i;
+
+ /* Recovery is only for Flex-OneNAND */
+ if (!FLEXONENAND(this))
+ return status;
+
+ /* check if we failed due to uncorrectable error */
+ if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
+ return status;
+
+ /* check if address lies in MLC region */
+ i = flexonenand_region(mtd, addr);
+ if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
+ return status;
+
+ /* We are attempting to reread, so decrement stats.failed
+ * which was incremented by onenand_wait due to read failure
+ */
+ printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
+ __func__);
+ mtd->ecc_stats.failed--;
+
+ /* Issue the LSB page recovery command */
+ this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
+ return this->wait(mtd, FL_READING);
+}
+
+/**
+ * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param ops: oob operation description structure
+ *
+ * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
+ * So, read-while-load is not present.
+ */
+static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_ecc_stats stats;
+ size_t len = ops->len;
+ size_t ooblen = ops->ooblen;
+ u_char *buf = ops->datbuf;
+ u_char *oobbuf = ops->oobbuf;
+ int read = 0, column, thislen;
+ int oobread = 0, oobcolumn, thisooblen, oobsize;
+ int ret = 0;
+ int writesize = this->writesize;
+
+ pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+ (int)len);
+
+ oobsize = mtd_oobavail(mtd, ops);
+ oobcolumn = from & (mtd->oobsize - 1);
+
+ /* Do not allow reads past end of device */
+ if (from + len > mtd->size) {
+ printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+ __func__);
+ ops->retlen = 0;
+ ops->oobretlen = 0;
+ return -EINVAL;
+ }
+
+ stats = mtd->ecc_stats;
+
+ while (read < len) {
+ cond_resched();
+
+ thislen = min_t(int, writesize, len - read);
+
+ column = from & (writesize - 1);
+ if (column + thislen > writesize)
+ thislen = writesize - column;
+
+ if (!onenand_check_bufferram(mtd, from)) {
+ this->command(mtd, ONENAND_CMD_READ, from, writesize);
+
+ ret = this->wait(mtd, FL_READING);
+ if (unlikely(ret))
+ ret = onenand_recover_lsb(mtd, from, ret);
+ onenand_update_bufferram(mtd, from, !ret);
+ if (mtd_is_eccerr(ret))
+ ret = 0;
+ if (ret)
+ break;
+ }
+
+ this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
+ if (oobbuf) {
+ thisooblen = oobsize - oobcolumn;
+ thisooblen = min_t(int, thisooblen, ooblen - oobread);
+
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
+ else
+ this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
+ oobread += thisooblen;
+ oobbuf += thisooblen;
+ oobcolumn = 0;
+ }
+
+ read += thislen;
+ if (read == len)
+ break;
+
+ from += thislen;
+ buf += thislen;
+ }
+
+ /*
+ * Return success, if no ECC failures, else -EBADMSG
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EBADMSG
+ */
+ ops->retlen = read;
+ ops->oobretlen = oobread;
+
+ if (ret)
+ return ret;
+
+ if (mtd->ecc_stats.failed - stats.failed)
+ return -EBADMSG;
+
+ /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
+ return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
+}
+
+/**
+ * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param ops: oob operation description structure
+ *
+ * OneNAND read main and/or out-of-band data
+ */
+static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_ecc_stats stats;
+ size_t len = ops->len;
+ size_t ooblen = ops->ooblen;
+ u_char *buf = ops->datbuf;
+ u_char *oobbuf = ops->oobbuf;
+ int read = 0, column, thislen;
+ int oobread = 0, oobcolumn, thisooblen, oobsize;
+ int ret = 0, boundary = 0;
+ int writesize = this->writesize;
+
+ pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+ (int)len);
+
+ oobsize = mtd_oobavail(mtd, ops);
+ oobcolumn = from & (mtd->oobsize - 1);
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+ __func__);
+ ops->retlen = 0;
+ ops->oobretlen = 0;
+ return -EINVAL;
+ }
+
+ stats = mtd->ecc_stats;
+
+ /* Read-while-load method */
+
+ /* Do first load to bufferRAM */
+ if (read < len) {
+ if (!onenand_check_bufferram(mtd, from)) {
+ this->command(mtd, ONENAND_CMD_READ, from, writesize);
+ ret = this->wait(mtd, FL_READING);
+ onenand_update_bufferram(mtd, from, !ret);
+ if (mtd_is_eccerr(ret))
+ ret = 0;
+ }
+ }
+
+ thislen = min_t(int, writesize, len - read);
+ column = from & (writesize - 1);
+ if (column + thislen > writesize)
+ thislen = writesize - column;
+
+ while (!ret) {
+ /* If there is more to load then start next load */
+ from += thislen;
+ if (read + thislen < len) {
+ this->command(mtd, ONENAND_CMD_READ, from, writesize);
+ /*
+ * Chip boundary handling in DDP
+ * Now we issued chip 1 read and pointed chip 1
+ * bufferram so we have to point chip 0 bufferram.
+ */
+ if (ONENAND_IS_DDP(this) &&
+ unlikely(from == (this->chipsize >> 1))) {
+ this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
+ boundary = 1;
+ } else
+ boundary = 0;
+ ONENAND_SET_PREV_BUFFERRAM(this);
+ }
+ /* While load is going, read from last bufferRAM */
+ this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
+
+ /* Read oob area if needed */
+ if (oobbuf) {
+ thisooblen = oobsize - oobcolumn;
+ thisooblen = min_t(int, thisooblen, ooblen - oobread);
+
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
+ else
+ this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
+ oobread += thisooblen;
+ oobbuf += thisooblen;
+ oobcolumn = 0;
+ }
+
+ /* See if we are done */
+ read += thislen;
+ if (read == len)
+ break;
+ /* Set up for next read from bufferRAM */
+ if (unlikely(boundary))
+ this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+ buf += thislen;
+ thislen = min_t(int, writesize, len - read);
+ column = 0;
+ cond_resched();
+ /* Now wait for load */
+ ret = this->wait(mtd, FL_READING);
+ onenand_update_bufferram(mtd, from, !ret);
+ if (mtd_is_eccerr(ret))
+ ret = 0;
+ }
+
+ /*
+ * Return success, if no ECC failures, else -EBADMSG
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EBADMSG
+ */
+ ops->retlen = read;
+ ops->oobretlen = oobread;
+
+ if (ret)
+ return ret;
+
+ if (mtd->ecc_stats.failed - stats.failed)
+ return -EBADMSG;
+
+ /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
+ return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
+}
+
+/**
+ * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param ops: oob operation description structure
+ *
+ * OneNAND read out-of-band data from the spare area
+ */
+static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_ecc_stats stats;
+ int read = 0, thislen, column, oobsize;
+ size_t len = ops->ooblen;
+ unsigned int mode = ops->mode;
+ u_char *buf = ops->oobbuf;
+ int ret = 0, readcmd;
+
+ from += ops->ooboffs;
+
+ pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+ (int)len);
+
+ /* Initialize return length value */
+ ops->oobretlen = 0;
+
+ if (mode == MTD_OPS_AUTO_OOB)
+ oobsize = mtd->oobavail;
+ else
+ oobsize = mtd->oobsize;
+
+ column = from & (mtd->oobsize - 1);
+
+ if (unlikely(column >= oobsize)) {
+ printk(KERN_ERR "%s: Attempted to start read outside oob\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ stats = mtd->ecc_stats;
+
+ readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+ while (read < len) {
+ cond_resched();
+
+ thislen = oobsize - column;
+ thislen = min_t(int, thislen, len);
+
+ this->command(mtd, readcmd, from, mtd->oobsize);
+
+ onenand_update_bufferram(mtd, from, 0);
+
+ ret = this->wait(mtd, FL_READING);
+ if (unlikely(ret))
+ ret = onenand_recover_lsb(mtd, from, ret);
+
+ if (ret && !mtd_is_eccerr(ret)) {
+ printk(KERN_ERR "%s: read failed = 0x%x\n",
+ __func__, ret);
+ break;
+ }
+
+ if (mode == MTD_OPS_AUTO_OOB)
+ onenand_transfer_auto_oob(mtd, buf, column, thislen);
+ else
+ this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
+
+ read += thislen;
+
+ if (read == len)
+ break;
+
+ buf += thislen;
+
+ /* Read more? */
+ if (read < len) {
+ /* Page size */
+ from += mtd->writesize;
+ column = 0;
+ }
+ }
+
+ ops->oobretlen = read;
+
+ if (ret)
+ return ret;
+
+ if (mtd->ecc_stats.failed - stats.failed)
+ return -EBADMSG;
+
+ return 0;
+}
+
+/**
+ * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
+ * @param mtd: MTD device structure
+ * @param from: offset to read from
+ * @param ops: oob operation description structure
+
+ * Read main and/or out-of-band
+ */
+static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ int ret;
+
+ switch (ops->mode) {
+ case MTD_OPS_PLACE_OOB:
+ case MTD_OPS_AUTO_OOB:
+ break;
+ case MTD_OPS_RAW:
+ /* Not implemented yet */
+ default:
+ return -EINVAL;
+ }
+
+ onenand_get_device(mtd, FL_READING);
+ if (ops->datbuf)
+ ret = ONENAND_IS_4KB_PAGE(this) ?
+ onenand_mlc_read_ops_nolock(mtd, from, ops) :
+ onenand_read_ops_nolock(mtd, from, ops);
+ else
+ ret = onenand_read_oob_nolock(mtd, from, ops);
+ onenand_release_device(mtd);
+
+ return ret;
+}
+
+/**
+ * onenand_bbt_wait - [DEFAULT] wait until the command is done
+ * @param mtd MTD device structure
+ * @param state state to select the max. timeout value
+ *
+ * Wait for command done.
+ */
+static int onenand_bbt_wait(struct mtd_info *mtd, int state)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned long timeout;
+ unsigned int interrupt, ctrl, ecc, addr1, addr8;
+
+ /* The 20 msec is enough */
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (time_before(jiffies, timeout)) {
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+ if (interrupt & ONENAND_INT_MASTER)
+ break;
+ }
+ /* To get correct interrupt status in timeout case */
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+ ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+ addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
+ addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
+
+ if (interrupt & ONENAND_INT_READ) {
+ ecc = onenand_read_ecc(this);
+ if (ecc & ONENAND_ECC_2BIT_ALL) {
+ printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
+ "intr 0x%04x addr1 %#x addr8 %#x\n",
+ __func__, ecc, ctrl, interrupt, addr1, addr8);
+ return ONENAND_BBT_READ_ECC_ERROR;
+ }
+ } else {
+ printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
+ "intr 0x%04x addr1 %#x addr8 %#x\n",
+ __func__, ctrl, interrupt, addr1, addr8);
+ return ONENAND_BBT_READ_FATAL_ERROR;
+ }
+
+ /* Initial bad block case: 0x2400 or 0x0400 */
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
+ "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
+ return ONENAND_BBT_READ_ERROR;
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param ops oob operation description structure
+ *
+ * OneNAND read out-of-band data from the spare area for bbt scan
+ */
+int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ int read = 0, thislen, column;
+ int ret = 0, readcmd;
+ size_t len = ops->ooblen;
+ u_char *buf = ops->oobbuf;
+
+ pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
+ len);
+
+ /* Initialize return value */
+ ops->oobretlen = 0;
+
+ /* Do not allow reads past end of device */
+ if (unlikely((from + len) > mtd->size)) {
+ printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+ __func__);
+ return ONENAND_BBT_READ_FATAL_ERROR;
+ }
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_READING);
+
+ column = from & (mtd->oobsize - 1);
+
+ readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+ while (read < len) {
+ cond_resched();
+
+ thislen = mtd->oobsize - column;
+ thislen = min_t(int, thislen, len);
+
+ this->command(mtd, readcmd, from, mtd->oobsize);
+
+ onenand_update_bufferram(mtd, from, 0);
+
+ ret = this->bbt_wait(mtd, FL_READING);
+ if (unlikely(ret))
+ ret = onenand_recover_lsb(mtd, from, ret);
+
+ if (ret)
+ break;
+
+ this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
+ read += thislen;
+ if (read == len)
+ break;
+
+ buf += thislen;
+
+ /* Read more? */
+ if (read < len) {
+ /* Update Page size */
+ from += this->writesize;
+ column = 0;
+ }
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ onenand_release_device(mtd);
+
+ ops->oobretlen = read;
+ return ret;
+}
+
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+/**
+ * onenand_verify_oob - [GENERIC] verify the oob contents after a write
+ * @param mtd MTD device structure
+ * @param buf the databuffer to verify
+ * @param to offset to read from
+ */
+static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
+{
+ struct onenand_chip *this = mtd->priv;
+ u_char *oob_buf = this->oob_buf;
+ int status, i, readcmd;
+
+ readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+ this->command(mtd, readcmd, to, mtd->oobsize);
+ onenand_update_bufferram(mtd, to, 0);
+ status = this->wait(mtd, FL_READING);
+ if (status)
+ return status;
+
+ this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
+ for (i = 0; i < mtd->oobsize; i++)
+ if (buf[i] != 0xFF && buf[i] != oob_buf[i])
+ return -EBADMSG;
+
+ return 0;
+}
+
+/**
+ * onenand_verify - [GENERIC] verify the chip contents after a write
+ * @param mtd MTD device structure
+ * @param buf the databuffer to verify
+ * @param addr offset to read from
+ * @param len number of bytes to read and compare
+ */
+static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ int ret = 0;
+ int thislen, column;
+
+ column = addr & (this->writesize - 1);
+
+ while (len != 0) {
+ thislen = min_t(int, this->writesize - column, len);
+
+ this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
+
+ onenand_update_bufferram(mtd, addr, 0);
+
+ ret = this->wait(mtd, FL_READING);
+ if (ret)
+ return ret;
+
+ onenand_update_bufferram(mtd, addr, 1);
+
+ this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
+
+ if (memcmp(buf, this->verify_buf + column, thislen))
+ return -EBADMSG;
+
+ len -= thislen;
+ buf += thislen;
+ addr += thislen;
+ column = 0;
+ }
+
+ return 0;
+}
+#else
+#define onenand_verify(...) (0)
+#define onenand_verify_oob(...) (0)
+#endif
+
+#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
+
+static void onenand_panic_wait(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned int interrupt;
+ int i;
+
+ for (i = 0; i < 2000; i++) {
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+ if (interrupt & ONENAND_INT_MASTER)
+ break;
+ udelay(10);
+ }
+}
+
+/**
+ * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of written bytes
+ * @param buf the data to write
+ *
+ * Write with ECC
+ */
+static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ int column, subpage;
+ int written = 0;
+
+ if (this->state == FL_PM_SUSPENDED)
+ return -EBUSY;
+
+ /* Wait for any existing operation to clear */
+ onenand_panic_wait(mtd);
+
+ pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+ (int)len);
+
+ /* Reject writes, which are not page aligned */
+ if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
+ printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ column = to & (mtd->writesize - 1);
+
+ /* Loop until all data write */
+ while (written < len) {
+ int thislen = min_t(int, mtd->writesize - column, len - written);
+ u_char *wbuf = (u_char *) buf;
+
+ this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
+
+ /* Partial page write */
+ subpage = thislen < mtd->writesize;
+ if (subpage) {
+ memset(this->page_buf, 0xff, mtd->writesize);
+ memcpy(this->page_buf + column, buf, thislen);
+ wbuf = this->page_buf;
+ }
+
+ this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
+ this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
+
+ this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
+
+ onenand_panic_wait(mtd);
+
+ /* In partial page write we don't update bufferram */
+ onenand_update_bufferram(mtd, to, !subpage);
+ if (ONENAND_IS_2PLANE(this)) {
+ ONENAND_SET_BUFFERRAM1(this);
+ onenand_update_bufferram(mtd, to + this->writesize, !subpage);
+ }
+
+ written += thislen;
+
+ if (written == len)
+ break;
+
+ column = 0;
+ to += thislen;
+ buf += thislen;
+ }
+
+ *retlen = written;
+ return 0;
+}
+
+/**
+ * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
+ * @param mtd MTD device structure
+ * @param oob_buf oob buffer
+ * @param buf source address
+ * @param column oob offset to write to
+ * @param thislen oob length to write
+ */
+static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
+ const u_char *buf, int column, int thislen)
+{
+ return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
+}
+
+/**
+ * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param ops oob operation description structure
+ *
+ * Write main and/or oob with ECC
+ */
+static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ int written = 0, column, thislen = 0, subpage = 0;
+ int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
+ int oobwritten = 0, oobcolumn, thisooblen, oobsize;
+ size_t len = ops->len;
+ size_t ooblen = ops->ooblen;
+ const u_char *buf = ops->datbuf;
+ const u_char *oob = ops->oobbuf;
+ u_char *oobbuf;
+ int ret = 0, cmd;
+
+ pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+ (int)len);
+
+ /* Initialize retlen, in case of early exit */
+ ops->retlen = 0;
+ ops->oobretlen = 0;
+
+ /* Reject writes, which are not page aligned */
+ if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
+ printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ /* Check zero length */
+ if (!len)
+ return 0;
+ oobsize = mtd_oobavail(mtd, ops);
+ oobcolumn = to & (mtd->oobsize - 1);
+
+ column = to & (mtd->writesize - 1);
+
+ /* Loop until all data write */
+ while (1) {
+ if (written < len) {
+ u_char *wbuf = (u_char *) buf;
+
+ thislen = min_t(int, mtd->writesize - column, len - written);
+ thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
+
+ cond_resched();
+
+ this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
+
+ /* Partial page write */
+ subpage = thislen < mtd->writesize;
+ if (subpage) {
+ memset(this->page_buf, 0xff, mtd->writesize);
+ memcpy(this->page_buf + column, buf, thislen);
+ wbuf = this->page_buf;
+ }
+
+ this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
+
+ if (oob) {
+ oobbuf = this->oob_buf;
+
+ /* We send data to spare ram with oobsize
+ * to prevent byte access */
+ memset(oobbuf, 0xff, mtd->oobsize);
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
+ else
+ memcpy(oobbuf + oobcolumn, oob, thisooblen);
+
+ oobwritten += thisooblen;
+ oob += thisooblen;
+ oobcolumn = 0;
+ } else
+ oobbuf = (u_char *) ffchars;
+
+ this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
+ } else
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+
+ /*
+ * 2 PLANE, MLC, and Flex-OneNAND do not support
+ * write-while-program feature.
+ */
+ if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
+ ONENAND_SET_PREV_BUFFERRAM(this);
+
+ ret = this->wait(mtd, FL_WRITING);
+
+ /* In partial page write we don't update bufferram */
+ onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
+ if (ret) {
+ written -= prevlen;
+ printk(KERN_ERR "%s: write failed %d\n",
+ __func__, ret);
+ break;
+ }
+
+ if (written == len) {
+ /* Only check verify write turn on */
+ ret = onenand_verify(mtd, buf - len, to - len, len);
+ if (ret)
+ printk(KERN_ERR "%s: verify failed %d\n",
+ __func__, ret);
+ break;
+ }
+
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+ }
+
+ this->ongoing = 0;
+ cmd = ONENAND_CMD_PROG;
+
+ /* Exclude 1st OTP and OTP blocks for cache program feature */
+ if (ONENAND_IS_CACHE_PROGRAM(this) &&
+ likely(onenand_block(this, to) != 0) &&
+ ONENAND_IS_4KB_PAGE(this) &&
+ ((written + thislen) < len)) {
+ cmd = ONENAND_CMD_2X_CACHE_PROG;
+ this->ongoing = 1;
+ }
+
+ this->command(mtd, cmd, to, mtd->writesize);
+
+ /*
+ * 2 PLANE, MLC, and Flex-OneNAND wait here
+ */
+ if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
+ ret = this->wait(mtd, FL_WRITING);
+
+ /* In partial page write we don't update bufferram */
+ onenand_update_bufferram(mtd, to, !ret && !subpage);
+ if (ret) {
+ printk(KERN_ERR "%s: write failed %d\n",
+ __func__, ret);
+ break;
+ }
+
+ /* Only check verify write turn on */
+ ret = onenand_verify(mtd, buf, to, thislen);
+ if (ret) {
+ printk(KERN_ERR "%s: verify failed %d\n",
+ __func__, ret);
+ break;
+ }
+
+ written += thislen;
+
+ if (written == len)
+ break;
+
+ } else
+ written += thislen;
+
+ column = 0;
+ prev_subpage = subpage;
+ prev = to;
+ prevlen = thislen;
+ to += thislen;
+ buf += thislen;
+ first = 0;
+ }
+
+ /* In error case, clear all bufferrams */
+ if (written != len)
+ onenand_invalidate_bufferram(mtd, 0, -1);
+
+ ops->retlen = written;
+ ops->oobretlen = oobwritten;
+
+ return ret;
+}
+
+
+/**
+ * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of written bytes
+ * @param buf the data to write
+ * @param mode operation mode
+ *
+ * OneNAND write out-of-band
+ */
+static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ int column, ret = 0, oobsize;
+ int written = 0, oobcmd;
+ u_char *oobbuf;
+ size_t len = ops->ooblen;
+ const u_char *buf = ops->oobbuf;
+ unsigned int mode = ops->mode;
+
+ to += ops->ooboffs;
+
+ pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+ (int)len);
+
+ /* Initialize retlen, in case of early exit */
+ ops->oobretlen = 0;
+
+ if (mode == MTD_OPS_AUTO_OOB)
+ oobsize = mtd->oobavail;
+ else
+ oobsize = mtd->oobsize;
+
+ column = to & (mtd->oobsize - 1);
+
+ if (unlikely(column >= oobsize)) {
+ printk(KERN_ERR "%s: Attempted to start write outside oob\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ /* For compatibility with NAND: Do not allow write past end of page */
+ if (unlikely(column + len > oobsize)) {
+ printk(KERN_ERR "%s: Attempt to write past end of page\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ oobbuf = this->oob_buf;
+
+ oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
+
+ /* Loop until all data write */
+ while (written < len) {
+ int thislen = min_t(int, oobsize, len - written);
+
+ cond_resched();
+
+ this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
+
+ /* We send data to spare ram with oobsize
+ * to prevent byte access */
+ memset(oobbuf, 0xff, mtd->oobsize);
+ if (mode == MTD_OPS_AUTO_OOB)
+ onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
+ else
+ memcpy(oobbuf + column, buf, thislen);
+ this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
+
+ if (ONENAND_IS_4KB_PAGE(this)) {
+ /* Set main area of DataRAM to 0xff*/
+ memset(this->page_buf, 0xff, mtd->writesize);
+ this->write_bufferram(mtd, ONENAND_DATARAM,
+ this->page_buf, 0, mtd->writesize);
+ }
+
+ this->command(mtd, oobcmd, to, mtd->oobsize);
+
+ onenand_update_bufferram(mtd, to, 0);
+ if (ONENAND_IS_2PLANE(this)) {
+ ONENAND_SET_BUFFERRAM1(this);
+ onenand_update_bufferram(mtd, to + this->writesize, 0);
+ }
+
+ ret = this->wait(mtd, FL_WRITING);
+ if (ret) {
+ printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
+ break;
+ }
+
+ ret = onenand_verify_oob(mtd, oobbuf, to);
+ if (ret) {
+ printk(KERN_ERR "%s: verify failed %d\n",
+ __func__, ret);
+ break;
+ }
+
+ written += thislen;
+ if (written == len)
+ break;
+
+ to += mtd->writesize;
+ buf += thislen;
+ column = 0;
+ }
+
+ ops->oobretlen = written;
+
+ return ret;
+}
+
+/**
+ * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
+ * @param mtd: MTD device structure
+ * @param to: offset to write
+ * @param ops: oob operation description structure
+ */
+static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ int ret;
+
+ switch (ops->mode) {
+ case MTD_OPS_PLACE_OOB:
+ case MTD_OPS_AUTO_OOB:
+ break;
+ case MTD_OPS_RAW:
+ /* Not implemented yet */
+ default:
+ return -EINVAL;
+ }
+
+ onenand_get_device(mtd, FL_WRITING);
+ if (ops->datbuf)
+ ret = onenand_write_ops_nolock(mtd, to, ops);
+ else
+ ret = onenand_write_oob_nolock(mtd, to, ops);
+ onenand_release_device(mtd);
+
+ return ret;
+}
+
+/**
+ * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
+ * @param mtd MTD device structure
+ * @param ofs offset from device start
+ * @param allowbbt 1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+
+ /* Return info from the table */
+ return bbm->isbad_bbt(mtd, ofs, allowbbt);
+}
+
+
+static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
+ struct erase_info *instr)
+{
+ struct onenand_chip *this = mtd->priv;
+ loff_t addr = instr->addr;
+ int len = instr->len;
+ unsigned int block_size = (1 << this->erase_shift);
+ int ret = 0;
+
+ while (len) {
+ this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
+ ret = this->wait(mtd, FL_VERIFYING_ERASE);
+ if (ret) {
+ printk(KERN_ERR "%s: Failed verify, block %d\n",
+ __func__, onenand_block(this, addr));
+ instr->fail_addr = addr;
+ return -1;
+ }
+ len -= block_size;
+ addr += block_size;
+ }
+ return 0;
+}
+
+/**
+ * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
+ * @param mtd MTD device structure
+ * @param instr erase instruction
+ * @param region erase region
+ *
+ * Erase one or more blocks up to 64 block at a time
+ */
+static int onenand_multiblock_erase(struct mtd_info *mtd,
+ struct erase_info *instr,
+ unsigned int block_size)
+{
+ struct onenand_chip *this = mtd->priv;
+ loff_t addr = instr->addr;
+ int len = instr->len;
+ int eb_count = 0;
+ int ret = 0;
+ int bdry_block = 0;
+
+ if (ONENAND_IS_DDP(this)) {
+ loff_t bdry_addr = this->chipsize >> 1;
+ if (addr < bdry_addr && (addr + len) > bdry_addr)
+ bdry_block = bdry_addr >> this->erase_shift;
+ }
+
+ /* Pre-check bbs */
+ while (len) {
+ /* Check if we have a bad block, we do not erase bad blocks */
+ if (onenand_block_isbad_nolock(mtd, addr, 0)) {
+ printk(KERN_WARNING "%s: attempt to erase a bad block "
+ "at addr 0x%012llx\n",
+ __func__, (unsigned long long) addr);
+ return -EIO;
+ }
+ len -= block_size;
+ addr += block_size;
+ }
+
+ len = instr->len;
+ addr = instr->addr;
+
+ /* loop over 64 eb batches */
+ while (len) {
+ struct erase_info verify_instr = *instr;
+ int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
+
+ verify_instr.addr = addr;
+ verify_instr.len = 0;
+
+ /* do not cross chip boundary */
+ if (bdry_block) {
+ int this_block = (addr >> this->erase_shift);
+
+ if (this_block < bdry_block) {
+ max_eb_count = min(max_eb_count,
+ (bdry_block - this_block));
+ }
+ }
+
+ eb_count = 0;
+
+ while (len > block_size && eb_count < (max_eb_count - 1)) {
+ this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
+ addr, block_size);
+ onenand_invalidate_bufferram(mtd, addr, block_size);
+
+ ret = this->wait(mtd, FL_PREPARING_ERASE);
+ if (ret) {
+ printk(KERN_ERR "%s: Failed multiblock erase, "
+ "block %d\n", __func__,
+ onenand_block(this, addr));
+ instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
+ return -EIO;
+ }
+
+ len -= block_size;
+ addr += block_size;
+ eb_count++;
+ }
+
+ /* last block of 64-eb series */
+ cond_resched();
+ this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
+ onenand_invalidate_bufferram(mtd, addr, block_size);
+
+ ret = this->wait(mtd, FL_ERASING);
+ /* Check if it is write protected */
+ if (ret) {
+ printk(KERN_ERR "%s: Failed erase, block %d\n",
+ __func__, onenand_block(this, addr));
+ instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
+ return -EIO;
+ }
+
+ len -= block_size;
+ addr += block_size;
+ eb_count++;
+
+ /* verify */
+ verify_instr.len = eb_count * block_size;
+ if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
+ instr->fail_addr = verify_instr.fail_addr;
+ return -EIO;
+ }
+
+ }
+ return 0;
+}
+
+
+/**
+ * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
+ * @param mtd MTD device structure
+ * @param instr erase instruction
+ * @param region erase region
+ * @param block_size erase block size
+ *
+ * Erase one or more blocks one block at a time
+ */
+static int onenand_block_by_block_erase(struct mtd_info *mtd,
+ struct erase_info *instr,
+ struct mtd_erase_region_info *region,
+ unsigned int block_size)
+{
+ struct onenand_chip *this = mtd->priv;
+ loff_t addr = instr->addr;
+ int len = instr->len;
+ loff_t region_end = 0;
+ int ret = 0;
+
+ if (region) {
+ /* region is set for Flex-OneNAND */
+ region_end = region->offset + region->erasesize * region->numblocks;
+ }
+
+ /* Loop through the blocks */
+ while (len) {
+ cond_resched();
+
+ /* Check if we have a bad block, we do not erase bad blocks */
+ if (onenand_block_isbad_nolock(mtd, addr, 0)) {
+ printk(KERN_WARNING "%s: attempt to erase a bad block "
+ "at addr 0x%012llx\n",
+ __func__, (unsigned long long) addr);
+ return -EIO;
+ }
+
+ this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
+
+ onenand_invalidate_bufferram(mtd, addr, block_size);
+
+ ret = this->wait(mtd, FL_ERASING);
+ /* Check, if it is write protected */
+ if (ret) {
+ printk(KERN_ERR "%s: Failed erase, block %d\n",
+ __func__, onenand_block(this, addr));
+ instr->fail_addr = addr;
+ return -EIO;
+ }
+
+ len -= block_size;
+ addr += block_size;
+
+ if (region && addr == region_end) {
+ if (!len)
+ break;
+ region++;
+
+ block_size = region->erasesize;
+ region_end = region->offset + region->erasesize * region->numblocks;
+
+ if (len & (block_size - 1)) {
+ /* FIXME: This should be handled at MTD partitioning level. */
+ printk(KERN_ERR "%s: Unaligned address\n",
+ __func__);
+ return -EIO;
+ }
+ }
+ }
+ return 0;
+}
+
+/**
+ * onenand_erase - [MTD Interface] erase block(s)
+ * @param mtd MTD device structure
+ * @param instr erase instruction
+ *
+ * Erase one or more blocks
+ */
+static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned int block_size;
+ loff_t addr = instr->addr;
+ loff_t len = instr->len;
+ int ret = 0;
+ struct mtd_erase_region_info *region = NULL;
+ loff_t region_offset = 0;
+
+ pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
+ (unsigned long long)instr->addr,
+ (unsigned long long)instr->len);
+
+ if (FLEXONENAND(this)) {
+ /* Find the eraseregion of this address */
+ int i = flexonenand_region(mtd, addr);
+
+ region = &mtd->eraseregions[i];
+ block_size = region->erasesize;
+
+ /* Start address within region must align on block boundary.
+ * Erase region's start offset is always block start address.
+ */
+ region_offset = region->offset;
+ } else
+ block_size = 1 << this->erase_shift;
+
+ /* Start address must align on block boundary */
+ if (unlikely((addr - region_offset) & (block_size - 1))) {
+ printk(KERN_ERR "%s: Unaligned address\n", __func__);
+ return -EINVAL;
+ }
+
+ /* Length must align on block boundary */
+ if (unlikely(len & (block_size - 1))) {
+ printk(KERN_ERR "%s: Length not block aligned\n", __func__);
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_ERASING);
+
+ if (ONENAND_IS_4KB_PAGE(this) || region ||
+ instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
+ /* region is set for Flex-OneNAND (no mb erase) */
+ ret = onenand_block_by_block_erase(mtd, instr,
+ region, block_size);
+ } else {
+ ret = onenand_multiblock_erase(mtd, instr, block_size);
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ onenand_release_device(mtd);
+
+ return ret;
+}
+
+/**
+ * onenand_sync - [MTD Interface] sync
+ * @param mtd MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void onenand_sync(struct mtd_info *mtd)
+{
+ pr_debug("%s: called\n", __func__);
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_SYNCING);
+
+ /* Release it and go back */
+ onenand_release_device(mtd);
+}
+
+/**
+ * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ *
+ * Check whether the block is bad
+ */
+static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
+{
+ int ret;
+
+ onenand_get_device(mtd, FL_READING);
+ ret = onenand_block_isbad_nolock(mtd, ofs, 0);
+ onenand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * onenand_default_block_markbad - [DEFAULT] mark a block bad
+ * @param mtd MTD device structure
+ * @param ofs offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+ */
+static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ u_char buf[2] = {0, 0};
+ struct mtd_oob_ops ops = {
+ .mode = MTD_OPS_PLACE_OOB,
+ .ooblen = 2,
+ .oobbuf = buf,
+ .ooboffs = 0,
+ };
+ int block;
+
+ /* Get block number */
+ block = onenand_block(this, ofs);
+ if (bbm->bbt)
+ bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+ /* We write two bytes, so we don't have to mess with 16-bit access */
+ ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
+ /* FIXME : What to do when marking SLC block in partition
+ * with MLC erasesize? For now, it is not advisable to
+ * create partitions containing both SLC and MLC regions.
+ */
+ return onenand_write_oob_nolock(mtd, ofs, &ops);
+}
+
+/**
+ * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ *
+ * Mark the block as bad
+ */
+static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct onenand_chip *this = mtd->priv;
+ int ret;
+
+ ret = onenand_block_isbad(mtd, ofs);
+ if (ret) {
+ /* If it was bad already, return success and do nothing */
+ if (ret > 0)
+ return 0;
+ return ret;
+ }
+
+ onenand_get_device(mtd, FL_WRITING);
+ ret = this->block_markbad(mtd, ofs);
+ onenand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ * @param len number of bytes to lock or unlock
+ * @param cmd lock or unlock command
+ *
+ * Lock or unlock one or more blocks
+ */
+static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int start, end, block, value, status;
+ int wp_status_mask;
+
+ start = onenand_block(this, ofs);
+ end = onenand_block(this, ofs + len) - 1;
+
+ if (cmd == ONENAND_CMD_LOCK)
+ wp_status_mask = ONENAND_WP_LS;
+ else
+ wp_status_mask = ONENAND_WP_US;
+
+ /* Continuous lock scheme */
+ if (this->options & ONENAND_HAS_CONT_LOCK) {
+ /* Set start block address */
+ this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+ /* Set end block address */
+ this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
+ /* Write lock command */
+ this->command(mtd, cmd, 0, 0);
+
+ /* There's no return value */
+ this->wait(mtd, FL_LOCKING);
+
+ /* Sanity check */
+ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+ & ONENAND_CTRL_ONGO)
+ continue;
+
+ /* Check lock status */
+ status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+ if (!(status & wp_status_mask))
+ printk(KERN_ERR "%s: wp status = 0x%x\n",
+ __func__, status);
+
+ return 0;
+ }
+
+ /* Block lock scheme */
+ for (block = start; block < end + 1; block++) {
+ /* Set block address */
+ value = onenand_block_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+ /* Select DataRAM for DDP */
+ value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+ /* Set start block address */
+ this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+ /* Write lock command */
+ this->command(mtd, cmd, 0, 0);
+
+ /* There's no return value */
+ this->wait(mtd, FL_LOCKING);
+
+ /* Sanity check */
+ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+ & ONENAND_CTRL_ONGO)
+ continue;
+
+ /* Check lock status */
+ status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+ if (!(status & wp_status_mask))
+ printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
+ __func__, block, status);
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_lock - [MTD Interface] Lock block(s)
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ * @param len number of bytes to unlock
+ *
+ * Lock one or more blocks
+ */
+static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ int ret;
+
+ onenand_get_device(mtd, FL_LOCKING);
+ ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
+ onenand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * onenand_unlock - [MTD Interface] Unlock block(s)
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ * @param len number of bytes to unlock
+ *
+ * Unlock one or more blocks
+ */
+static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ int ret;
+
+ onenand_get_device(mtd, FL_LOCKING);
+ ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+ onenand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * onenand_check_lock_status - [OneNAND Interface] Check lock status
+ * @param this onenand chip data structure
+ *
+ * Check lock status
+ */
+static int onenand_check_lock_status(struct onenand_chip *this)
+{
+ unsigned int value, block, status;
+ unsigned int end;
+
+ end = this->chipsize >> this->erase_shift;
+ for (block = 0; block < end; block++) {
+ /* Set block address */
+ value = onenand_block_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+ /* Select DataRAM for DDP */
+ value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+ /* Set start block address */
+ this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+
+ /* Check lock status */
+ status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+ if (!(status & ONENAND_WP_US)) {
+ printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
+ __func__, block, status);
+ return 0;
+ }
+ }
+
+ return 1;
+}
+
+/**
+ * onenand_unlock_all - [OneNAND Interface] unlock all blocks
+ * @param mtd MTD device structure
+ *
+ * Unlock all blocks
+ */
+static void onenand_unlock_all(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ loff_t ofs = 0;
+ loff_t len = mtd->size;
+
+ if (this->options & ONENAND_HAS_UNLOCK_ALL) {
+ /* Set start block address */
+ this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+ /* Write unlock command */
+ this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
+
+ /* There's no return value */
+ this->wait(mtd, FL_LOCKING);
+
+ /* Sanity check */
+ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+ & ONENAND_CTRL_ONGO)
+ continue;
+
+ /* Don't check lock status */
+ if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
+ return;
+
+ /* Check lock status */
+ if (onenand_check_lock_status(this))
+ return;
+
+ /* Workaround for all block unlock in DDP */
+ if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
+ /* All blocks on another chip */
+ ofs = this->chipsize >> 1;
+ len = this->chipsize >> 1;
+ }
+ }
+
+ onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+}
+
+#ifdef CONFIG_MTD_ONENAND_OTP
+
+/**
+ * onenand_otp_command - Send OTP specific command to OneNAND device
+ * @param mtd MTD device structure
+ * @param cmd the command to be sent
+ * @param addr offset to read from or write to
+ * @param len number of bytes to read or write
+ */
+static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
+ size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ int value, block, page;
+
+ /* Address translation */
+ switch (cmd) {
+ case ONENAND_CMD_OTP_ACCESS:
+ block = (int) (addr >> this->erase_shift);
+ page = -1;
+ break;
+
+ default:
+ block = (int) (addr >> this->erase_shift);
+ page = (int) (addr >> this->page_shift);
+
+ if (ONENAND_IS_2PLANE(this)) {
+ /* Make the even block number */
+ block &= ~1;
+ /* Is it the odd plane? */
+ if (addr & this->writesize)
+ block++;
+ page >>= 1;
+ }
+ page &= this->page_mask;
+ break;
+ }
+
+ if (block != -1) {
+ /* Write 'DFS, FBA' of Flash */
+ value = onenand_block_address(this, block);
+ this->write_word(value, this->base +
+ ONENAND_REG_START_ADDRESS1);
+ }
+
+ if (page != -1) {
+ /* Now we use page size operation */
+ int sectors = 4, count = 4;
+ int dataram;
+
+ switch (cmd) {
+ default:
+ if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
+ cmd = ONENAND_CMD_2X_PROG;
+ dataram = ONENAND_CURRENT_BUFFERRAM(this);
+ break;
+ }
+
+ /* Write 'FPA, FSA' of Flash */
+ value = onenand_page_address(page, sectors);
+ this->write_word(value, this->base +
+ ONENAND_REG_START_ADDRESS8);
+
+ /* Write 'BSA, BSC' of DataRAM */
+ value = onenand_buffer_address(dataram, sectors, count);
+ this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
+ }
+
+ /* Interrupt clear */
+ this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
+
+ /* Write command */
+ this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
+
+ return 0;
+}
+
+/**
+ * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of written bytes
+ * @param buf the data to write
+ *
+ * OneNAND write out-of-band only for OTP
+ */
+static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ int column, ret = 0, oobsize;
+ int written = 0;
+ u_char *oobbuf;
+ size_t len = ops->ooblen;
+ const u_char *buf = ops->oobbuf;
+ int block, value, status;
+
+ to += ops->ooboffs;
+
+ /* Initialize retlen, in case of early exit */
+ ops->oobretlen = 0;
+
+ oobsize = mtd->oobsize;
+
+ column = to & (mtd->oobsize - 1);
+
+ oobbuf = this->oob_buf;
+
+ /* Loop until all data write */
+ while (written < len) {
+ int thislen = min_t(int, oobsize, len - written);
+
+ cond_resched();
+
+ block = (int) (to >> this->erase_shift);
+ /*
+ * Write 'DFS, FBA' of Flash
+ * Add: F100h DQ=DFS, FBA
+ */
+
+ value = onenand_block_address(this, block);
+ this->write_word(value, this->base +
+ ONENAND_REG_START_ADDRESS1);
+
+ /*
+ * Select DataRAM for DDP
+ * Add: F101h DQ=DBS
+ */
+
+ value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base +
+ ONENAND_REG_START_ADDRESS2);
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+
+ /*
+ * Enter OTP access mode
+ */
+ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+ this->wait(mtd, FL_OTPING);
+
+ /* We send data to spare ram with oobsize
+ * to prevent byte access */
+ memcpy(oobbuf + column, buf, thislen);
+
+ /*
+ * Write Data into DataRAM
+ * Add: 8th Word
+ * in sector0/spare/page0
+ * DQ=XXFCh
+ */
+ this->write_bufferram(mtd, ONENAND_SPARERAM,
+ oobbuf, 0, mtd->oobsize);
+
+ onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
+ onenand_update_bufferram(mtd, to, 0);
+ if (ONENAND_IS_2PLANE(this)) {
+ ONENAND_SET_BUFFERRAM1(this);
+ onenand_update_bufferram(mtd, to + this->writesize, 0);
+ }
+
+ ret = this->wait(mtd, FL_WRITING);
+ if (ret) {
+ printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
+ break;
+ }
+
+ /* Exit OTP access mode */
+ this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+ this->wait(mtd, FL_RESETING);
+
+ status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+ status &= 0x60;
+
+ if (status == 0x60) {
+ printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+ printk(KERN_DEBUG "1st Block\tLOCKED\n");
+ printk(KERN_DEBUG "OTP Block\tLOCKED\n");
+ } else if (status == 0x20) {
+ printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+ printk(KERN_DEBUG "1st Block\tLOCKED\n");
+ printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
+ } else if (status == 0x40) {
+ printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+ printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
+ printk(KERN_DEBUG "OTP Block\tLOCKED\n");
+ } else {
+ printk(KERN_DEBUG "Reboot to check\n");
+ }
+
+ written += thislen;
+ if (written == len)
+ break;
+
+ to += mtd->writesize;
+ buf += thislen;
+ column = 0;
+ }
+
+ ops->oobretlen = written;
+
+ return ret;
+}
+
+/* Internal OTP operation */
+typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
+ size_t *retlen, u_char *buf);
+
+/**
+ * do_otp_read - [DEFAULT] Read OTP block area
+ * @param mtd MTD device structure
+ * @param from The offset to read
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of readbytes
+ * @param buf the databuffer to put/get data
+ *
+ * Read OTP block area.
+ */
+static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_oob_ops ops = {
+ .len = len,
+ .ooblen = 0,
+ .datbuf = buf,
+ .oobbuf = NULL,
+ };
+ int ret;
+
+ /* Enter OTP access mode */
+ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+ this->wait(mtd, FL_OTPING);
+
+ ret = ONENAND_IS_4KB_PAGE(this) ?
+ onenand_mlc_read_ops_nolock(mtd, from, &ops) :
+ onenand_read_ops_nolock(mtd, from, &ops);
+
+ /* Exit OTP access mode */
+ this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+ this->wait(mtd, FL_RESETING);
+
+ return ret;
+}
+
+/**
+ * do_otp_write - [DEFAULT] Write OTP block area
+ * @param mtd MTD device structure
+ * @param to The offset to write
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of write bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Write OTP block area.
+ */
+static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned char *pbuf = buf;
+ int ret;
+ struct mtd_oob_ops ops;
+
+ /* Force buffer page aligned */
+ if (len < mtd->writesize) {
+ memcpy(this->page_buf, buf, len);
+ memset(this->page_buf + len, 0xff, mtd->writesize - len);
+ pbuf = this->page_buf;
+ len = mtd->writesize;
+ }
+
+ /* Enter OTP access mode */
+ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+ this->wait(mtd, FL_OTPING);
+
+ ops.len = len;
+ ops.ooblen = 0;
+ ops.datbuf = pbuf;
+ ops.oobbuf = NULL;
+ ret = onenand_write_ops_nolock(mtd, to, &ops);
+ *retlen = ops.retlen;
+
+ /* Exit OTP access mode */
+ this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+ this->wait(mtd, FL_RESETING);
+
+ return ret;
+}
+
+/**
+ * do_otp_lock - [DEFAULT] Lock OTP block area
+ * @param mtd MTD device structure
+ * @param from The offset to lock
+ * @param len number of bytes to lock
+ * @param retlen pointer to variable to store the number of lock bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Lock OTP block area.
+ */
+static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_oob_ops ops;
+ int ret;
+
+ if (FLEXONENAND(this)) {
+
+ /* Enter OTP access mode */
+ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+ this->wait(mtd, FL_OTPING);
+ /*
+ * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
+ * main area of page 49.
+ */
+ ops.len = mtd->writesize;
+ ops.ooblen = 0;
+ ops.datbuf = buf;
+ ops.oobbuf = NULL;
+ ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
+ *retlen = ops.retlen;
+
+ /* Exit OTP access mode */
+ this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+ this->wait(mtd, FL_RESETING);
+ } else {
+ ops.mode = MTD_OPS_PLACE_OOB;
+ ops.ooblen = len;
+ ops.oobbuf = buf;
+ ops.ooboffs = 0;
+ ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
+ *retlen = ops.oobretlen;
+ }
+
+ return ret;
+}
+
+/**
+ * onenand_otp_walk - [DEFAULT] Handle OTP operation
+ * @param mtd MTD device structure
+ * @param from The offset to read/write
+ * @param len number of bytes to read/write
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put/get data
+ * @param action do given action
+ * @param mode specify user and factory
+ *
+ * Handle OTP operation.
+ */
+static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf,
+ otp_op_t action, int mode)
+{
+ struct onenand_chip *this = mtd->priv;
+ int otp_pages;
+ int density;
+ int ret = 0;
+
+ *retlen = 0;
+
+ density = onenand_get_density(this->device_id);
+ if (density < ONENAND_DEVICE_DENSITY_512Mb)
+ otp_pages = 20;
+ else
+ otp_pages = 50;
+
+ if (mode == MTD_OTP_FACTORY) {
+ from += mtd->writesize * otp_pages;
+ otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
+ }
+
+ /* Check User/Factory boundary */
+ if (mode == MTD_OTP_USER) {
+ if (mtd->writesize * otp_pages < from + len)
+ return 0;
+ } else {
+ if (mtd->writesize * otp_pages < len)
+ return 0;
+ }
+
+ onenand_get_device(mtd, FL_OTPING);
+ while (len > 0 && otp_pages > 0) {
+ if (!action) { /* OTP Info functions */
+ struct otp_info *otpinfo;
+
+ len -= sizeof(struct otp_info);
+ if (len <= 0) {
+ ret = -ENOSPC;
+ break;
+ }
+
+ otpinfo = (struct otp_info *) buf;
+ otpinfo->start = from;
+ otpinfo->length = mtd->writesize;
+ otpinfo->locked = 0;
+
+ from += mtd->writesize;
+ buf += sizeof(struct otp_info);
+ *retlen += sizeof(struct otp_info);
+ } else {
+ size_t tmp_retlen;
+
+ ret = action(mtd, from, len, &tmp_retlen, buf);
+ if (ret)
+ break;
+
+ buf += tmp_retlen;
+ len -= tmp_retlen;
+ *retlen += tmp_retlen;
+
+ }
+ otp_pages--;
+ }
+ onenand_release_device(mtd);
+
+ return ret;
+}
+
+/**
+ * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
+ * @param mtd MTD device structure
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Read factory OTP info.
+ */
+static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
+ size_t *retlen, struct otp_info *buf)
+{
+ return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
+ MTD_OTP_FACTORY);
+}
+
+/**
+ * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
+ * @param mtd MTD device structure
+ * @param from The offset to read
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Read factory OTP area.
+ */
+static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
+ size_t len, size_t *retlen, u_char *buf)
+{
+ return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
+}
+
+/**
+ * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
+ * @param mtd MTD device structure
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param len number of bytes to read
+ * @param buf the databuffer to put/get data
+ *
+ * Read user OTP info.
+ */
+static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
+ size_t *retlen, struct otp_info *buf)
+{
+ return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
+ MTD_OTP_USER);
+}
+
+/**
+ * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
+ * @param mtd MTD device structure
+ * @param from The offset to read
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Read user OTP area.
+ */
+static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
+ size_t len, size_t *retlen, u_char *buf)
+{
+ return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
+}
+
+/**
+ * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
+ * @param mtd MTD device structure
+ * @param from The offset to write
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of write bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Write user OTP area.
+ */
+static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
+ size_t len, size_t *retlen, u_char *buf)
+{
+ return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
+}
+
+/**
+ * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
+ * @param mtd MTD device structure
+ * @param from The offset to lock
+ * @param len number of bytes to unlock
+ *
+ * Write lock mark on spare area in page 0 in OTP block
+ */
+static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
+ size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
+ size_t retlen;
+ int ret;
+ unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
+
+ memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
+ : mtd->oobsize);
+ /*
+ * Write lock mark to 8th word of sector0 of page0 of the spare0.
+ * We write 16 bytes spare area instead of 2 bytes.
+ * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
+ * main area of page 49.
+ */
+
+ from = 0;
+ len = FLEXONENAND(this) ? mtd->writesize : 16;
+
+ /*
+ * Note: OTP lock operation
+ * OTP block : 0xXXFC XX 1111 1100
+ * 1st block : 0xXXF3 (If chip support) XX 1111 0011
+ * Both : 0xXXF0 (If chip support) XX 1111 0000
+ */
+ if (FLEXONENAND(this))
+ otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
+
+ /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
+ if (otp == 1)
+ buf[otp_lock_offset] = 0xFC;
+ else if (otp == 2)
+ buf[otp_lock_offset] = 0xF3;
+ else if (otp == 3)
+ buf[otp_lock_offset] = 0xF0;
+ else if (otp != 0)
+ printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
+
+ ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
+
+ return ret ? : retlen;
+}
+
+#endif /* CONFIG_MTD_ONENAND_OTP */
+
+/**
+ * onenand_check_features - Check and set OneNAND features
+ * @param mtd MTD data structure
+ *
+ * Check and set OneNAND features
+ * - lock scheme
+ * - two plane
+ */
+static void onenand_check_features(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned int density, process, numbufs;
+
+ /* Lock scheme depends on density and process */
+ density = onenand_get_density(this->device_id);
+ process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
+ numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
+
+ /* Lock scheme */
+ switch (density) {
+ case ONENAND_DEVICE_DENSITY_4Gb:
+ if (ONENAND_IS_DDP(this))
+ this->options |= ONENAND_HAS_2PLANE;
+ else if (numbufs == 1) {
+ this->options |= ONENAND_HAS_4KB_PAGE;
+ this->options |= ONENAND_HAS_CACHE_PROGRAM;
+ /*
+ * There are two different 4KiB pagesize chips
+ * and no way to detect it by H/W config values.
+ *
+ * To detect the correct NOP for each chips,
+ * It should check the version ID as workaround.
+ *
+ * Now it has as following
+ * KFM4G16Q4M has NOP 4 with version ID 0x0131
+ * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
+ */
+ if ((this->version_id & 0xf) == 0xe)
+ this->options |= ONENAND_HAS_NOP_1;
+ }
+
+ case ONENAND_DEVICE_DENSITY_2Gb:
+ /* 2Gb DDP does not have 2 plane */
+ if (!ONENAND_IS_DDP(this))
+ this->options |= ONENAND_HAS_2PLANE;
+ this->options |= ONENAND_HAS_UNLOCK_ALL;
+
+ case ONENAND_DEVICE_DENSITY_1Gb:
+ /* A-Die has all block unlock */
+ if (process)
+ this->options |= ONENAND_HAS_UNLOCK_ALL;
+ break;
+
+ default:
+ /* Some OneNAND has continuous lock scheme */
+ if (!process)
+ this->options |= ONENAND_HAS_CONT_LOCK;
+ break;
+ }
+
+ /* The MLC has 4KiB pagesize. */
+ if (ONENAND_IS_MLC(this))
+ this->options |= ONENAND_HAS_4KB_PAGE;
+
+ if (ONENAND_IS_4KB_PAGE(this))
+ this->options &= ~ONENAND_HAS_2PLANE;
+
+ if (FLEXONENAND(this)) {
+ this->options &= ~ONENAND_HAS_CONT_LOCK;
+ this->options |= ONENAND_HAS_UNLOCK_ALL;
+ }
+
+ if (this->options & ONENAND_HAS_CONT_LOCK)
+ printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
+ if (this->options & ONENAND_HAS_UNLOCK_ALL)
+ printk(KERN_DEBUG "Chip support all block unlock\n");
+ if (this->options & ONENAND_HAS_2PLANE)
+ printk(KERN_DEBUG "Chip has 2 plane\n");
+ if (this->options & ONENAND_HAS_4KB_PAGE)
+ printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
+ if (this->options & ONENAND_HAS_CACHE_PROGRAM)
+ printk(KERN_DEBUG "Chip has cache program feature\n");
+}
+
+/**
+ * onenand_print_device_info - Print device & version ID
+ * @param device device ID
+ * @param version version ID
+ *
+ * Print device & version ID
+ */
+static void onenand_print_device_info(int device, int version)
+{
+ int vcc, demuxed, ddp, density, flexonenand;
+
+ vcc = device & ONENAND_DEVICE_VCC_MASK;
+ demuxed = device & ONENAND_DEVICE_IS_DEMUX;
+ ddp = device & ONENAND_DEVICE_IS_DDP;
+ density = onenand_get_density(device);
+ flexonenand = device & DEVICE_IS_FLEXONENAND;
+ printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
+ demuxed ? "" : "Muxed ",
+ flexonenand ? "Flex-" : "",
+ ddp ? "(DDP)" : "",
+ (16 << density),
+ vcc ? "2.65/3.3" : "1.8",
+ device);
+ printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
+}
+
+static const struct onenand_manufacturers onenand_manuf_ids[] = {
+ {ONENAND_MFR_SAMSUNG, "Samsung"},
+ {ONENAND_MFR_NUMONYX, "Numonyx"},
+};
+
+/**
+ * onenand_check_maf - Check manufacturer ID
+ * @param manuf manufacturer ID
+ *
+ * Check manufacturer ID
+ */
+static int onenand_check_maf(int manuf)
+{
+ int size = ARRAY_SIZE(onenand_manuf_ids);
+ char *name;
+ int i;
+
+ for (i = 0; i < size; i++)
+ if (manuf == onenand_manuf_ids[i].id)
+ break;
+
+ if (i < size)
+ name = onenand_manuf_ids[i].name;
+ else
+ name = "Unknown";
+
+ printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
+
+ return (i == size);
+}
+
+/**
+* flexonenand_get_boundary - Reads the SLC boundary
+* @param onenand_info - onenand info structure
+**/
+static int flexonenand_get_boundary(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned die, bdry;
+ int syscfg, locked;
+
+ /* Disable ECC */
+ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+ this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
+
+ for (die = 0; die < this->dies; die++) {
+ this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
+ this->wait(mtd, FL_SYNCING);
+
+ this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
+ this->wait(mtd, FL_READING);
+
+ bdry = this->read_word(this->base + ONENAND_DATARAM);
+ if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
+ locked = 0;
+ else
+ locked = 1;
+ this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
+
+ this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+ this->wait(mtd, FL_RESETING);
+
+ printk(KERN_INFO "Die %d boundary: %d%s\n", die,
+ this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
+ }
+
+ /* Enable ECC */
+ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+ return 0;
+}
+
+/**
+ * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
+ * boundary[], diesize[], mtd->size, mtd->erasesize
+ * @param mtd - MTD device structure
+ */
+static void flexonenand_get_size(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int die, i, eraseshift, density;
+ int blksperdie, maxbdry;
+ loff_t ofs;
+
+ density = onenand_get_density(this->device_id);
+ blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
+ blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
+ maxbdry = blksperdie - 1;
+ eraseshift = this->erase_shift - 1;
+
+ mtd->numeraseregions = this->dies << 1;
+
+ /* This fills up the device boundary */
+ flexonenand_get_boundary(mtd);
+ die = ofs = 0;
+ i = -1;
+ for (; die < this->dies; die++) {
+ if (!die || this->boundary[die-1] != maxbdry) {
+ i++;
+ mtd->eraseregions[i].offset = ofs;
+ mtd->eraseregions[i].erasesize = 1 << eraseshift;
+ mtd->eraseregions[i].numblocks =
+ this->boundary[die] + 1;
+ ofs += mtd->eraseregions[i].numblocks << eraseshift;
+ eraseshift++;
+ } else {
+ mtd->numeraseregions -= 1;
+ mtd->eraseregions[i].numblocks +=
+ this->boundary[die] + 1;
+ ofs += (this->boundary[die] + 1) << (eraseshift - 1);
+ }
+ if (this->boundary[die] != maxbdry) {
+ i++;
+ mtd->eraseregions[i].offset = ofs;
+ mtd->eraseregions[i].erasesize = 1 << eraseshift;
+ mtd->eraseregions[i].numblocks = maxbdry ^
+ this->boundary[die];
+ ofs += mtd->eraseregions[i].numblocks << eraseshift;
+ eraseshift--;
+ } else
+ mtd->numeraseregions -= 1;
+ }
+
+ /* Expose MLC erase size except when all blocks are SLC */
+ mtd->erasesize = 1 << this->erase_shift;
+ if (mtd->numeraseregions == 1)
+ mtd->erasesize >>= 1;
+
+ printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
+ for (i = 0; i < mtd->numeraseregions; i++)
+ printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
+ " numblocks: %04u]\n",
+ (unsigned int) mtd->eraseregions[i].offset,
+ mtd->eraseregions[i].erasesize,
+ mtd->eraseregions[i].numblocks);
+
+ for (die = 0, mtd->size = 0; die < this->dies; die++) {
+ this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
+ this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
+ << (this->erase_shift - 1);
+ mtd->size += this->diesize[die];
+ }
+}
+
+/**
+ * flexonenand_check_blocks_erased - Check if blocks are erased
+ * @param mtd_info - mtd info structure
+ * @param start - first erase block to check
+ * @param end - last erase block to check
+ *
+ * Converting an unerased block from MLC to SLC
+ * causes byte values to change. Since both data and its ECC
+ * have changed, reads on the block give uncorrectable error.
+ * This might lead to the block being detected as bad.
+ *
+ * Avoid this by ensuring that the block to be converted is
+ * erased.
+ */
+static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
+{
+ struct onenand_chip *this = mtd->priv;
+ int i, ret;
+ int block;
+ struct mtd_oob_ops ops = {
+ .mode = MTD_OPS_PLACE_OOB,
+ .ooboffs = 0,
+ .ooblen = mtd->oobsize,
+ .datbuf = NULL,
+ .oobbuf = this->oob_buf,
+ };
+ loff_t addr;
+
+ printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
+
+ for (block = start; block <= end; block++) {
+ addr = flexonenand_addr(this, block);
+ if (onenand_block_isbad_nolock(mtd, addr, 0))
+ continue;
+
+ /*
+ * Since main area write results in ECC write to spare,
+ * it is sufficient to check only ECC bytes for change.
+ */
+ ret = onenand_read_oob_nolock(mtd, addr, &ops);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < mtd->oobsize; i++)
+ if (this->oob_buf[i] != 0xff)
+ break;
+
+ if (i != mtd->oobsize) {
+ printk(KERN_WARNING "%s: Block %d not erased.\n",
+ __func__, block);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * flexonenand_set_boundary - Writes the SLC boundary
+ * @param mtd - mtd info structure
+ */
+static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
+ int boundary, int lock)
+{
+ struct onenand_chip *this = mtd->priv;
+ int ret, density, blksperdie, old, new, thisboundary;
+ loff_t addr;
+
+ /* Change only once for SDP Flex-OneNAND */
+ if (die && (!ONENAND_IS_DDP(this)))
+ return 0;
+
+ /* boundary value of -1 indicates no required change */
+ if (boundary < 0 || boundary == this->boundary[die])
+ return 0;
+
+ density = onenand_get_density(this->device_id);
+ blksperdie = ((16 << density) << 20) >> this->erase_shift;
+ blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
+
+ if (boundary >= blksperdie) {
+ printk(KERN_ERR "%s: Invalid boundary value. "
+ "Boundary not changed.\n", __func__);
+ return -EINVAL;
+ }
+
+ /* Check if converting blocks are erased */
+ old = this->boundary[die] + (die * this->density_mask);
+ new = boundary + (die * this->density_mask);
+ ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
+ if (ret) {
+ printk(KERN_ERR "%s: Please erase blocks "
+ "before boundary change\n", __func__);
+ return ret;
+ }
+
+ this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
+ this->wait(mtd, FL_SYNCING);
+
+ /* Check is boundary is locked */
+ this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
+ this->wait(mtd, FL_READING);
+
+ thisboundary = this->read_word(this->base + ONENAND_DATARAM);
+ if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
+ printk(KERN_ERR "%s: boundary locked\n", __func__);
+ ret = 1;
+ goto out;
+ }
+
+ printk(KERN_INFO "Changing die %d boundary: %d%s\n",
+ die, boundary, lock ? "(Locked)" : "(Unlocked)");
+
+ addr = die ? this->diesize[0] : 0;
+
+ boundary &= FLEXONENAND_PI_MASK;
+ boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
+
+ this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
+ ret = this->wait(mtd, FL_ERASING);
+ if (ret) {
+ printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
+ __func__, die);
+ goto out;
+ }
+
+ this->write_word(boundary, this->base + ONENAND_DATARAM);
+ this->command(mtd, ONENAND_CMD_PROG, addr, 0);
+ ret = this->wait(mtd, FL_WRITING);
+ if (ret) {
+ printk(KERN_ERR "%s: Failed PI write for Die %d\n",
+ __func__, die);
+ goto out;
+ }
+
+ this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
+ ret = this->wait(mtd, FL_WRITING);
+out:
+ this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
+ this->wait(mtd, FL_RESETING);
+ if (!ret)
+ /* Recalculate device size on boundary change*/
+ flexonenand_get_size(mtd);
+
+ return ret;
+}
+
+/**
+ * onenand_chip_probe - [OneNAND Interface] The generic chip probe
+ * @param mtd MTD device structure
+ *
+ * OneNAND detection method:
+ * Compare the values from command with ones from register
+ */
+static int onenand_chip_probe(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int bram_maf_id, bram_dev_id, maf_id, dev_id;
+ int syscfg;
+
+ /* Save system configuration 1 */
+ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+ /* Clear Sync. Burst Read mode to read BootRAM */
+ this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
+
+ /* Send the command for reading device ID from BootRAM */
+ this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
+
+ /* Read manufacturer and device IDs from BootRAM */
+ bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
+ bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
+
+ /* Reset OneNAND to read default register values */
+ this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
+ /* Wait reset */
+ this->wait(mtd, FL_RESETING);
+
+ /* Restore system configuration 1 */
+ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+
+ /* Check manufacturer ID */
+ if (onenand_check_maf(bram_maf_id))
+ return -ENXIO;
+
+ /* Read manufacturer and device IDs from Register */
+ maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
+ dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
+
+ /* Check OneNAND device */
+ if (maf_id != bram_maf_id || dev_id != bram_dev_id)
+ return -ENXIO;
+
+ return 0;
+}
+
+/**
+ * onenand_probe - [OneNAND Interface] Probe the OneNAND device
+ * @param mtd MTD device structure
+ */
+static int onenand_probe(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int dev_id, ver_id;
+ int density;
+ int ret;
+
+ ret = this->chip_probe(mtd);
+ if (ret)
+ return ret;
+
+ /* Device and version IDs from Register */
+ dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
+ ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
+ this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
+
+ /* Flash device information */
+ onenand_print_device_info(dev_id, ver_id);
+ this->device_id = dev_id;
+ this->version_id = ver_id;
+
+ /* Check OneNAND features */
+ onenand_check_features(mtd);
+
+ density = onenand_get_density(dev_id);
+ if (FLEXONENAND(this)) {
+ this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
+ /* Maximum possible erase regions */
+ mtd->numeraseregions = this->dies << 1;
+ mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
+ * (this->dies << 1), GFP_KERNEL);
+ if (!mtd->eraseregions)
+ return -ENOMEM;
+ }
+
+ /*
+ * For Flex-OneNAND, chipsize represents maximum possible device size.
+ * mtd->size represents the actual device size.
+ */
+ this->chipsize = (16 << density) << 20;
+
+ /* OneNAND page size & block size */
+ /* The data buffer size is equal to page size */
+ mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
+ /* We use the full BufferRAM */
+ if (ONENAND_IS_4KB_PAGE(this))
+ mtd->writesize <<= 1;
+
+ mtd->oobsize = mtd->writesize >> 5;
+ /* Pages per a block are always 64 in OneNAND */
+ mtd->erasesize = mtd->writesize << 6;
+ /*
+ * Flex-OneNAND SLC area has 64 pages per block.
+ * Flex-OneNAND MLC area has 128 pages per block.
+ * Expose MLC erase size to find erase_shift and page_mask.
+ */
+ if (FLEXONENAND(this))
+ mtd->erasesize <<= 1;
+
+ this->erase_shift = ffs(mtd->erasesize) - 1;
+ this->page_shift = ffs(mtd->writesize) - 1;
+ this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
+ /* Set density mask. it is used for DDP */
+ if (ONENAND_IS_DDP(this))
+ this->density_mask = this->chipsize >> (this->erase_shift + 1);
+ /* It's real page size */
+ this->writesize = mtd->writesize;
+
+ /* REVISIT: Multichip handling */
+
+ if (FLEXONENAND(this))
+ flexonenand_get_size(mtd);
+ else
+ mtd->size = this->chipsize;
+
+ /*
+ * We emulate the 4KiB page and 256KiB erase block size
+ * But oobsize is still 64 bytes.
+ * It is only valid if you turn on 2X program support,
+ * Otherwise it will be ignored by compiler.
+ */
+ if (ONENAND_IS_2PLANE(this)) {
+ mtd->writesize <<= 1;
+ mtd->erasesize <<= 1;
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
+ * @param mtd MTD device structure
+ */
+static int onenand_suspend(struct mtd_info *mtd)
+{
+ return onenand_get_device(mtd, FL_PM_SUSPENDED);
+}
+
+/**
+ * onenand_resume - [MTD Interface] Resume the OneNAND flash
+ * @param mtd MTD device structure
+ */
+static void onenand_resume(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (this->state == FL_PM_SUSPENDED)
+ onenand_release_device(mtd);
+ else
+ printk(KERN_ERR "%s: resume() called for the chip which is not "
+ "in suspended state\n", __func__);
+}
+
+/**
+ * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
+ * @param mtd MTD device structure
+ * @param maxchips Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values.
+ */
+int onenand_scan(struct mtd_info *mtd, int maxchips)
+{
+ int i, ret;
+ struct onenand_chip *this = mtd->priv;
+
+ if (!this->read_word)
+ this->read_word = onenand_readw;
+ if (!this->write_word)
+ this->write_word = onenand_writew;
+
+ if (!this->command)
+ this->command = onenand_command;
+ if (!this->wait)
+ onenand_setup_wait(mtd);
+ if (!this->bbt_wait)
+ this->bbt_wait = onenand_bbt_wait;
+ if (!this->unlock_all)
+ this->unlock_all = onenand_unlock_all;
+
+ if (!this->chip_probe)
+ this->chip_probe = onenand_chip_probe;
+
+ if (!this->read_bufferram)
+ this->read_bufferram = onenand_read_bufferram;
+ if (!this->write_bufferram)
+ this->write_bufferram = onenand_write_bufferram;
+
+ if (!this->block_markbad)
+ this->block_markbad = onenand_default_block_markbad;
+ if (!this->scan_bbt)
+ this->scan_bbt = onenand_default_bbt;
+
+ if (onenand_probe(mtd))
+ return -ENXIO;
+
+ /* Set Sync. Burst Read after probing */
+ if (this->mmcontrol) {
+ printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
+ this->read_bufferram = onenand_sync_read_bufferram;
+ }
+
+ /* Allocate buffers, if necessary */
+ if (!this->page_buf) {
+ this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
+ if (!this->page_buf)
+ return -ENOMEM;
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+ this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
+ if (!this->verify_buf) {
+ kfree(this->page_buf);
+ return -ENOMEM;
+ }
+#endif
+ this->options |= ONENAND_PAGEBUF_ALLOC;
+ }
+ if (!this->oob_buf) {
+ this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
+ if (!this->oob_buf) {
+ if (this->options & ONENAND_PAGEBUF_ALLOC) {
+ this->options &= ~ONENAND_PAGEBUF_ALLOC;
+ kfree(this->page_buf);
+ }
+ return -ENOMEM;
+ }
+ this->options |= ONENAND_OOBBUF_ALLOC;
+ }
+
+ this->state = FL_READY;
+ init_waitqueue_head(&this->wq);
+ spin_lock_init(&this->chip_lock);
+
+ /*
+ * Allow subpage writes up to oobsize.
+ */
+ switch (mtd->oobsize) {
+ case 128:
+ if (FLEXONENAND(this)) {
+ mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
+ mtd->subpage_sft = 0;
+ } else {
+ mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
+ mtd->subpage_sft = 2;
+ }
+ if (ONENAND_IS_NOP_1(this))
+ mtd->subpage_sft = 0;
+ break;
+ case 64:
+ mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
+ mtd->subpage_sft = 2;
+ break;
+
+ case 32:
+ mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
+ mtd->subpage_sft = 1;
+ break;
+
+ default:
+ printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
+ __func__, mtd->oobsize);
+ mtd->subpage_sft = 0;
+ /* To prevent kernel oops */
+ mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
+ break;
+ }
+
+ this->subpagesize = mtd->writesize >> mtd->subpage_sft;
+
+ /*
+ * The number of bytes available for a client to place data into
+ * the out of band area
+ */
+ ret = mtd_ooblayout_count_freebytes(mtd);
+ if (ret < 0)
+ ret = 0;
+
+ mtd->oobavail = ret;
+
+ mtd->ecc_strength = 1;
+
+ /* Fill in remaining MTD driver data */
+ mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH;
+ mtd->_erase = onenand_erase;
+ mtd->_point = NULL;
+ mtd->_unpoint = NULL;
+ mtd->_read_oob = onenand_read_oob;
+ mtd->_write_oob = onenand_write_oob;
+ mtd->_panic_write = onenand_panic_write;
+#ifdef CONFIG_MTD_ONENAND_OTP
+ mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
+ mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
+ mtd->_get_user_prot_info = onenand_get_user_prot_info;
+ mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
+ mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
+ mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
+#endif
+ mtd->_sync = onenand_sync;
+ mtd->_lock = onenand_lock;
+ mtd->_unlock = onenand_unlock;
+ mtd->_suspend = onenand_suspend;
+ mtd->_resume = onenand_resume;
+ mtd->_block_isbad = onenand_block_isbad;
+ mtd->_block_markbad = onenand_block_markbad;
+ mtd->owner = THIS_MODULE;
+ mtd->writebufsize = mtd->writesize;
+
+ /* Unlock whole block */
+ if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
+ this->unlock_all(mtd);
+
+ ret = this->scan_bbt(mtd);
+ if ((!FLEXONENAND(this)) || ret)
+ return ret;
+
+ /* Change Flex-OneNAND boundaries if required */
+ for (i = 0; i < MAX_DIES; i++)
+ flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
+ flex_bdry[(2 * i) + 1]);
+
+ return 0;
+}
+
+/**
+ * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
+ * @param mtd MTD device structure
+ */
+void onenand_release(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ /* Deregister partitions */
+ mtd_device_unregister(mtd);
+
+ /* Free bad block table memory, if allocated */
+ if (this->bbm) {
+ struct bbm_info *bbm = this->bbm;
+ kfree(bbm->bbt);
+ kfree(this->bbm);
+ }
+ /* Buffers allocated by onenand_scan */
+ if (this->options & ONENAND_PAGEBUF_ALLOC) {
+ kfree(this->page_buf);
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+ kfree(this->verify_buf);
+#endif
+ }
+ if (this->options & ONENAND_OOBBUF_ALLOC)
+ kfree(this->oob_buf);
+ kfree(mtd->eraseregions);
+}
+
+EXPORT_SYMBOL_GPL(onenand_scan);
+EXPORT_SYMBOL_GPL(onenand_release);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Generic OneNAND flash driver code");
diff --git a/drivers/mtd/nand/onenand/onenand_bbt.c b/drivers/mtd/nand/onenand/onenand_bbt.c
new file mode 100644
index 000000000000..dde20487937d
--- /dev/null
+++ b/drivers/mtd/nand/onenand/onenand_bbt.c
@@ -0,0 +1,248 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Bad Block Table support for the OneNAND driver
+ *
+ * Copyright(c) 2005 Samsung Electronics
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * Derived from nand_bbt.c
+ *
+ * TODO:
+ * Split BBT core and chip specific BBT.
+ */
+
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/export.h>
+
+/**
+ * check_short_pattern - [GENERIC] check if a pattern is in the buffer
+ * @param buf the buffer to search
+ * @param len the length of buffer to search
+ * @param paglen the pagelength
+ * @param td search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers. Same as check_pattern, but
+ * no optional empty check and the pattern is expected to start
+ * at offset 0.
+ *
+ */
+static int check_short_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+ int i;
+ uint8_t *p = buf;
+
+ /* Compare the pattern */
+ for (i = 0; i < td->len; i++) {
+ if (p[i] != td->pattern[i])
+ return -1;
+ }
+ return 0;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @param mtd MTD device structure
+ * @param buf temporary buffer
+ * @param bd descriptor for the good/bad block search pattern
+ * @param chip create the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ int i, j, numblocks, len, scanlen;
+ int startblock;
+ loff_t from;
+ size_t readlen, ooblen;
+ struct mtd_oob_ops ops;
+ int rgn;
+
+ printk(KERN_INFO "Scanning device for bad blocks\n");
+
+ len = 2;
+
+ /* We need only read few bytes from the OOB area */
+ scanlen = ooblen = 0;
+ readlen = bd->len;
+
+ /* chip == -1 case only */
+ /* Note that numblocks is 2 * (real numblocks) here;
+ * see i += 2 below as it makses shifting and masking less painful
+ */
+ numblocks = this->chipsize >> (bbm->bbt_erase_shift - 1);
+ startblock = 0;
+ from = 0;
+
+ ops.mode = MTD_OPS_PLACE_OOB;
+ ops.ooblen = readlen;
+ ops.oobbuf = buf;
+ ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
+
+ for (i = startblock; i < numblocks; ) {
+ int ret;
+
+ for (j = 0; j < len; j++) {
+ /* No need to read pages fully,
+ * just read required OOB bytes */
+ ret = onenand_bbt_read_oob(mtd,
+ from + j * this->writesize + bd->offs, &ops);
+
+ /* If it is a initial bad block, just ignore it */
+ if (ret == ONENAND_BBT_READ_FATAL_ERROR)
+ return -EIO;
+
+ if (ret || check_short_pattern(&buf[j * scanlen],
+ scanlen, this->writesize, bd)) {
+ bbm->bbt[i >> 3] |= 0x03 << (i & 0x6);
+ printk(KERN_INFO "OneNAND eraseblock %d is an "
+ "initial bad block\n", i >> 1);
+ mtd->ecc_stats.badblocks++;
+ break;
+ }
+ }
+ i += 2;
+
+ if (FLEXONENAND(this)) {
+ rgn = flexonenand_region(mtd, from);
+ from += mtd->eraseregions[rgn].erasesize;
+ } else
+ from += (1 << bbm->bbt_erase_shift);
+ }
+
+ return 0;
+}
+
+
+/**
+ * onenand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @param mtd MTD device structure
+ * @param bd descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device
+ * for manufacturer / software marked good / bad blocks
+ */
+static inline int onenand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ return create_bbt(mtd, this->page_buf, bd, -1);
+}
+
+/**
+ * onenand_isbad_bbt - [OneNAND Interface] Check if a block is bad
+ * @param mtd MTD device structure
+ * @param offs offset in the device
+ * @param allowbbt allow access to bad block table region
+ */
+static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ int block;
+ uint8_t res;
+
+ /* Get block number * 2 */
+ block = (int) (onenand_block(this, offs) << 1);
+ res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+ pr_debug("onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+ (unsigned int) offs, block >> 1, res);
+
+ switch ((int) res) {
+ case 0x00: return 0;
+ case 0x01: return 1;
+ case 0x02: return allowbbt ? 0 : 1;
+ }
+
+ return 1;
+}
+
+/**
+ * onenand_scan_bbt - [OneNAND Interface] scan, find, read and maybe create bad block table(s)
+ * @param mtd MTD device structure
+ * @param bd descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It is freed
+ * by the onenand_release function.
+ *
+ */
+static int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ int len, ret = 0;
+
+ len = this->chipsize >> (this->erase_shift + 2);
+ /* Allocate memory (2bit per block) and clear the memory bad block table */
+ bbm->bbt = kzalloc(len, GFP_KERNEL);
+ if (!bbm->bbt)
+ return -ENOMEM;
+
+ /* Set the bad block position */
+ bbm->badblockpos = ONENAND_BADBLOCK_POS;
+
+ /* Set erase shift */
+ bbm->bbt_erase_shift = this->erase_shift;
+
+ if (!bbm->isbad_bbt)
+ bbm->isbad_bbt = onenand_isbad_bbt;
+
+ /* Scan the device to build a memory based bad block table */
+ if ((ret = onenand_memory_bbt(mtd, bd))) {
+ printk(KERN_ERR "onenand_scan_bbt: Can't scan flash and build the RAM-based BBT\n");
+ kfree(bbm->bbt);
+ bbm->bbt = NULL;
+ }
+
+ return ret;
+}
+
+/*
+ * Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks.
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr largepage_memorybased = {
+ .options = 0,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern,
+};
+
+/**
+ * onenand_default_bbt - [OneNAND Interface] Select a default bad block table for the device
+ * @param mtd MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the onenand_scan_bbt function
+ */
+int onenand_default_bbt(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm;
+
+ this->bbm = kzalloc(sizeof(struct bbm_info), GFP_KERNEL);
+ if (!this->bbm)
+ return -ENOMEM;
+
+ bbm = this->bbm;
+
+ /* 1KB page has same configuration as 2KB page */
+ if (!bbm->badblock_pattern)
+ bbm->badblock_pattern = &largepage_memorybased;
+
+ return onenand_scan_bbt(mtd, bbm->badblock_pattern);
+}
diff --git a/drivers/mtd/nand/onenand/samsung.c b/drivers/mtd/nand/onenand/samsung.c
new file mode 100644
index 000000000000..2e9d076e445a
--- /dev/null
+++ b/drivers/mtd/nand/onenand/samsung.c
@@ -0,0 +1,1012 @@
+/*
+ * Samsung S3C64XX/S5PC1XX OneNAND driver
+ *
+ * Copyright © 2008-2010 Samsung Electronics
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ * Marek Szyprowski <m.szyprowski@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Implementation:
+ * S3C64XX: emulate the pseudo BufferRAM
+ * S5PC110: use DMA
+ */
+
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+
+#include "samsung.h"
+
+enum soc_type {
+ TYPE_S3C6400,
+ TYPE_S3C6410,
+ TYPE_S5PC110,
+};
+
+#define ONENAND_ERASE_STATUS 0x00
+#define ONENAND_MULTI_ERASE_SET 0x01
+#define ONENAND_ERASE_START 0x03
+#define ONENAND_UNLOCK_START 0x08
+#define ONENAND_UNLOCK_END 0x09
+#define ONENAND_LOCK_START 0x0A
+#define ONENAND_LOCK_END 0x0B
+#define ONENAND_LOCK_TIGHT_START 0x0C
+#define ONENAND_LOCK_TIGHT_END 0x0D
+#define ONENAND_UNLOCK_ALL 0x0E
+#define ONENAND_OTP_ACCESS 0x12
+#define ONENAND_SPARE_ACCESS_ONLY 0x13
+#define ONENAND_MAIN_ACCESS_ONLY 0x14
+#define ONENAND_ERASE_VERIFY 0x15
+#define ONENAND_MAIN_SPARE_ACCESS 0x16
+#define ONENAND_PIPELINE_READ 0x4000
+
+#define MAP_00 (0x0)
+#define MAP_01 (0x1)
+#define MAP_10 (0x2)
+#define MAP_11 (0x3)
+
+#define S3C64XX_CMD_MAP_SHIFT 24
+
+#define S3C6400_FBA_SHIFT 10
+#define S3C6400_FPA_SHIFT 4
+#define S3C6400_FSA_SHIFT 2
+
+#define S3C6410_FBA_SHIFT 12
+#define S3C6410_FPA_SHIFT 6
+#define S3C6410_FSA_SHIFT 4
+
+/* S5PC110 specific definitions */
+#define S5PC110_DMA_SRC_ADDR 0x400
+#define S5PC110_DMA_SRC_CFG 0x404
+#define S5PC110_DMA_DST_ADDR 0x408
+#define S5PC110_DMA_DST_CFG 0x40C
+#define S5PC110_DMA_TRANS_SIZE 0x414
+#define S5PC110_DMA_TRANS_CMD 0x418
+#define S5PC110_DMA_TRANS_STATUS 0x41C
+#define S5PC110_DMA_TRANS_DIR 0x420
+#define S5PC110_INTC_DMA_CLR 0x1004
+#define S5PC110_INTC_ONENAND_CLR 0x1008
+#define S5PC110_INTC_DMA_MASK 0x1024
+#define S5PC110_INTC_ONENAND_MASK 0x1028
+#define S5PC110_INTC_DMA_PEND 0x1044
+#define S5PC110_INTC_ONENAND_PEND 0x1048
+#define S5PC110_INTC_DMA_STATUS 0x1064
+#define S5PC110_INTC_ONENAND_STATUS 0x1068
+
+#define S5PC110_INTC_DMA_TD (1 << 24)
+#define S5PC110_INTC_DMA_TE (1 << 16)
+
+#define S5PC110_DMA_CFG_SINGLE (0x0 << 16)
+#define S5PC110_DMA_CFG_4BURST (0x2 << 16)
+#define S5PC110_DMA_CFG_8BURST (0x3 << 16)
+#define S5PC110_DMA_CFG_16BURST (0x4 << 16)
+
+#define S5PC110_DMA_CFG_INC (0x0 << 8)
+#define S5PC110_DMA_CFG_CNT (0x1 << 8)
+
+#define S5PC110_DMA_CFG_8BIT (0x0 << 0)
+#define S5PC110_DMA_CFG_16BIT (0x1 << 0)
+#define S5PC110_DMA_CFG_32BIT (0x2 << 0)
+
+#define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \
+ S5PC110_DMA_CFG_INC | \
+ S5PC110_DMA_CFG_16BIT)
+#define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \
+ S5PC110_DMA_CFG_INC | \
+ S5PC110_DMA_CFG_32BIT)
+#define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
+ S5PC110_DMA_CFG_INC | \
+ S5PC110_DMA_CFG_32BIT)
+#define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
+ S5PC110_DMA_CFG_INC | \
+ S5PC110_DMA_CFG_16BIT)
+
+#define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18)
+#define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16)
+#define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0)
+
+#define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18)
+#define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17)
+#define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16)
+
+#define S5PC110_DMA_DIR_READ 0x0
+#define S5PC110_DMA_DIR_WRITE 0x1
+
+struct s3c_onenand {
+ struct mtd_info *mtd;
+ struct platform_device *pdev;
+ enum soc_type type;
+ void __iomem *base;
+ void __iomem *ahb_addr;
+ int bootram_command;
+ void *page_buf;
+ void *oob_buf;
+ unsigned int (*mem_addr)(int fba, int fpa, int fsa);
+ unsigned int (*cmd_map)(unsigned int type, unsigned int val);
+ void __iomem *dma_addr;
+ unsigned long phys_base;
+ struct completion complete;
+};
+
+#define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1)))
+#define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr)))
+#define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr)))
+#define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2)))
+
+static struct s3c_onenand *onenand;
+
+static inline int s3c_read_reg(int offset)
+{
+ return readl(onenand->base + offset);
+}
+
+static inline void s3c_write_reg(int value, int offset)
+{
+ writel(value, onenand->base + offset);
+}
+
+static inline int s3c_read_cmd(unsigned int cmd)
+{
+ return readl(onenand->ahb_addr + cmd);
+}
+
+static inline void s3c_write_cmd(int value, unsigned int cmd)
+{
+ writel(value, onenand->ahb_addr + cmd);
+}
+
+#ifdef SAMSUNG_DEBUG
+static void s3c_dump_reg(void)
+{
+ int i;
+
+ for (i = 0; i < 0x400; i += 0x40) {
+ printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
+ (unsigned int) onenand->base + i,
+ s3c_read_reg(i), s3c_read_reg(i + 0x10),
+ s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
+ }
+}
+#endif
+
+static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
+{
+ return (type << S3C64XX_CMD_MAP_SHIFT) | val;
+}
+
+static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
+{
+ return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
+ (fsa << S3C6400_FSA_SHIFT);
+}
+
+static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
+{
+ return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
+ (fsa << S3C6410_FSA_SHIFT);
+}
+
+static void s3c_onenand_reset(void)
+{
+ unsigned long timeout = 0x10000;
+ int stat;
+
+ s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
+ while (1 && timeout--) {
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ if (stat & RST_CMP)
+ break;
+ }
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+ /* Clear interrupt */
+ s3c_write_reg(0x0, INT_ERR_ACK_OFFSET);
+ /* Clear the ECC status */
+ s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET);
+}
+
+static unsigned short s3c_onenand_readw(void __iomem *addr)
+{
+ struct onenand_chip *this = onenand->mtd->priv;
+ struct device *dev = &onenand->pdev->dev;
+ int reg = addr - this->base;
+ int word_addr = reg >> 1;
+ int value;
+
+ /* It's used for probing time */
+ switch (reg) {
+ case ONENAND_REG_MANUFACTURER_ID:
+ return s3c_read_reg(MANUFACT_ID_OFFSET);
+ case ONENAND_REG_DEVICE_ID:
+ return s3c_read_reg(DEVICE_ID_OFFSET);
+ case ONENAND_REG_VERSION_ID:
+ return s3c_read_reg(FLASH_VER_ID_OFFSET);
+ case ONENAND_REG_DATA_BUFFER_SIZE:
+ return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
+ case ONENAND_REG_TECHNOLOGY:
+ return s3c_read_reg(TECH_OFFSET);
+ case ONENAND_REG_SYS_CFG1:
+ return s3c_read_reg(MEM_CFG_OFFSET);
+
+ /* Used at unlock all status */
+ case ONENAND_REG_CTRL_STATUS:
+ return 0;
+
+ case ONENAND_REG_WP_STATUS:
+ return ONENAND_WP_US;
+
+ default:
+ break;
+ }
+
+ /* BootRAM access control */
+ if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) {
+ if (word_addr == 0)
+ return s3c_read_reg(MANUFACT_ID_OFFSET);
+ if (word_addr == 1)
+ return s3c_read_reg(DEVICE_ID_OFFSET);
+ if (word_addr == 2)
+ return s3c_read_reg(FLASH_VER_ID_OFFSET);
+ }
+
+ value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
+ dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
+ word_addr, value);
+ return value;
+}
+
+static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
+{
+ struct onenand_chip *this = onenand->mtd->priv;
+ struct device *dev = &onenand->pdev->dev;
+ unsigned int reg = addr - this->base;
+ unsigned int word_addr = reg >> 1;
+
+ /* It's used for probing time */
+ switch (reg) {
+ case ONENAND_REG_SYS_CFG1:
+ s3c_write_reg(value, MEM_CFG_OFFSET);
+ return;
+
+ case ONENAND_REG_START_ADDRESS1:
+ case ONENAND_REG_START_ADDRESS2:
+ return;
+
+ /* Lock/lock-tight/unlock/unlock_all */
+ case ONENAND_REG_START_BLOCK_ADDRESS:
+ return;
+
+ default:
+ break;
+ }
+
+ /* BootRAM access control */
+ if ((unsigned int)addr < ONENAND_DATARAM) {
+ if (value == ONENAND_CMD_READID) {
+ onenand->bootram_command = 1;
+ return;
+ }
+ if (value == ONENAND_CMD_RESET) {
+ s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
+ onenand->bootram_command = 0;
+ return;
+ }
+ }
+
+ dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
+ word_addr, value);
+
+ s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
+}
+
+static int s3c_onenand_wait(struct mtd_info *mtd, int state)
+{
+ struct device *dev = &onenand->pdev->dev;
+ unsigned int flags = INT_ACT;
+ unsigned int stat, ecc;
+ unsigned long timeout;
+
+ switch (state) {
+ case FL_READING:
+ flags |= BLK_RW_CMP | LOAD_CMP;
+ break;
+ case FL_WRITING:
+ flags |= BLK_RW_CMP | PGM_CMP;
+ break;
+ case FL_ERASING:
+ flags |= BLK_RW_CMP | ERS_CMP;
+ break;
+ case FL_LOCKING:
+ flags |= BLK_RW_CMP;
+ break;
+ default:
+ break;
+ }
+
+ /* The 20 msec is enough */
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (time_before(jiffies, timeout)) {
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ if (stat & flags)
+ break;
+
+ if (state != FL_READING)
+ cond_resched();
+ }
+ /* To get correct interrupt status in timeout case */
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+ /*
+ * In the Spec. it checks the controller status first
+ * However if you get the correct information in case of
+ * power off recovery (POR) test, it should read ECC status first
+ */
+ if (stat & LOAD_CMP) {
+ ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
+ if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
+ dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
+ ecc);
+ mtd->ecc_stats.failed++;
+ return -EBADMSG;
+ }
+ }
+
+ if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
+ dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
+ stat);
+ if (stat & LOCKED_BLK)
+ dev_info(dev, "%s: it's locked error = 0x%04x\n",
+ __func__, stat);
+
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
+ size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned int *m, *s;
+ int fba, fpa, fsa = 0;
+ unsigned int mem_addr, cmd_map_01, cmd_map_10;
+ int i, mcount, scount;
+ int index;
+
+ fba = (int) (addr >> this->erase_shift);
+ fpa = (int) (addr >> this->page_shift);
+ fpa &= this->page_mask;
+
+ mem_addr = onenand->mem_addr(fba, fpa, fsa);
+ cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
+ cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
+
+ switch (cmd) {
+ case ONENAND_CMD_READ:
+ case ONENAND_CMD_READOOB:
+ case ONENAND_CMD_BUFFERRAM:
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+ default:
+ break;
+ }
+
+ index = ONENAND_CURRENT_BUFFERRAM(this);
+
+ /*
+ * Emulate Two BufferRAMs and access with 4 bytes pointer
+ */
+ m = onenand->page_buf;
+ s = onenand->oob_buf;
+
+ if (index) {
+ m += (this->writesize >> 2);
+ s += (mtd->oobsize >> 2);
+ }
+
+ mcount = mtd->writesize >> 2;
+ scount = mtd->oobsize >> 2;
+
+ switch (cmd) {
+ case ONENAND_CMD_READ:
+ /* Main */
+ for (i = 0; i < mcount; i++)
+ *m++ = s3c_read_cmd(cmd_map_01);
+ return 0;
+
+ case ONENAND_CMD_READOOB:
+ s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
+ /* Main */
+ for (i = 0; i < mcount; i++)
+ *m++ = s3c_read_cmd(cmd_map_01);
+
+ /* Spare */
+ for (i = 0; i < scount; i++)
+ *s++ = s3c_read_cmd(cmd_map_01);
+
+ s3c_write_reg(0, TRANS_SPARE_OFFSET);
+ return 0;
+
+ case ONENAND_CMD_PROG:
+ /* Main */
+ for (i = 0; i < mcount; i++)
+ s3c_write_cmd(*m++, cmd_map_01);
+ return 0;
+
+ case ONENAND_CMD_PROGOOB:
+ s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
+
+ /* Main - dummy write */
+ for (i = 0; i < mcount; i++)
+ s3c_write_cmd(0xffffffff, cmd_map_01);
+
+ /* Spare */
+ for (i = 0; i < scount; i++)
+ s3c_write_cmd(*s++, cmd_map_01);
+
+ s3c_write_reg(0, TRANS_SPARE_OFFSET);
+ return 0;
+
+ case ONENAND_CMD_UNLOCK_ALL:
+ s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10);
+ return 0;
+
+ case ONENAND_CMD_ERASE:
+ s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10);
+ return 0;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
+{
+ struct onenand_chip *this = mtd->priv;
+ int index = ONENAND_CURRENT_BUFFERRAM(this);
+ unsigned char *p;
+
+ if (area == ONENAND_DATARAM) {
+ p = onenand->page_buf;
+ if (index == 1)
+ p += this->writesize;
+ } else {
+ p = onenand->oob_buf;
+ if (index == 1)
+ p += mtd->oobsize;
+ }
+
+ return p;
+}
+
+static int onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count)
+{
+ unsigned char *p;
+
+ p = s3c_get_bufferram(mtd, area);
+ memcpy(buffer, p + offset, count);
+ return 0;
+}
+
+static int onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer, int offset,
+ size_t count)
+{
+ unsigned char *p;
+
+ p = s3c_get_bufferram(mtd, area);
+ memcpy(p + offset, buffer, count);
+ return 0;
+}
+
+static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction);
+
+static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
+{
+ void __iomem *base = onenand->dma_addr;
+ int status;
+ unsigned long timeout;
+
+ writel(src, base + S5PC110_DMA_SRC_ADDR);
+ writel(dst, base + S5PC110_DMA_DST_ADDR);
+
+ if (direction == S5PC110_DMA_DIR_READ) {
+ writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
+ writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
+ } else {
+ writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
+ writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
+ }
+
+ writel(count, base + S5PC110_DMA_TRANS_SIZE);
+ writel(direction, base + S5PC110_DMA_TRANS_DIR);
+
+ writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
+
+ /*
+ * There's no exact timeout values at Spec.
+ * In real case it takes under 1 msec.
+ * So 20 msecs are enough.
+ */
+ timeout = jiffies + msecs_to_jiffies(20);
+
+ do {
+ status = readl(base + S5PC110_DMA_TRANS_STATUS);
+ if (status & S5PC110_DMA_TRANS_STATUS_TE) {
+ writel(S5PC110_DMA_TRANS_CMD_TEC,
+ base + S5PC110_DMA_TRANS_CMD);
+ return -EIO;
+ }
+ } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) &&
+ time_before(jiffies, timeout));
+
+ writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
+
+ return 0;
+}
+
+static irqreturn_t s5pc110_onenand_irq(int irq, void *data)
+{
+ void __iomem *base = onenand->dma_addr;
+ int status, cmd = 0;
+
+ status = readl(base + S5PC110_INTC_DMA_STATUS);
+
+ if (likely(status & S5PC110_INTC_DMA_TD))
+ cmd = S5PC110_DMA_TRANS_CMD_TDC;
+
+ if (unlikely(status & S5PC110_INTC_DMA_TE))
+ cmd = S5PC110_DMA_TRANS_CMD_TEC;
+
+ writel(cmd, base + S5PC110_DMA_TRANS_CMD);
+ writel(status, base + S5PC110_INTC_DMA_CLR);
+
+ if (!onenand->complete.done)
+ complete(&onenand->complete);
+
+ return IRQ_HANDLED;
+}
+
+static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
+{
+ void __iomem *base = onenand->dma_addr;
+ int status;
+
+ status = readl(base + S5PC110_INTC_DMA_MASK);
+ if (status) {
+ status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE);
+ writel(status, base + S5PC110_INTC_DMA_MASK);
+ }
+
+ writel(src, base + S5PC110_DMA_SRC_ADDR);
+ writel(dst, base + S5PC110_DMA_DST_ADDR);
+
+ if (direction == S5PC110_DMA_DIR_READ) {
+ writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
+ writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
+ } else {
+ writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
+ writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
+ }
+
+ writel(count, base + S5PC110_DMA_TRANS_SIZE);
+ writel(direction, base + S5PC110_DMA_TRANS_DIR);
+
+ writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
+
+ wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20));
+
+ return 0;
+}
+
+static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset, size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *p;
+ void *buf = (void *) buffer;
+ dma_addr_t dma_src, dma_dst;
+ int err, ofs, page_dma = 0;
+ struct device *dev = &onenand->pdev->dev;
+
+ p = this->base + area;
+ if (ONENAND_CURRENT_BUFFERRAM(this)) {
+ if (area == ONENAND_DATARAM)
+ p += this->writesize;
+ else
+ p += mtd->oobsize;
+ }
+
+ if (offset & 3 || (size_t) buf & 3 ||
+ !onenand->dma_addr || count != mtd->writesize)
+ goto normal;
+
+ /* Handle vmalloc address */
+ if (buf >= high_memory) {
+ struct page *page;
+
+ if (((size_t) buf & PAGE_MASK) !=
+ ((size_t) (buf + count - 1) & PAGE_MASK))
+ goto normal;
+ page = vmalloc_to_page(buf);
+ if (!page)
+ goto normal;
+
+ /* Page offset */
+ ofs = ((size_t) buf & ~PAGE_MASK);
+ page_dma = 1;
+
+ /* DMA routine */
+ dma_src = onenand->phys_base + (p - this->base);
+ dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE);
+ } else {
+ /* DMA routine */
+ dma_src = onenand->phys_base + (p - this->base);
+ dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
+ }
+ if (dma_mapping_error(dev, dma_dst)) {
+ dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count);
+ goto normal;
+ }
+ err = s5pc110_dma_ops(dma_dst, dma_src,
+ count, S5PC110_DMA_DIR_READ);
+
+ if (page_dma)
+ dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE);
+ else
+ dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
+
+ if (!err)
+ return 0;
+
+normal:
+ if (count != mtd->writesize) {
+ /* Copy the bufferram to memory to prevent unaligned access */
+ memcpy(this->page_buf, p, mtd->writesize);
+ p = this->page_buf + offset;
+ }
+
+ memcpy(buffer, p, count);
+
+ return 0;
+}
+
+static int s5pc110_chip_probe(struct mtd_info *mtd)
+{
+ /* Now just return 0 */
+ return 0;
+}
+
+static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
+{
+ unsigned int flags = INT_ACT | LOAD_CMP;
+ unsigned int stat;
+ unsigned long timeout;
+
+ /* The 20 msec is enough */
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (time_before(jiffies, timeout)) {
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ if (stat & flags)
+ break;
+ }
+ /* To get correct interrupt status in timeout case */
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+ if (stat & LD_FAIL_ECC_ERR) {
+ s3c_onenand_reset();
+ return ONENAND_BBT_READ_ERROR;
+ }
+
+ if (stat & LOAD_CMP) {
+ int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
+ if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
+ s3c_onenand_reset();
+ return ONENAND_BBT_READ_ERROR;
+ }
+ }
+
+ return 0;
+}
+
+static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct device *dev = &onenand->pdev->dev;
+ unsigned int block, end;
+ int tmp;
+
+ end = this->chipsize >> this->erase_shift;
+
+ for (block = 0; block < end; block++) {
+ unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
+ tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
+
+ if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
+ dev_err(dev, "block %d is write-protected!\n", block);
+ s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
+ }
+ }
+}
+
+static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
+ size_t len, int cmd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int start, end, start_mem_addr, end_mem_addr;
+
+ start = ofs >> this->erase_shift;
+ start_mem_addr = onenand->mem_addr(start, 0, 0);
+ end = start + (len >> this->erase_shift) - 1;
+ end_mem_addr = onenand->mem_addr(end, 0, 0);
+
+ if (cmd == ONENAND_CMD_LOCK) {
+ s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
+ start_mem_addr));
+ s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
+ end_mem_addr));
+ } else {
+ s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
+ start_mem_addr));
+ s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
+ end_mem_addr));
+ }
+
+ this->wait(mtd, FL_LOCKING);
+}
+
+static void s3c_unlock_all(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ loff_t ofs = 0;
+ size_t len = this->chipsize;
+
+ if (this->options & ONENAND_HAS_UNLOCK_ALL) {
+ /* Write unlock command */
+ this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
+
+ /* No need to check return value */
+ this->wait(mtd, FL_LOCKING);
+
+ /* Workaround for all block unlock in DDP */
+ if (!ONENAND_IS_DDP(this)) {
+ s3c_onenand_check_lock_status(mtd);
+ return;
+ }
+
+ /* All blocks on another chip */
+ ofs = this->chipsize >> 1;
+ len = this->chipsize >> 1;
+ }
+
+ s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+
+ s3c_onenand_check_lock_status(mtd);
+}
+
+static void s3c_onenand_setup(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ onenand->mtd = mtd;
+
+ if (onenand->type == TYPE_S3C6400) {
+ onenand->mem_addr = s3c6400_mem_addr;
+ onenand->cmd_map = s3c64xx_cmd_map;
+ } else if (onenand->type == TYPE_S3C6410) {
+ onenand->mem_addr = s3c6410_mem_addr;
+ onenand->cmd_map = s3c64xx_cmd_map;
+ } else if (onenand->type == TYPE_S5PC110) {
+ /* Use generic onenand functions */
+ this->read_bufferram = s5pc110_read_bufferram;
+ this->chip_probe = s5pc110_chip_probe;
+ return;
+ } else {
+ BUG();
+ }
+
+ this->read_word = s3c_onenand_readw;
+ this->write_word = s3c_onenand_writew;
+
+ this->wait = s3c_onenand_wait;
+ this->bbt_wait = s3c_onenand_bbt_wait;
+ this->unlock_all = s3c_unlock_all;
+ this->command = s3c_onenand_command;
+
+ this->read_bufferram = onenand_read_bufferram;
+ this->write_bufferram = onenand_write_bufferram;
+}
+
+static int s3c_onenand_probe(struct platform_device *pdev)
+{
+ struct onenand_platform_data *pdata;
+ struct onenand_chip *this;
+ struct mtd_info *mtd;
+ struct resource *r;
+ int size, err;
+
+ pdata = dev_get_platdata(&pdev->dev);
+ /* No need to check pdata. the platform data is optional */
+
+ size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
+ mtd = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
+ if (!mtd)
+ return -ENOMEM;
+
+ onenand = devm_kzalloc(&pdev->dev, sizeof(struct s3c_onenand),
+ GFP_KERNEL);
+ if (!onenand)
+ return -ENOMEM;
+
+ this = (struct onenand_chip *) &mtd[1];
+ mtd->priv = this;
+ mtd->dev.parent = &pdev->dev;
+ onenand->pdev = pdev;
+ onenand->type = platform_get_device_id(pdev)->driver_data;
+
+ s3c_onenand_setup(mtd);
+
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ onenand->base = devm_ioremap_resource(&pdev->dev, r);
+ if (IS_ERR(onenand->base))
+ return PTR_ERR(onenand->base);
+
+ onenand->phys_base = r->start;
+
+ /* Set onenand_chip also */
+ this->base = onenand->base;
+
+ /* Use runtime badblock check */
+ this->options |= ONENAND_SKIP_UNLOCK_CHECK;
+
+ if (onenand->type != TYPE_S5PC110) {
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+ onenand->ahb_addr = devm_ioremap_resource(&pdev->dev, r);
+ if (IS_ERR(onenand->ahb_addr))
+ return PTR_ERR(onenand->ahb_addr);
+
+ /* Allocate 4KiB BufferRAM */
+ onenand->page_buf = devm_kzalloc(&pdev->dev, SZ_4K,
+ GFP_KERNEL);
+ if (!onenand->page_buf)
+ return -ENOMEM;
+
+ /* Allocate 128 SpareRAM */
+ onenand->oob_buf = devm_kzalloc(&pdev->dev, 128, GFP_KERNEL);
+ if (!onenand->oob_buf)
+ return -ENOMEM;
+
+ /* S3C doesn't handle subpage write */
+ mtd->subpage_sft = 0;
+ this->subpagesize = mtd->writesize;
+
+ } else { /* S5PC110 */
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+ onenand->dma_addr = devm_ioremap_resource(&pdev->dev, r);
+ if (IS_ERR(onenand->dma_addr))
+ return PTR_ERR(onenand->dma_addr);
+
+ s5pc110_dma_ops = s5pc110_dma_poll;
+ /* Interrupt support */
+ r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
+ if (r) {
+ init_completion(&onenand->complete);
+ s5pc110_dma_ops = s5pc110_dma_irq;
+ err = devm_request_irq(&pdev->dev, r->start,
+ s5pc110_onenand_irq,
+ IRQF_SHARED, "onenand",
+ &onenand);
+ if (err) {
+ dev_err(&pdev->dev, "failed to get irq\n");
+ return err;
+ }
+ }
+ }
+
+ err = onenand_scan(mtd, 1);
+ if (err)
+ return err;
+
+ if (onenand->type != TYPE_S5PC110) {
+ /* S3C doesn't handle subpage write */
+ mtd->subpage_sft = 0;
+ this->subpagesize = mtd->writesize;
+ }
+
+ if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
+ dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
+
+ err = mtd_device_parse_register(mtd, NULL, NULL,
+ pdata ? pdata->parts : NULL,
+ pdata ? pdata->nr_parts : 0);
+ if (err) {
+ dev_err(&pdev->dev, "failed to parse partitions and register the MTD device\n");
+ onenand_release(mtd);
+ return err;
+ }
+
+ platform_set_drvdata(pdev, mtd);
+
+ return 0;
+}
+
+static int s3c_onenand_remove(struct platform_device *pdev)
+{
+ struct mtd_info *mtd = platform_get_drvdata(pdev);
+
+ onenand_release(mtd);
+
+ return 0;
+}
+
+static int s3c_pm_ops_suspend(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct mtd_info *mtd = platform_get_drvdata(pdev);
+ struct onenand_chip *this = mtd->priv;
+
+ this->wait(mtd, FL_PM_SUSPENDED);
+ return 0;
+}
+
+static int s3c_pm_ops_resume(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct mtd_info *mtd = platform_get_drvdata(pdev);
+ struct onenand_chip *this = mtd->priv;
+
+ this->unlock_all(mtd);
+ return 0;
+}
+
+static const struct dev_pm_ops s3c_pm_ops = {
+ .suspend = s3c_pm_ops_suspend,
+ .resume = s3c_pm_ops_resume,
+};
+
+static const struct platform_device_id s3c_onenand_driver_ids[] = {
+ {
+ .name = "s3c6400-onenand",
+ .driver_data = TYPE_S3C6400,
+ }, {
+ .name = "s3c6410-onenand",
+ .driver_data = TYPE_S3C6410,
+ }, {
+ .name = "s5pc110-onenand",
+ .driver_data = TYPE_S5PC110,
+ }, { },
+};
+MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
+
+static struct platform_driver s3c_onenand_driver = {
+ .driver = {
+ .name = "samsung-onenand",
+ .pm = &s3c_pm_ops,
+ },
+ .id_table = s3c_onenand_driver_ids,
+ .probe = s3c_onenand_probe,
+ .remove = s3c_onenand_remove,
+};
+
+module_platform_driver(s3c_onenand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Samsung OneNAND controller support");
diff --git a/drivers/mtd/nand/onenand/samsung.h b/drivers/mtd/nand/onenand/samsung.h
new file mode 100644
index 000000000000..9016dc0136a8
--- /dev/null
+++ b/drivers/mtd/nand/onenand/samsung.h
@@ -0,0 +1,59 @@
+/*
+ * Copyright (C) 2008-2010 Samsung Electronics
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#ifndef __SAMSUNG_ONENAND_H__
+#define __SAMSUNG_ONENAND_H__
+
+/*
+ * OneNAND Controller
+ */
+#define MEM_CFG_OFFSET 0x0000
+#define BURST_LEN_OFFSET 0x0010
+#define MEM_RESET_OFFSET 0x0020
+#define INT_ERR_STAT_OFFSET 0x0030
+#define INT_ERR_MASK_OFFSET 0x0040
+#define INT_ERR_ACK_OFFSET 0x0050
+#define ECC_ERR_STAT_OFFSET 0x0060
+#define MANUFACT_ID_OFFSET 0x0070
+#define DEVICE_ID_OFFSET 0x0080
+#define DATA_BUF_SIZE_OFFSET 0x0090
+#define BOOT_BUF_SIZE_OFFSET 0x00A0
+#define BUF_AMOUNT_OFFSET 0x00B0
+#define TECH_OFFSET 0x00C0
+#define FBA_WIDTH_OFFSET 0x00D0
+#define FPA_WIDTH_OFFSET 0x00E0
+#define FSA_WIDTH_OFFSET 0x00F0
+#define TRANS_SPARE_OFFSET 0x0140
+#define DBS_DFS_WIDTH_OFFSET 0x0160
+#define INT_PIN_ENABLE_OFFSET 0x01A0
+#define ACC_CLOCK_OFFSET 0x01C0
+#define FLASH_VER_ID_OFFSET 0x01F0
+#define FLASH_AUX_CNTRL_OFFSET 0x0300 /* s3c64xx only */
+
+#define ONENAND_MEM_RESET_HOT 0x3
+#define ONENAND_MEM_RESET_COLD 0x2
+#define ONENAND_MEM_RESET_WARM 0x1
+
+#define CACHE_OP_ERR (1 << 13)
+#define RST_CMP (1 << 12)
+#define RDY_ACT (1 << 11)
+#define INT_ACT (1 << 10)
+#define UNSUP_CMD (1 << 9)
+#define LOCKED_BLK (1 << 8)
+#define BLK_RW_CMP (1 << 7)
+#define ERS_CMP (1 << 6)
+#define PGM_CMP (1 << 5)
+#define LOAD_CMP (1 << 4)
+#define ERS_FAIL (1 << 3)
+#define PGM_FAIL (1 << 2)
+#define INT_TO (1 << 1)
+#define LD_FAIL_ECC_ERR (1 << 0)
+
+#define TSRF (1 << 0)
+
+#endif
diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c
deleted file mode 100644
index d1979c7dbe7e..000000000000
--- a/drivers/mtd/nand/pxa3xx_nand.c
+++ /dev/null
@@ -1,2105 +0,0 @@
-/*
- * drivers/mtd/nand/pxa3xx_nand.c
- *
- * Copyright © 2005 Intel Corporation
- * Copyright © 2006 Marvell International Ltd.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * See Documentation/mtd/nand/pxa3xx-nand.txt for more details.
- */
-
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/interrupt.h>
-#include <linux/platform_device.h>
-#include <linux/dmaengine.h>
-#include <linux/dma-mapping.h>
-#include <linux/dma/pxa-dma.h>
-#include <linux/delay.h>
-#include <linux/clk.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
-#include <linux/io.h>
-#include <linux/iopoll.h>
-#include <linux/irq.h>
-#include <linux/slab.h>
-#include <linux/of.h>
-#include <linux/of_device.h>
-#include <linux/platform_data/mtd-nand-pxa3xx.h>
-#include <linux/mfd/syscon.h>
-#include <linux/regmap.h>
-
-#define CHIP_DELAY_TIMEOUT msecs_to_jiffies(200)
-#define NAND_STOP_DELAY msecs_to_jiffies(40)
-#define PAGE_CHUNK_SIZE (2048)
-
-/*
- * Define a buffer size for the initial command that detects the flash device:
- * STATUS, READID and PARAM.
- * ONFI param page is 256 bytes, and there are three redundant copies
- * to be read. JEDEC param page is 512 bytes, and there are also three
- * redundant copies to be read.
- * Hence this buffer should be at least 512 x 3. Let's pick 2048.
- */
-#define INIT_BUFFER_SIZE 2048
-
-/* System control register and bit to enable NAND on some SoCs */
-#define GENCONF_SOC_DEVICE_MUX 0x208
-#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
-
-/* registers and bit definitions */
-#define NDCR (0x00) /* Control register */
-#define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */
-#define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */
-#define NDSR (0x14) /* Status Register */
-#define NDPCR (0x18) /* Page Count Register */
-#define NDBDR0 (0x1C) /* Bad Block Register 0 */
-#define NDBDR1 (0x20) /* Bad Block Register 1 */
-#define NDECCCTRL (0x28) /* ECC control */
-#define NDDB (0x40) /* Data Buffer */
-#define NDCB0 (0x48) /* Command Buffer0 */
-#define NDCB1 (0x4C) /* Command Buffer1 */
-#define NDCB2 (0x50) /* Command Buffer2 */
-
-#define NDCR_SPARE_EN (0x1 << 31)
-#define NDCR_ECC_EN (0x1 << 30)
-#define NDCR_DMA_EN (0x1 << 29)
-#define NDCR_ND_RUN (0x1 << 28)
-#define NDCR_DWIDTH_C (0x1 << 27)
-#define NDCR_DWIDTH_M (0x1 << 26)
-#define NDCR_PAGE_SZ (0x1 << 24)
-#define NDCR_NCSX (0x1 << 23)
-#define NDCR_ND_MODE (0x3 << 21)
-#define NDCR_NAND_MODE (0x0)
-#define NDCR_CLR_PG_CNT (0x1 << 20)
-#define NFCV1_NDCR_ARB_CNTL (0x1 << 19)
-#define NFCV2_NDCR_STOP_ON_UNCOR (0x1 << 19)
-#define NDCR_RD_ID_CNT_MASK (0x7 << 16)
-#define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK)
-
-#define NDCR_RA_START (0x1 << 15)
-#define NDCR_PG_PER_BLK (0x1 << 14)
-#define NDCR_ND_ARB_EN (0x1 << 12)
-#define NDCR_INT_MASK (0xFFF)
-
-#define NDSR_MASK (0xfff)
-#define NDSR_ERR_CNT_OFF (16)
-#define NDSR_ERR_CNT_MASK (0x1f)
-#define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK)
-#define NDSR_RDY (0x1 << 12)
-#define NDSR_FLASH_RDY (0x1 << 11)
-#define NDSR_CS0_PAGED (0x1 << 10)
-#define NDSR_CS1_PAGED (0x1 << 9)
-#define NDSR_CS0_CMDD (0x1 << 8)
-#define NDSR_CS1_CMDD (0x1 << 7)
-#define NDSR_CS0_BBD (0x1 << 6)
-#define NDSR_CS1_BBD (0x1 << 5)
-#define NDSR_UNCORERR (0x1 << 4)
-#define NDSR_CORERR (0x1 << 3)
-#define NDSR_WRDREQ (0x1 << 2)
-#define NDSR_RDDREQ (0x1 << 1)
-#define NDSR_WRCMDREQ (0x1)
-
-#define NDCB0_LEN_OVRD (0x1 << 28)
-#define NDCB0_ST_ROW_EN (0x1 << 26)
-#define NDCB0_AUTO_RS (0x1 << 25)
-#define NDCB0_CSEL (0x1 << 24)
-#define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29)
-#define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK)
-#define NDCB0_CMD_TYPE_MASK (0x7 << 21)
-#define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK)
-#define NDCB0_NC (0x1 << 20)
-#define NDCB0_DBC (0x1 << 19)
-#define NDCB0_ADDR_CYC_MASK (0x7 << 16)
-#define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK)
-#define NDCB0_CMD2_MASK (0xff << 8)
-#define NDCB0_CMD1_MASK (0xff)
-#define NDCB0_ADDR_CYC_SHIFT (16)
-
-#define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */
-#define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */
-#define EXT_CMD_TYPE_READ 4 /* Read */
-#define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */
-#define EXT_CMD_TYPE_FINAL 3 /* Final command */
-#define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */
-#define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */
-
-/*
- * This should be large enough to read 'ONFI' and 'JEDEC'.
- * Let's use 7 bytes, which is the maximum ID count supported
- * by the controller (see NDCR_RD_ID_CNT_MASK).
- */
-#define READ_ID_BYTES 7
-
-/* macros for registers read/write */
-#define nand_writel(info, off, val) \
- do { \
- dev_vdbg(&info->pdev->dev, \
- "%s():%d nand_writel(0x%x, 0x%04x)\n", \
- __func__, __LINE__, (val), (off)); \
- writel_relaxed((val), (info)->mmio_base + (off)); \
- } while (0)
-
-#define nand_readl(info, off) \
- ({ \
- unsigned int _v; \
- _v = readl_relaxed((info)->mmio_base + (off)); \
- dev_vdbg(&info->pdev->dev, \
- "%s():%d nand_readl(0x%04x) = 0x%x\n", \
- __func__, __LINE__, (off), _v); \
- _v; \
- })
-
-/* error code and state */
-enum {
- ERR_NONE = 0,
- ERR_DMABUSERR = -1,
- ERR_SENDCMD = -2,
- ERR_UNCORERR = -3,
- ERR_BBERR = -4,
- ERR_CORERR = -5,
-};
-
-enum {
- STATE_IDLE = 0,
- STATE_PREPARED,
- STATE_CMD_HANDLE,
- STATE_DMA_READING,
- STATE_DMA_WRITING,
- STATE_DMA_DONE,
- STATE_PIO_READING,
- STATE_PIO_WRITING,
- STATE_CMD_DONE,
- STATE_READY,
-};
-
-enum pxa3xx_nand_variant {
- PXA3XX_NAND_VARIANT_PXA,
- PXA3XX_NAND_VARIANT_ARMADA370,
- PXA3XX_NAND_VARIANT_ARMADA_8K,
-};
-
-struct pxa3xx_nand_host {
- struct nand_chip chip;
- void *info_data;
-
- /* page size of attached chip */
- int use_ecc;
- int cs;
-
- /* calculated from pxa3xx_nand_flash data */
- unsigned int col_addr_cycles;
- unsigned int row_addr_cycles;
-};
-
-struct pxa3xx_nand_info {
- struct nand_hw_control controller;
- struct platform_device *pdev;
-
- struct clk *clk;
- void __iomem *mmio_base;
- unsigned long mmio_phys;
- struct completion cmd_complete, dev_ready;
-
- unsigned int buf_start;
- unsigned int buf_count;
- unsigned int buf_size;
- unsigned int data_buff_pos;
- unsigned int oob_buff_pos;
-
- /* DMA information */
- struct scatterlist sg;
- enum dma_data_direction dma_dir;
- struct dma_chan *dma_chan;
- dma_cookie_t dma_cookie;
- int drcmr_dat;
-
- unsigned char *data_buff;
- unsigned char *oob_buff;
- dma_addr_t data_buff_phys;
- int data_dma_ch;
-
- struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
- unsigned int state;
-
- /*
- * This driver supports NFCv1 (as found in PXA SoC)
- * and NFCv2 (as found in Armada 370/XP SoC).
- */
- enum pxa3xx_nand_variant variant;
-
- int cs;
- int use_ecc; /* use HW ECC ? */
- int ecc_bch; /* using BCH ECC? */
- int use_dma; /* use DMA ? */
- int use_spare; /* use spare ? */
- int need_wait;
-
- /* Amount of real data per full chunk */
- unsigned int chunk_size;
-
- /* Amount of spare data per full chunk */
- unsigned int spare_size;
-
- /* Number of full chunks (i.e chunk_size + spare_size) */
- unsigned int nfullchunks;
-
- /*
- * Total number of chunks. If equal to nfullchunks, then there
- * are only full chunks. Otherwise, there is one last chunk of
- * size (last_chunk_size + last_spare_size)
- */
- unsigned int ntotalchunks;
-
- /* Amount of real data in the last chunk */
- unsigned int last_chunk_size;
-
- /* Amount of spare data in the last chunk */
- unsigned int last_spare_size;
-
- unsigned int ecc_size;
- unsigned int ecc_err_cnt;
- unsigned int max_bitflips;
- int retcode;
-
- /*
- * Variables only valid during command
- * execution. step_chunk_size and step_spare_size is the
- * amount of real data and spare data in the current
- * chunk. cur_chunk is the current chunk being
- * read/programmed.
- */
- unsigned int step_chunk_size;
- unsigned int step_spare_size;
- unsigned int cur_chunk;
-
- /* cached register value */
- uint32_t reg_ndcr;
- uint32_t ndtr0cs0;
- uint32_t ndtr1cs0;
-
- /* generated NDCBx register values */
- uint32_t ndcb0;
- uint32_t ndcb1;
- uint32_t ndcb2;
- uint32_t ndcb3;
-};
-
-static bool use_dma = 1;
-module_param(use_dma, bool, 0444);
-MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
-
-struct pxa3xx_nand_timing {
- unsigned int tCH; /* Enable signal hold time */
- unsigned int tCS; /* Enable signal setup time */
- unsigned int tWH; /* ND_nWE high duration */
- unsigned int tWP; /* ND_nWE pulse time */
- unsigned int tRH; /* ND_nRE high duration */
- unsigned int tRP; /* ND_nRE pulse width */
- unsigned int tR; /* ND_nWE high to ND_nRE low for read */
- unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */
- unsigned int tAR; /* ND_ALE low to ND_nRE low delay */
-};
-
-struct pxa3xx_nand_flash {
- uint32_t chip_id;
- unsigned int flash_width; /* Width of Flash memory (DWIDTH_M) */
- unsigned int dfc_width; /* Width of flash controller(DWIDTH_C) */
- struct pxa3xx_nand_timing *timing; /* NAND Flash timing */
-};
-
-static struct pxa3xx_nand_timing timing[] = {
- { 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
- { 10, 0, 20, 40, 30, 40, 11123, 110, 10, },
- { 10, 25, 15, 25, 15, 30, 25000, 60, 10, },
- { 10, 35, 15, 25, 15, 25, 25000, 60, 10, },
-};
-
-static struct pxa3xx_nand_flash builtin_flash_types[] = {
- { 0x46ec, 16, 16, &timing[1] },
- { 0xdaec, 8, 8, &timing[1] },
- { 0xd7ec, 8, 8, &timing[1] },
- { 0xa12c, 8, 8, &timing[2] },
- { 0xb12c, 16, 16, &timing[2] },
- { 0xdc2c, 8, 8, &timing[2] },
- { 0xcc2c, 16, 16, &timing[2] },
- { 0xba20, 16, 16, &timing[3] },
-};
-
-static int pxa3xx_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int nchunks = mtd->writesize / info->chunk_size;
-
- if (section >= nchunks)
- return -ERANGE;
-
- oobregion->offset = ((info->ecc_size + info->spare_size) * section) +
- info->spare_size;
- oobregion->length = info->ecc_size;
-
- return 0;
-}
-
-static int pxa3xx_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int nchunks = mtd->writesize / info->chunk_size;
-
- if (section >= nchunks)
- return -ERANGE;
-
- if (!info->spare_size)
- return 0;
-
- oobregion->offset = section * (info->ecc_size + info->spare_size);
- oobregion->length = info->spare_size;
- if (!section) {
- /*
- * Bootrom looks in bytes 0 & 5 for bad blocks for the
- * 4KB page / 4bit BCH combination.
- */
- if (mtd->writesize == 4096 && info->chunk_size == 2048) {
- oobregion->offset += 6;
- oobregion->length -= 6;
- } else {
- oobregion->offset += 2;
- oobregion->length -= 2;
- }
- }
-
- return 0;
-}
-
-static const struct mtd_ooblayout_ops pxa3xx_ooblayout_ops = {
- .ecc = pxa3xx_ooblayout_ecc,
- .free = pxa3xx_ooblayout_free,
-};
-
-static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
-static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
-
-static struct nand_bbt_descr bbt_main_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
- | NAND_BBT_2BIT | NAND_BBT_VERSION,
- .offs = 8,
- .len = 6,
- .veroffs = 14,
- .maxblocks = 8, /* Last 8 blocks in each chip */
- .pattern = bbt_pattern
-};
-
-static struct nand_bbt_descr bbt_mirror_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
- | NAND_BBT_2BIT | NAND_BBT_VERSION,
- .offs = 8,
- .len = 6,
- .veroffs = 14,
- .maxblocks = 8, /* Last 8 blocks in each chip */
- .pattern = bbt_mirror_pattern
-};
-
-#define NDTR0_tCH(c) (min((c), 7) << 19)
-#define NDTR0_tCS(c) (min((c), 7) << 16)
-#define NDTR0_tWH(c) (min((c), 7) << 11)
-#define NDTR0_tWP(c) (min((c), 7) << 8)
-#define NDTR0_tRH(c) (min((c), 7) << 3)
-#define NDTR0_tRP(c) (min((c), 7) << 0)
-
-#define NDTR1_tR(c) (min((c), 65535) << 16)
-#define NDTR1_tWHR(c) (min((c), 15) << 4)
-#define NDTR1_tAR(c) (min((c), 15) << 0)
-
-/* convert nano-seconds to nand flash controller clock cycles */
-#define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000)
-
-static const struct of_device_id pxa3xx_nand_dt_ids[] = {
- {
- .compatible = "marvell,pxa3xx-nand",
- .data = (void *)PXA3XX_NAND_VARIANT_PXA,
- },
- {
- .compatible = "marvell,armada370-nand",
- .data = (void *)PXA3XX_NAND_VARIANT_ARMADA370,
- },
- {
- .compatible = "marvell,armada-8k-nand",
- .data = (void *)PXA3XX_NAND_VARIANT_ARMADA_8K,
- },
- {}
-};
-MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids);
-
-static enum pxa3xx_nand_variant
-pxa3xx_nand_get_variant(struct platform_device *pdev)
-{
- const struct of_device_id *of_id =
- of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
- if (!of_id)
- return PXA3XX_NAND_VARIANT_PXA;
- return (enum pxa3xx_nand_variant)of_id->data;
-}
-
-static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
- const struct pxa3xx_nand_timing *t)
-{
- struct pxa3xx_nand_info *info = host->info_data;
- unsigned long nand_clk = clk_get_rate(info->clk);
- uint32_t ndtr0, ndtr1;
-
- ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
- NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
- NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
- NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
- NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
- NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
-
- ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
- NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
- NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
-
- info->ndtr0cs0 = ndtr0;
- info->ndtr1cs0 = ndtr1;
- nand_writel(info, NDTR0CS0, ndtr0);
- nand_writel(info, NDTR1CS0, ndtr1);
-}
-
-static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host,
- const struct nand_sdr_timings *t)
-{
- struct pxa3xx_nand_info *info = host->info_data;
- struct nand_chip *chip = &host->chip;
- unsigned long nand_clk = clk_get_rate(info->clk);
- uint32_t ndtr0, ndtr1;
-
- u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000);
- u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000);
- u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000);
- u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000);
- u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000);
- u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000);
- u32 tR = chip->chip_delay * 1000;
- u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000);
- u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000);
-
- /* fallback to a default value if tR = 0 */
- if (!tR)
- tR = 20000;
-
- ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) |
- NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) |
- NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) |
- NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) |
- NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) |
- NDTR0_tRP(ns2cycle(tRP_min, nand_clk));
-
- ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) |
- NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) |
- NDTR1_tAR(ns2cycle(tAR_min, nand_clk));
-
- info->ndtr0cs0 = ndtr0;
- info->ndtr1cs0 = ndtr1;
- nand_writel(info, NDTR0CS0, ndtr0);
- nand_writel(info, NDTR1CS0, ndtr1);
-}
-
-static int pxa3xx_nand_init_timings_compat(struct pxa3xx_nand_host *host,
- unsigned int *flash_width,
- unsigned int *dfc_width)
-{
- struct nand_chip *chip = &host->chip;
- struct pxa3xx_nand_info *info = host->info_data;
- const struct pxa3xx_nand_flash *f = NULL;
- int i, id, ntypes;
- u8 idbuf[2];
-
- ntypes = ARRAY_SIZE(builtin_flash_types);
-
- nand_readid_op(chip, 0, idbuf, sizeof(idbuf));
- id = idbuf[0] | (idbuf[1] << 8);
-
- for (i = 0; i < ntypes; i++) {
- f = &builtin_flash_types[i];
-
- if (f->chip_id == id)
- break;
- }
-
- if (i == ntypes) {
- dev_err(&info->pdev->dev, "Error: timings not found\n");
- return -EINVAL;
- }
-
- pxa3xx_nand_set_timing(host, f->timing);
-
- *flash_width = f->flash_width;
- *dfc_width = f->dfc_width;
-
- return 0;
-}
-
-static int pxa3xx_nand_init_timings_onfi(struct pxa3xx_nand_host *host,
- int mode)
-{
- const struct nand_sdr_timings *timings;
-
- mode = fls(mode) - 1;
- if (mode < 0)
- mode = 0;
-
- timings = onfi_async_timing_mode_to_sdr_timings(mode);
- if (IS_ERR(timings))
- return PTR_ERR(timings);
-
- pxa3xx_nand_set_sdr_timing(host, timings);
-
- return 0;
-}
-
-static int pxa3xx_nand_init(struct pxa3xx_nand_host *host)
-{
- struct nand_chip *chip = &host->chip;
- struct pxa3xx_nand_info *info = host->info_data;
- unsigned int flash_width = 0, dfc_width = 0;
- int mode, err;
-
- mode = onfi_get_async_timing_mode(chip);
- if (mode == ONFI_TIMING_MODE_UNKNOWN) {
- err = pxa3xx_nand_init_timings_compat(host, &flash_width,
- &dfc_width);
- if (err)
- return err;
-
- if (flash_width == 16) {
- info->reg_ndcr |= NDCR_DWIDTH_M;
- chip->options |= NAND_BUSWIDTH_16;
- }
-
- info->reg_ndcr |= (dfc_width == 16) ? NDCR_DWIDTH_C : 0;
- } else {
- err = pxa3xx_nand_init_timings_onfi(host, mode);
- if (err)
- return err;
- }
-
- return 0;
-}
-
-/**
- * NOTE: it is a must to set ND_RUN firstly, then write
- * command buffer, otherwise, it does not work.
- * We enable all the interrupt at the same time, and
- * let pxa3xx_nand_irq to handle all logic.
- */
-static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
-{
- uint32_t ndcr;
-
- ndcr = info->reg_ndcr;
-
- if (info->use_ecc) {
- ndcr |= NDCR_ECC_EN;
- if (info->ecc_bch)
- nand_writel(info, NDECCCTRL, 0x1);
- } else {
- ndcr &= ~NDCR_ECC_EN;
- if (info->ecc_bch)
- nand_writel(info, NDECCCTRL, 0x0);
- }
-
- if (info->use_dma)
- ndcr |= NDCR_DMA_EN;
- else
- ndcr &= ~NDCR_DMA_EN;
-
- if (info->use_spare)
- ndcr |= NDCR_SPARE_EN;
- else
- ndcr &= ~NDCR_SPARE_EN;
-
- ndcr |= NDCR_ND_RUN;
-
- /* clear status bits and run */
- nand_writel(info, NDSR, NDSR_MASK);
- nand_writel(info, NDCR, 0);
- nand_writel(info, NDCR, ndcr);
-}
-
-static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
-{
- uint32_t ndcr;
- int timeout = NAND_STOP_DELAY;
-
- /* wait RUN bit in NDCR become 0 */
- ndcr = nand_readl(info, NDCR);
- while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
- ndcr = nand_readl(info, NDCR);
- udelay(1);
- }
-
- if (timeout <= 0) {
- ndcr &= ~NDCR_ND_RUN;
- nand_writel(info, NDCR, ndcr);
- }
- if (info->dma_chan)
- dmaengine_terminate_all(info->dma_chan);
-
- /* clear status bits */
- nand_writel(info, NDSR, NDSR_MASK);
-}
-
-static void __maybe_unused
-enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
-{
- uint32_t ndcr;
-
- ndcr = nand_readl(info, NDCR);
- nand_writel(info, NDCR, ndcr & ~int_mask);
-}
-
-static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
-{
- uint32_t ndcr;
-
- ndcr = nand_readl(info, NDCR);
- nand_writel(info, NDCR, ndcr | int_mask);
-}
-
-static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len)
-{
- if (info->ecc_bch) {
- u32 val;
- int ret;
-
- /*
- * According to the datasheet, when reading from NDDB
- * with BCH enabled, after each 32 bytes reads, we
- * have to make sure that the NDSR.RDDREQ bit is set.
- *
- * Drain the FIFO 8 32 bits reads at a time, and skip
- * the polling on the last read.
- */
- while (len > 8) {
- ioread32_rep(info->mmio_base + NDDB, data, 8);
-
- ret = readl_relaxed_poll_timeout(info->mmio_base + NDSR, val,
- val & NDSR_RDDREQ, 1000, 5000);
- if (ret) {
- dev_err(&info->pdev->dev,
- "Timeout on RDDREQ while draining the FIFO\n");
- return;
- }
-
- data += 32;
- len -= 8;
- }
- }
-
- ioread32_rep(info->mmio_base + NDDB, data, len);
-}
-
-static void handle_data_pio(struct pxa3xx_nand_info *info)
-{
- switch (info->state) {
- case STATE_PIO_WRITING:
- if (info->step_chunk_size)
- writesl(info->mmio_base + NDDB,
- info->data_buff + info->data_buff_pos,
- DIV_ROUND_UP(info->step_chunk_size, 4));
-
- if (info->step_spare_size)
- writesl(info->mmio_base + NDDB,
- info->oob_buff + info->oob_buff_pos,
- DIV_ROUND_UP(info->step_spare_size, 4));
- break;
- case STATE_PIO_READING:
- if (info->step_chunk_size)
- drain_fifo(info,
- info->data_buff + info->data_buff_pos,
- DIV_ROUND_UP(info->step_chunk_size, 4));
-
- if (info->step_spare_size)
- drain_fifo(info,
- info->oob_buff + info->oob_buff_pos,
- DIV_ROUND_UP(info->step_spare_size, 4));
- break;
- default:
- dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
- info->state);
- BUG();
- }
-
- /* Update buffer pointers for multi-page read/write */
- info->data_buff_pos += info->step_chunk_size;
- info->oob_buff_pos += info->step_spare_size;
-}
-
-static void pxa3xx_nand_data_dma_irq(void *data)
-{
- struct pxa3xx_nand_info *info = data;
- struct dma_tx_state state;
- enum dma_status status;
-
- status = dmaengine_tx_status(info->dma_chan, info->dma_cookie, &state);
- if (likely(status == DMA_COMPLETE)) {
- info->state = STATE_DMA_DONE;
- } else {
- dev_err(&info->pdev->dev, "DMA error on data channel\n");
- info->retcode = ERR_DMABUSERR;
- }
- dma_unmap_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir);
-
- nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
- enable_int(info, NDCR_INT_MASK);
-}
-
-static void start_data_dma(struct pxa3xx_nand_info *info)
-{
- enum dma_transfer_direction direction;
- struct dma_async_tx_descriptor *tx;
-
- switch (info->state) {
- case STATE_DMA_WRITING:
- info->dma_dir = DMA_TO_DEVICE;
- direction = DMA_MEM_TO_DEV;
- break;
- case STATE_DMA_READING:
- info->dma_dir = DMA_FROM_DEVICE;
- direction = DMA_DEV_TO_MEM;
- break;
- default:
- dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
- info->state);
- BUG();
- }
- info->sg.length = info->chunk_size;
- if (info->use_spare)
- info->sg.length += info->spare_size + info->ecc_size;
- dma_map_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir);
-
- tx = dmaengine_prep_slave_sg(info->dma_chan, &info->sg, 1, direction,
- DMA_PREP_INTERRUPT);
- if (!tx) {
- dev_err(&info->pdev->dev, "prep_slave_sg() failed\n");
- return;
- }
- tx->callback = pxa3xx_nand_data_dma_irq;
- tx->callback_param = info;
- info->dma_cookie = dmaengine_submit(tx);
- dma_async_issue_pending(info->dma_chan);
- dev_dbg(&info->pdev->dev, "%s(dir=%d cookie=%x size=%u)\n",
- __func__, direction, info->dma_cookie, info->sg.length);
-}
-
-static irqreturn_t pxa3xx_nand_irq_thread(int irq, void *data)
-{
- struct pxa3xx_nand_info *info = data;
-
- handle_data_pio(info);
-
- info->state = STATE_CMD_DONE;
- nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
-
- return IRQ_HANDLED;
-}
-
-static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
-{
- struct pxa3xx_nand_info *info = devid;
- unsigned int status, is_completed = 0, is_ready = 0;
- unsigned int ready, cmd_done;
- irqreturn_t ret = IRQ_HANDLED;
-
- if (info->cs == 0) {
- ready = NDSR_FLASH_RDY;
- cmd_done = NDSR_CS0_CMDD;
- } else {
- ready = NDSR_RDY;
- cmd_done = NDSR_CS1_CMDD;
- }
-
- status = nand_readl(info, NDSR);
-
- if (status & NDSR_UNCORERR)
- info->retcode = ERR_UNCORERR;
- if (status & NDSR_CORERR) {
- info->retcode = ERR_CORERR;
- if ((info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
- info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) &&
- info->ecc_bch)
- info->ecc_err_cnt = NDSR_ERR_CNT(status);
- else
- info->ecc_err_cnt = 1;
-
- /*
- * Each chunk composing a page is corrected independently,
- * and we need to store maximum number of corrected bitflips
- * to return it to the MTD layer in ecc.read_page().
- */
- info->max_bitflips = max_t(unsigned int,
- info->max_bitflips,
- info->ecc_err_cnt);
- }
- if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
- /* whether use dma to transfer data */
- if (info->use_dma) {
- disable_int(info, NDCR_INT_MASK);
- info->state = (status & NDSR_RDDREQ) ?
- STATE_DMA_READING : STATE_DMA_WRITING;
- start_data_dma(info);
- goto NORMAL_IRQ_EXIT;
- } else {
- info->state = (status & NDSR_RDDREQ) ?
- STATE_PIO_READING : STATE_PIO_WRITING;
- ret = IRQ_WAKE_THREAD;
- goto NORMAL_IRQ_EXIT;
- }
- }
- if (status & cmd_done) {
- info->state = STATE_CMD_DONE;
- is_completed = 1;
- }
- if (status & ready) {
- info->state = STATE_READY;
- is_ready = 1;
- }
-
- /*
- * Clear all status bit before issuing the next command, which
- * can and will alter the status bits and will deserve a new
- * interrupt on its own. This lets the controller exit the IRQ
- */
- nand_writel(info, NDSR, status);
-
- if (status & NDSR_WRCMDREQ) {
- status &= ~NDSR_WRCMDREQ;
- info->state = STATE_CMD_HANDLE;
-
- /*
- * Command buffer registers NDCB{0-2} (and optionally NDCB3)
- * must be loaded by writing directly either 12 or 16
- * bytes directly to NDCB0, four bytes at a time.
- *
- * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
- * but each NDCBx register can be read.
- */
- nand_writel(info, NDCB0, info->ndcb0);
- nand_writel(info, NDCB0, info->ndcb1);
- nand_writel(info, NDCB0, info->ndcb2);
-
- /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
- if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
- info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K)
- nand_writel(info, NDCB0, info->ndcb3);
- }
-
- if (is_completed)
- complete(&info->cmd_complete);
- if (is_ready)
- complete(&info->dev_ready);
-NORMAL_IRQ_EXIT:
- return ret;
-}
-
-static inline int is_buf_blank(uint8_t *buf, size_t len)
-{
- for (; len > 0; len--)
- if (*buf++ != 0xff)
- return 0;
- return 1;
-}
-
-static void set_command_address(struct pxa3xx_nand_info *info,
- unsigned int page_size, uint16_t column, int page_addr)
-{
- /* small page addr setting */
- if (page_size < PAGE_CHUNK_SIZE) {
- info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
- | (column & 0xFF);
-
- info->ndcb2 = 0;
- } else {
- info->ndcb1 = ((page_addr & 0xFFFF) << 16)
- | (column & 0xFFFF);
-
- if (page_addr & 0xFF0000)
- info->ndcb2 = (page_addr & 0xFF0000) >> 16;
- else
- info->ndcb2 = 0;
- }
-}
-
-static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
-{
- struct pxa3xx_nand_host *host = info->host[info->cs];
- struct mtd_info *mtd = nand_to_mtd(&host->chip);
-
- /* reset data and oob column point to handle data */
- info->buf_start = 0;
- info->buf_count = 0;
- info->data_buff_pos = 0;
- info->oob_buff_pos = 0;
- info->step_chunk_size = 0;
- info->step_spare_size = 0;
- info->cur_chunk = 0;
- info->use_ecc = 0;
- info->use_spare = 1;
- info->retcode = ERR_NONE;
- info->ecc_err_cnt = 0;
- info->ndcb3 = 0;
- info->need_wait = 0;
-
- switch (command) {
- case NAND_CMD_READ0:
- case NAND_CMD_READOOB:
- case NAND_CMD_PAGEPROG:
- info->use_ecc = 1;
- break;
- case NAND_CMD_PARAM:
- info->use_spare = 0;
- break;
- default:
- info->ndcb1 = 0;
- info->ndcb2 = 0;
- break;
- }
-
- /*
- * If we are about to issue a read command, or about to set
- * the write address, then clean the data buffer.
- */
- if (command == NAND_CMD_READ0 ||
- command == NAND_CMD_READOOB ||
- command == NAND_CMD_SEQIN) {
-
- info->buf_count = mtd->writesize + mtd->oobsize;
- memset(info->data_buff, 0xFF, info->buf_count);
- }
-
-}
-
-static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
- int ext_cmd_type, uint16_t column, int page_addr)
-{
- int addr_cycle, exec_cmd;
- struct pxa3xx_nand_host *host;
- struct mtd_info *mtd;
-
- host = info->host[info->cs];
- mtd = nand_to_mtd(&host->chip);
- addr_cycle = 0;
- exec_cmd = 1;
-
- if (info->cs != 0)
- info->ndcb0 = NDCB0_CSEL;
- else
- info->ndcb0 = 0;
-
- if (command == NAND_CMD_SEQIN)
- exec_cmd = 0;
-
- addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
- + host->col_addr_cycles);
-
- switch (command) {
- case NAND_CMD_READOOB:
- case NAND_CMD_READ0:
- info->buf_start = column;
- info->ndcb0 |= NDCB0_CMD_TYPE(0)
- | addr_cycle
- | NAND_CMD_READ0;
-
- if (command == NAND_CMD_READOOB)
- info->buf_start += mtd->writesize;
-
- if (info->cur_chunk < info->nfullchunks) {
- info->step_chunk_size = info->chunk_size;
- info->step_spare_size = info->spare_size;
- } else {
- info->step_chunk_size = info->last_chunk_size;
- info->step_spare_size = info->last_spare_size;
- }
-
- /*
- * Multiple page read needs an 'extended command type' field,
- * which is either naked-read or last-read according to the
- * state.
- */
- if (mtd->writesize == PAGE_CHUNK_SIZE) {
- info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
- } else if (mtd->writesize > PAGE_CHUNK_SIZE) {
- info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8)
- | NDCB0_LEN_OVRD
- | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
- info->ndcb3 = info->step_chunk_size +
- info->step_spare_size;
- }
-
- set_command_address(info, mtd->writesize, column, page_addr);
- break;
-
- case NAND_CMD_SEQIN:
-
- info->buf_start = column;
- set_command_address(info, mtd->writesize, 0, page_addr);
-
- /*
- * Multiple page programming needs to execute the initial
- * SEQIN command that sets the page address.
- */
- if (mtd->writesize > PAGE_CHUNK_SIZE) {
- info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
- | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
- | addr_cycle
- | command;
- exec_cmd = 1;
- }
- break;
-
- case NAND_CMD_PAGEPROG:
- if (is_buf_blank(info->data_buff,
- (mtd->writesize + mtd->oobsize))) {
- exec_cmd = 0;
- break;
- }
-
- if (info->cur_chunk < info->nfullchunks) {
- info->step_chunk_size = info->chunk_size;
- info->step_spare_size = info->spare_size;
- } else {
- info->step_chunk_size = info->last_chunk_size;
- info->step_spare_size = info->last_spare_size;
- }
-
- /* Second command setting for large pages */
- if (mtd->writesize > PAGE_CHUNK_SIZE) {
- /*
- * Multiple page write uses the 'extended command'
- * field. This can be used to issue a command dispatch
- * or a naked-write depending on the current stage.
- */
- info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
- | NDCB0_LEN_OVRD
- | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
- info->ndcb3 = info->step_chunk_size +
- info->step_spare_size;
-
- /*
- * This is the command dispatch that completes a chunked
- * page program operation.
- */
- if (info->cur_chunk == info->ntotalchunks) {
- info->ndcb0 = NDCB0_CMD_TYPE(0x1)
- | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
- | command;
- info->ndcb1 = 0;
- info->ndcb2 = 0;
- info->ndcb3 = 0;
- }
- } else {
- info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
- | NDCB0_AUTO_RS
- | NDCB0_ST_ROW_EN
- | NDCB0_DBC
- | (NAND_CMD_PAGEPROG << 8)
- | NAND_CMD_SEQIN
- | addr_cycle;
- }
- break;
-
- case NAND_CMD_PARAM:
- info->buf_count = INIT_BUFFER_SIZE;
- info->ndcb0 |= NDCB0_CMD_TYPE(0)
- | NDCB0_ADDR_CYC(1)
- | NDCB0_LEN_OVRD
- | command;
- info->ndcb1 = (column & 0xFF);
- info->ndcb3 = INIT_BUFFER_SIZE;
- info->step_chunk_size = INIT_BUFFER_SIZE;
- break;
-
- case NAND_CMD_READID:
- info->buf_count = READ_ID_BYTES;
- info->ndcb0 |= NDCB0_CMD_TYPE(3)
- | NDCB0_ADDR_CYC(1)
- | command;
- info->ndcb1 = (column & 0xFF);
-
- info->step_chunk_size = 8;
- break;
- case NAND_CMD_STATUS:
- info->buf_count = 1;
- info->ndcb0 |= NDCB0_CMD_TYPE(4)
- | NDCB0_ADDR_CYC(1)
- | command;
-
- info->step_chunk_size = 8;
- break;
-
- case NAND_CMD_ERASE1:
- info->ndcb0 |= NDCB0_CMD_TYPE(2)
- | NDCB0_AUTO_RS
- | NDCB0_ADDR_CYC(3)
- | NDCB0_DBC
- | (NAND_CMD_ERASE2 << 8)
- | NAND_CMD_ERASE1;
- info->ndcb1 = page_addr;
- info->ndcb2 = 0;
-
- break;
- case NAND_CMD_RESET:
- info->ndcb0 |= NDCB0_CMD_TYPE(5)
- | command;
-
- break;
-
- case NAND_CMD_ERASE2:
- exec_cmd = 0;
- break;
-
- default:
- exec_cmd = 0;
- dev_err(&info->pdev->dev, "non-supported command %x\n",
- command);
- break;
- }
-
- return exec_cmd;
-}
-
-static void nand_cmdfunc(struct mtd_info *mtd, unsigned command,
- int column, int page_addr)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int exec_cmd;
-
- /*
- * if this is a x16 device ,then convert the input
- * "byte" address into a "word" address appropriate
- * for indexing a word-oriented device
- */
- if (info->reg_ndcr & NDCR_DWIDTH_M)
- column /= 2;
-
- /*
- * There may be different NAND chip hooked to
- * different chip select, so check whether
- * chip select has been changed, if yes, reset the timing
- */
- if (info->cs != host->cs) {
- info->cs = host->cs;
- nand_writel(info, NDTR0CS0, info->ndtr0cs0);
- nand_writel(info, NDTR1CS0, info->ndtr1cs0);
- }
-
- prepare_start_command(info, command);
-
- info->state = STATE_PREPARED;
- exec_cmd = prepare_set_command(info, command, 0, column, page_addr);
-
- if (exec_cmd) {
- init_completion(&info->cmd_complete);
- init_completion(&info->dev_ready);
- info->need_wait = 1;
- pxa3xx_nand_start(info);
-
- if (!wait_for_completion_timeout(&info->cmd_complete,
- CHIP_DELAY_TIMEOUT)) {
- dev_err(&info->pdev->dev, "Wait time out!!!\n");
- /* Stop State Machine for next command cycle */
- pxa3xx_nand_stop(info);
- }
- }
- info->state = STATE_IDLE;
-}
-
-static void nand_cmdfunc_extended(struct mtd_info *mtd,
- const unsigned command,
- int column, int page_addr)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int exec_cmd, ext_cmd_type;
-
- /*
- * if this is a x16 device then convert the input
- * "byte" address into a "word" address appropriate
- * for indexing a word-oriented device
- */
- if (info->reg_ndcr & NDCR_DWIDTH_M)
- column /= 2;
-
- /*
- * There may be different NAND chip hooked to
- * different chip select, so check whether
- * chip select has been changed, if yes, reset the timing
- */
- if (info->cs != host->cs) {
- info->cs = host->cs;
- nand_writel(info, NDTR0CS0, info->ndtr0cs0);
- nand_writel(info, NDTR1CS0, info->ndtr1cs0);
- }
-
- /* Select the extended command for the first command */
- switch (command) {
- case NAND_CMD_READ0:
- case NAND_CMD_READOOB:
- ext_cmd_type = EXT_CMD_TYPE_MONO;
- break;
- case NAND_CMD_SEQIN:
- ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
- break;
- case NAND_CMD_PAGEPROG:
- ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
- break;
- default:
- ext_cmd_type = 0;
- break;
- }
-
- prepare_start_command(info, command);
-
- /*
- * Prepare the "is ready" completion before starting a command
- * transaction sequence. If the command is not executed the
- * completion will be completed, see below.
- *
- * We can do that inside the loop because the command variable
- * is invariant and thus so is the exec_cmd.
- */
- info->need_wait = 1;
- init_completion(&info->dev_ready);
- do {
- info->state = STATE_PREPARED;
-
- exec_cmd = prepare_set_command(info, command, ext_cmd_type,
- column, page_addr);
- if (!exec_cmd) {
- info->need_wait = 0;
- complete(&info->dev_ready);
- break;
- }
-
- init_completion(&info->cmd_complete);
- pxa3xx_nand_start(info);
-
- if (!wait_for_completion_timeout(&info->cmd_complete,
- CHIP_DELAY_TIMEOUT)) {
- dev_err(&info->pdev->dev, "Wait time out!!!\n");
- /* Stop State Machine for next command cycle */
- pxa3xx_nand_stop(info);
- break;
- }
-
- /* Only a few commands need several steps */
- if (command != NAND_CMD_PAGEPROG &&
- command != NAND_CMD_READ0 &&
- command != NAND_CMD_READOOB)
- break;
-
- info->cur_chunk++;
-
- /* Check if the sequence is complete */
- if (info->cur_chunk == info->ntotalchunks && command != NAND_CMD_PAGEPROG)
- break;
-
- /*
- * After a splitted program command sequence has issued
- * the command dispatch, the command sequence is complete.
- */
- if (info->cur_chunk == (info->ntotalchunks + 1) &&
- command == NAND_CMD_PAGEPROG &&
- ext_cmd_type == EXT_CMD_TYPE_DISPATCH)
- break;
-
- if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) {
- /* Last read: issue a 'last naked read' */
- if (info->cur_chunk == info->ntotalchunks - 1)
- ext_cmd_type = EXT_CMD_TYPE_LAST_RW;
- else
- ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
-
- /*
- * If a splitted program command has no more data to transfer,
- * the command dispatch must be issued to complete.
- */
- } else if (command == NAND_CMD_PAGEPROG &&
- info->cur_chunk == info->ntotalchunks) {
- ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
- }
- } while (1);
-
- info->state = STATE_IDLE;
-}
-
-static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
- struct nand_chip *chip, const uint8_t *buf, int oob_required,
- int page)
-{
- nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
- chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- return nand_prog_page_end_op(chip);
-}
-
-static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
- struct nand_chip *chip, uint8_t *buf, int oob_required,
- int page)
-{
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
-
- nand_read_page_op(chip, page, 0, buf, mtd->writesize);
- chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- if (info->retcode == ERR_CORERR && info->use_ecc) {
- mtd->ecc_stats.corrected += info->ecc_err_cnt;
-
- } else if (info->retcode == ERR_UNCORERR) {
- /*
- * for blank page (all 0xff), HW will calculate its ECC as
- * 0, which is different from the ECC information within
- * OOB, ignore such uncorrectable errors
- */
- if (is_buf_blank(buf, mtd->writesize))
- info->retcode = ERR_NONE;
- else
- mtd->ecc_stats.failed++;
- }
-
- return info->max_bitflips;
-}
-
-static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- char retval = 0xFF;
-
- if (info->buf_start < info->buf_count)
- /* Has just send a new command? */
- retval = info->data_buff[info->buf_start++];
-
- return retval;
-}
-
-static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- u16 retval = 0xFFFF;
-
- if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
- retval = *((u16 *)(info->data_buff+info->buf_start));
- info->buf_start += 2;
- }
- return retval;
-}
-
-static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
-
- memcpy(buf, info->data_buff + info->buf_start, real_len);
- info->buf_start += real_len;
-}
-
-static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
- const uint8_t *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
-
- memcpy(info->data_buff + info->buf_start, buf, real_len);
- info->buf_start += real_len;
-}
-
-static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
-{
- return;
-}
-
-static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
-
- if (info->need_wait) {
- info->need_wait = 0;
- if (!wait_for_completion_timeout(&info->dev_ready,
- CHIP_DELAY_TIMEOUT)) {
- dev_err(&info->pdev->dev, "Ready time out!!!\n");
- return NAND_STATUS_FAIL;
- }
- }
-
- /* pxa3xx_nand_send_command has waited for command complete */
- if (this->state == FL_WRITING || this->state == FL_ERASING) {
- if (info->retcode == ERR_NONE)
- return 0;
- else
- return NAND_STATUS_FAIL;
- }
-
- return NAND_STATUS_READY;
-}
-
-static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info)
-{
- struct pxa3xx_nand_host *host = info->host[info->cs];
- struct platform_device *pdev = info->pdev;
- struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
- const struct nand_sdr_timings *timings;
-
- /* Configure default flash values */
- info->chunk_size = PAGE_CHUNK_SIZE;
- info->reg_ndcr = 0x0; /* enable all interrupts */
- info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
- info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
- info->reg_ndcr |= NDCR_SPARE_EN;
-
- /* use the common timing to make a try */
- timings = onfi_async_timing_mode_to_sdr_timings(0);
- if (IS_ERR(timings))
- return PTR_ERR(timings);
-
- pxa3xx_nand_set_sdr_timing(host, timings);
- return 0;
-}
-
-static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info)
-{
- struct pxa3xx_nand_host *host = info->host[info->cs];
- struct nand_chip *chip = &host->chip;
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
- info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0;
- info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0;
-}
-
-static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
-{
- struct platform_device *pdev = info->pdev;
- struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
- uint32_t ndcr = nand_readl(info, NDCR);
-
- /* Set an initial chunk size */
- info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512;
- info->reg_ndcr = ndcr &
- ~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL);
- info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
- info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
- info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
-}
-
-static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
-{
- struct platform_device *pdev = info->pdev;
- struct dma_slave_config config;
- dma_cap_mask_t mask;
- struct pxad_param param;
- int ret;
-
- info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
- if (info->data_buff == NULL)
- return -ENOMEM;
- if (use_dma == 0)
- return 0;
-
- ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
- if (ret)
- return ret;
-
- sg_init_one(&info->sg, info->data_buff, info->buf_size);
- dma_cap_zero(mask);
- dma_cap_set(DMA_SLAVE, mask);
- param.prio = PXAD_PRIO_LOWEST;
- param.drcmr = info->drcmr_dat;
- info->dma_chan = dma_request_slave_channel_compat(mask, pxad_filter_fn,
- &param, &pdev->dev,
- "data");
- if (!info->dma_chan) {
- dev_err(&pdev->dev, "unable to request data dma channel\n");
- return -ENODEV;
- }
-
- memset(&config, 0, sizeof(config));
- config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- config.src_addr = info->mmio_phys + NDDB;
- config.dst_addr = info->mmio_phys + NDDB;
- config.src_maxburst = 32;
- config.dst_maxburst = 32;
- ret = dmaengine_slave_config(info->dma_chan, &config);
- if (ret < 0) {
- dev_err(&info->pdev->dev,
- "dma channel configuration failed: %d\n",
- ret);
- return ret;
- }
-
- /*
- * Now that DMA buffers are allocated we turn on
- * DMA proper for I/O operations.
- */
- info->use_dma = 1;
- return 0;
-}
-
-static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info)
-{
- if (info->use_dma) {
- dmaengine_terminate_all(info->dma_chan);
- dma_release_channel(info->dma_chan);
- }
- kfree(info->data_buff);
-}
-
-static int pxa_ecc_init(struct pxa3xx_nand_info *info,
- struct mtd_info *mtd,
- int strength, int ecc_stepsize, int page_size)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
-
- if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) {
- info->nfullchunks = 1;
- info->ntotalchunks = 1;
- info->chunk_size = 2048;
- info->spare_size = 40;
- info->ecc_size = 24;
- ecc->mode = NAND_ECC_HW;
- ecc->size = 512;
- ecc->strength = 1;
-
- } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) {
- info->nfullchunks = 1;
- info->ntotalchunks = 1;
- info->chunk_size = 512;
- info->spare_size = 8;
- info->ecc_size = 8;
- ecc->mode = NAND_ECC_HW;
- ecc->size = 512;
- ecc->strength = 1;
-
- /*
- * Required ECC: 4-bit correction per 512 bytes
- * Select: 16-bit correction per 2048 bytes
- */
- } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) {
- info->ecc_bch = 1;
- info->nfullchunks = 1;
- info->ntotalchunks = 1;
- info->chunk_size = 2048;
- info->spare_size = 32;
- info->ecc_size = 32;
- ecc->mode = NAND_ECC_HW;
- ecc->size = info->chunk_size;
- mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
- ecc->strength = 16;
-
- } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) {
- info->ecc_bch = 1;
- info->nfullchunks = 2;
- info->ntotalchunks = 2;
- info->chunk_size = 2048;
- info->spare_size = 32;
- info->ecc_size = 32;
- ecc->mode = NAND_ECC_HW;
- ecc->size = info->chunk_size;
- mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
- ecc->strength = 16;
-
- /*
- * Required ECC: 8-bit correction per 512 bytes
- * Select: 16-bit correction per 1024 bytes
- */
- } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) {
- info->ecc_bch = 1;
- info->nfullchunks = 4;
- info->ntotalchunks = 5;
- info->chunk_size = 1024;
- info->spare_size = 0;
- info->last_chunk_size = 0;
- info->last_spare_size = 64;
- info->ecc_size = 32;
- ecc->mode = NAND_ECC_HW;
- ecc->size = info->chunk_size;
- mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
- ecc->strength = 16;
- } else {
- dev_err(&info->pdev->dev,
- "ECC strength %d at page size %d is not supported\n",
- strength, page_size);
- return -ENODEV;
- }
-
- dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n",
- ecc->strength, ecc->size);
- return 0;
-}
-
-static int pxa3xx_nand_scan(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
- struct pxa3xx_nand_info *info = host->info_data;
- struct platform_device *pdev = info->pdev;
- struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
- int ret;
- uint16_t ecc_strength, ecc_step;
-
- if (pdata->keep_config) {
- pxa3xx_nand_detect_config(info);
- } else {
- ret = pxa3xx_nand_config_ident(info);
- if (ret)
- return ret;
- }
-
- if (info->reg_ndcr & NDCR_DWIDTH_M)
- chip->options |= NAND_BUSWIDTH_16;
-
- /* Device detection must be done with ECC disabled */
- if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
- info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K)
- nand_writel(info, NDECCCTRL, 0x0);
-
- if (pdata->flash_bbt)
- chip->bbt_options |= NAND_BBT_USE_FLASH;
-
- chip->ecc.strength = pdata->ecc_strength;
- chip->ecc.size = pdata->ecc_step_size;
-
- ret = nand_scan_ident(mtd, 1, NULL);
- if (ret)
- return ret;
-
- if (!pdata->keep_config) {
- ret = pxa3xx_nand_init(host);
- if (ret) {
- dev_err(&info->pdev->dev, "Failed to init nand: %d\n",
- ret);
- return ret;
- }
- }
-
- if (chip->bbt_options & NAND_BBT_USE_FLASH) {
- /*
- * We'll use a bad block table stored in-flash and don't
- * allow writing the bad block marker to the flash.
- */
- chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
- chip->bbt_td = &bbt_main_descr;
- chip->bbt_md = &bbt_mirror_descr;
- }
-
- /*
- * If the page size is bigger than the FIFO size, let's check
- * we are given the right variant and then switch to the extended
- * (aka splitted) command handling,
- */
- if (mtd->writesize > PAGE_CHUNK_SIZE) {
- if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
- info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) {
- chip->cmdfunc = nand_cmdfunc_extended;
- } else {
- dev_err(&info->pdev->dev,
- "unsupported page size on this variant\n");
- return -ENODEV;
- }
- }
-
- ecc_strength = chip->ecc.strength;
- ecc_step = chip->ecc.size;
- if (!ecc_strength || !ecc_step) {
- ecc_strength = chip->ecc_strength_ds;
- ecc_step = chip->ecc_step_ds;
- }
-
- /* Set default ECC strength requirements on non-ONFI devices */
- if (ecc_strength < 1 && ecc_step < 1) {
- ecc_strength = 1;
- ecc_step = 512;
- }
-
- ret = pxa_ecc_init(info, mtd, ecc_strength,
- ecc_step, mtd->writesize);
- if (ret)
- return ret;
-
- /* calculate addressing information */
- if (mtd->writesize >= 2048)
- host->col_addr_cycles = 2;
- else
- host->col_addr_cycles = 1;
-
- /* release the initial buffer */
- kfree(info->data_buff);
-
- /* allocate the real data + oob buffer */
- info->buf_size = mtd->writesize + mtd->oobsize;
- ret = pxa3xx_nand_init_buff(info);
- if (ret)
- return ret;
- info->oob_buff = info->data_buff + mtd->writesize;
-
- if ((mtd->size >> chip->page_shift) > 65536)
- host->row_addr_cycles = 3;
- else
- host->row_addr_cycles = 2;
-
- if (!pdata->keep_config)
- pxa3xx_nand_config_tail(info);
-
- return nand_scan_tail(mtd);
-}
-
-static int alloc_nand_resource(struct platform_device *pdev)
-{
- struct device_node *np = pdev->dev.of_node;
- struct pxa3xx_nand_platform_data *pdata;
- struct pxa3xx_nand_info *info;
- struct pxa3xx_nand_host *host;
- struct nand_chip *chip = NULL;
- struct mtd_info *mtd;
- struct resource *r;
- int ret, irq, cs;
-
- pdata = dev_get_platdata(&pdev->dev);
- if (pdata->num_cs <= 0) {
- dev_err(&pdev->dev, "invalid number of chip selects\n");
- return -ENODEV;
- }
-
- info = devm_kzalloc(&pdev->dev,
- sizeof(*info) + sizeof(*host) * pdata->num_cs,
- GFP_KERNEL);
- if (!info)
- return -ENOMEM;
-
- info->pdev = pdev;
- info->variant = pxa3xx_nand_get_variant(pdev);
- for (cs = 0; cs < pdata->num_cs; cs++) {
- host = (void *)&info[1] + sizeof(*host) * cs;
- chip = &host->chip;
- nand_set_controller_data(chip, host);
- mtd = nand_to_mtd(chip);
- info->host[cs] = host;
- host->cs = cs;
- host->info_data = info;
- mtd->dev.parent = &pdev->dev;
- /* FIXME: all chips use the same device tree partitions */
- nand_set_flash_node(chip, np);
-
- nand_set_controller_data(chip, host);
- chip->ecc.read_page = pxa3xx_nand_read_page_hwecc;
- chip->ecc.write_page = pxa3xx_nand_write_page_hwecc;
- chip->controller = &info->controller;
- chip->waitfunc = pxa3xx_nand_waitfunc;
- chip->select_chip = pxa3xx_nand_select_chip;
- chip->read_word = pxa3xx_nand_read_word;
- chip->read_byte = pxa3xx_nand_read_byte;
- chip->read_buf = pxa3xx_nand_read_buf;
- chip->write_buf = pxa3xx_nand_write_buf;
- chip->options |= NAND_NO_SUBPAGE_WRITE;
- chip->cmdfunc = nand_cmdfunc;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
- }
-
- nand_hw_control_init(chip->controller);
- info->clk = devm_clk_get(&pdev->dev, NULL);
- if (IS_ERR(info->clk)) {
- ret = PTR_ERR(info->clk);
- dev_err(&pdev->dev, "failed to get nand clock: %d\n", ret);
- return ret;
- }
- ret = clk_prepare_enable(info->clk);
- if (ret < 0)
- return ret;
-
- if (!np && use_dma) {
- r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
- if (r == NULL) {
- dev_err(&pdev->dev,
- "no resource defined for data DMA\n");
- ret = -ENXIO;
- goto fail_disable_clk;
- }
- info->drcmr_dat = r->start;
- }
-
- irq = platform_get_irq(pdev, 0);
- if (irq < 0) {
- dev_err(&pdev->dev, "no IRQ resource defined\n");
- ret = -ENXIO;
- goto fail_disable_clk;
- }
-
- r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- info->mmio_base = devm_ioremap_resource(&pdev->dev, r);
- if (IS_ERR(info->mmio_base)) {
- ret = PTR_ERR(info->mmio_base);
- dev_err(&pdev->dev, "failed to map register space: %d\n", ret);
- goto fail_disable_clk;
- }
- info->mmio_phys = r->start;
-
- /* Allocate a buffer to allow flash detection */
- info->buf_size = INIT_BUFFER_SIZE;
- info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
- if (info->data_buff == NULL) {
- ret = -ENOMEM;
- goto fail_disable_clk;
- }
-
- /* initialize all interrupts to be disabled */
- disable_int(info, NDSR_MASK);
-
- ret = request_threaded_irq(irq, pxa3xx_nand_irq,
- pxa3xx_nand_irq_thread, IRQF_ONESHOT,
- pdev->name, info);
- if (ret < 0) {
- dev_err(&pdev->dev, "failed to request IRQ: %d\n", ret);
- goto fail_free_buf;
- }
-
- platform_set_drvdata(pdev, info);
-
- return 0;
-
-fail_free_buf:
- free_irq(irq, info);
- kfree(info->data_buff);
-fail_disable_clk:
- clk_disable_unprepare(info->clk);
- return ret;
-}
-
-static int pxa3xx_nand_remove(struct platform_device *pdev)
-{
- struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
- struct pxa3xx_nand_platform_data *pdata;
- int irq, cs;
-
- if (!info)
- return 0;
-
- pdata = dev_get_platdata(&pdev->dev);
-
- irq = platform_get_irq(pdev, 0);
- if (irq >= 0)
- free_irq(irq, info);
- pxa3xx_nand_free_buff(info);
-
- /*
- * In the pxa3xx case, the DFI bus is shared between the SMC and NFC.
- * In order to prevent a lockup of the system bus, the DFI bus
- * arbitration is granted to SMC upon driver removal. This is done by
- * setting the x_ARB_CNTL bit, which also prevents the NAND to have
- * access to the bus anymore.
- */
- nand_writel(info, NDCR,
- (nand_readl(info, NDCR) & ~NDCR_ND_ARB_EN) |
- NFCV1_NDCR_ARB_CNTL);
- clk_disable_unprepare(info->clk);
-
- for (cs = 0; cs < pdata->num_cs; cs++)
- nand_release(nand_to_mtd(&info->host[cs]->chip));
- return 0;
-}
-
-static int pxa3xx_nand_probe_dt(struct platform_device *pdev)
-{
- struct pxa3xx_nand_platform_data *pdata;
- struct device_node *np = pdev->dev.of_node;
- const struct of_device_id *of_id =
- of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
-
- if (!of_id)
- return 0;
-
- /*
- * Some SoCs like A7k/A8k need to enable manually the NAND
- * controller to avoid being bootloader dependent. This is done
- * through the use of a single bit in the System Functions registers.
- */
- if (pxa3xx_nand_get_variant(pdev) == PXA3XX_NAND_VARIANT_ARMADA_8K) {
- struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle(
- pdev->dev.of_node, "marvell,system-controller");
- u32 reg;
-
- if (IS_ERR(sysctrl_base))
- return PTR_ERR(sysctrl_base);
-
- regmap_read(sysctrl_base, GENCONF_SOC_DEVICE_MUX, &reg);
- reg |= GENCONF_SOC_DEVICE_MUX_NFC_EN;
- regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
- }
-
- pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
- if (!pdata)
- return -ENOMEM;
-
- if (of_get_property(np, "marvell,nand-enable-arbiter", NULL))
- pdata->enable_arbiter = 1;
- if (of_get_property(np, "marvell,nand-keep-config", NULL))
- pdata->keep_config = 1;
- of_property_read_u32(np, "num-cs", &pdata->num_cs);
-
- pdev->dev.platform_data = pdata;
-
- return 0;
-}
-
-static int pxa3xx_nand_probe(struct platform_device *pdev)
-{
- struct pxa3xx_nand_platform_data *pdata;
- struct pxa3xx_nand_info *info;
- int ret, cs, probe_success, dma_available;
-
- dma_available = IS_ENABLED(CONFIG_ARM) &&
- (IS_ENABLED(CONFIG_ARCH_PXA) || IS_ENABLED(CONFIG_ARCH_MMP));
- if (use_dma && !dma_available) {
- use_dma = 0;
- dev_warn(&pdev->dev,
- "This platform can't do DMA on this device\n");
- }
-
- ret = pxa3xx_nand_probe_dt(pdev);
- if (ret)
- return ret;
-
- pdata = dev_get_platdata(&pdev->dev);
- if (!pdata) {
- dev_err(&pdev->dev, "no platform data defined\n");
- return -ENODEV;
- }
-
- ret = alloc_nand_resource(pdev);
- if (ret)
- return ret;
-
- info = platform_get_drvdata(pdev);
- probe_success = 0;
- for (cs = 0; cs < pdata->num_cs; cs++) {
- struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip);
-
- /*
- * The mtd name matches the one used in 'mtdparts' kernel
- * parameter. This name cannot be changed or otherwise
- * user's mtd partitions configuration would get broken.
- */
- mtd->name = "pxa3xx_nand-0";
- info->cs = cs;
- ret = pxa3xx_nand_scan(mtd);
- if (ret) {
- dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
- cs);
- continue;
- }
-
- ret = mtd_device_register(mtd, pdata->parts[cs],
- pdata->nr_parts[cs]);
- if (!ret)
- probe_success = 1;
- }
-
- if (!probe_success) {
- pxa3xx_nand_remove(pdev);
- return -ENODEV;
- }
-
- return 0;
-}
-
-#ifdef CONFIG_PM
-static int pxa3xx_nand_suspend(struct device *dev)
-{
- struct pxa3xx_nand_info *info = dev_get_drvdata(dev);
-
- if (info->state) {
- dev_err(dev, "driver busy, state = %d\n", info->state);
- return -EAGAIN;
- }
-
- clk_disable(info->clk);
- return 0;
-}
-
-static int pxa3xx_nand_resume(struct device *dev)
-{
- struct pxa3xx_nand_info *info = dev_get_drvdata(dev);
- int ret;
-
- ret = clk_enable(info->clk);
- if (ret < 0)
- return ret;
-
- /* We don't want to handle interrupt without calling mtd routine */
- disable_int(info, NDCR_INT_MASK);
-
- /*
- * Directly set the chip select to a invalid value,
- * then the driver would reset the timing according
- * to current chip select at the beginning of cmdfunc
- */
- info->cs = 0xff;
-
- /*
- * As the spec says, the NDSR would be updated to 0x1800 when
- * doing the nand_clk disable/enable.
- * To prevent it damaging state machine of the driver, clear
- * all status before resume
- */
- nand_writel(info, NDSR, NDSR_MASK);
-
- return 0;
-}
-#else
-#define pxa3xx_nand_suspend NULL
-#define pxa3xx_nand_resume NULL
-#endif
-
-static const struct dev_pm_ops pxa3xx_nand_pm_ops = {
- .suspend = pxa3xx_nand_suspend,
- .resume = pxa3xx_nand_resume,
-};
-
-static struct platform_driver pxa3xx_nand_driver = {
- .driver = {
- .name = "pxa3xx-nand",
- .of_match_table = pxa3xx_nand_dt_ids,
- .pm = &pxa3xx_nand_pm_ops,
- },
- .probe = pxa3xx_nand_probe,
- .remove = pxa3xx_nand_remove,
-};
-
-module_platform_driver(pxa3xx_nand_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_DESCRIPTION("PXA3xx NAND controller driver");
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
new file mode 100644
index 000000000000..46b29d277804
--- /dev/null
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -0,0 +1,537 @@
+config MTD_NAND_ECC
+ tristate
+
+config MTD_NAND_ECC_SMC
+ bool "NAND ECC Smart Media byte order"
+ depends on MTD_NAND_ECC
+ default n
+ help
+ Software ECC according to the Smart Media Specification.
+ The original Linux implementation had byte 0 and 1 swapped.
+
+
+menuconfig MTD_NAND
+ tristate "Raw/Parallel NAND Device Support"
+ depends on MTD
+ select MTD_NAND_ECC
+ help
+ This enables support for accessing all type of raw/parallel
+ NAND flash devices. For further information see
+ <http://www.linux-mtd.infradead.org/doc/nand.html>.
+
+if MTD_NAND
+
+config MTD_NAND_BCH
+ tristate
+ select BCH
+ depends on MTD_NAND_ECC_BCH
+ default MTD_NAND
+
+config MTD_NAND_ECC_BCH
+ bool "Support software BCH ECC"
+ default n
+ help
+ This enables support for software BCH error correction. Binary BCH
+ codes are more powerful and cpu intensive than traditional Hamming
+ ECC codes. They are used with NAND devices requiring more than 1 bit
+ of error correction.
+
+config MTD_SM_COMMON
+ tristate
+ default n
+
+config MTD_NAND_DENALI
+ tristate
+
+config MTD_NAND_DENALI_PCI
+ tristate "Support Denali NAND controller on Intel Moorestown"
+ select MTD_NAND_DENALI
+ depends on HAS_DMA && PCI
+ help
+ Enable the driver for NAND flash on Intel Moorestown, using the
+ Denali NAND controller core.
+
+config MTD_NAND_DENALI_DT
+ tristate "Support Denali NAND controller as a DT device"
+ select MTD_NAND_DENALI
+ depends on HAS_DMA && HAVE_CLK && OF
+ help
+ Enable the driver for NAND flash on platforms using a Denali NAND
+ controller as a DT device.
+
+config MTD_NAND_GPIO
+ tristate "GPIO assisted NAND Flash driver"
+ depends on GPIOLIB || COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+ This enables a NAND flash driver where control signals are
+ connected to GPIO pins, and commands and data are communicated
+ via a memory mapped interface.
+
+config MTD_NAND_AMS_DELTA
+ tristate "NAND Flash device on Amstrad E3"
+ depends on MACH_AMS_DELTA
+ default y
+ help
+ Support for NAND flash on Amstrad E3 (Delta).
+
+config MTD_NAND_OMAP2
+ tristate "NAND Flash device on OMAP2, OMAP3, OMAP4 and Keystone"
+ depends on (ARCH_OMAP2PLUS || ARCH_KEYSTONE)
+ help
+ Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4
+ and Keystone platforms.
+
+config MTD_NAND_OMAP_BCH
+ depends on MTD_NAND_OMAP2
+ bool "Support hardware based BCH error correction"
+ default n
+ select BCH
+ help
+ This config enables the ELM hardware engine, which can be used to
+ locate and correct errors when using BCH ECC scheme. This offloads
+ the cpu from doing ECC error searching and correction. However some
+ legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine
+ so this is optional for them.
+
+config MTD_NAND_OMAP_BCH_BUILD
+ def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH
+
+config MTD_NAND_RICOH
+ tristate "Ricoh xD card reader"
+ default n
+ depends on PCI
+ select MTD_SM_COMMON
+ help
+ Enable support for Ricoh R5C852 xD card reader
+ You also need to enable ether
+ NAND SSFDC (SmartMedia) read only translation layer' or new
+ expermental, readwrite
+ 'SmartMedia/xD new translation layer'
+
+config MTD_NAND_AU1550
+ tristate "Au1550/1200 NAND support"
+ depends on MIPS_ALCHEMY
+ help
+ This enables the driver for the NAND flash controller on the
+ AMD/Alchemy 1550 SOC.
+
+config MTD_NAND_S3C2410
+ tristate "NAND Flash support for Samsung S3C SoCs"
+ depends on ARCH_S3C24XX || ARCH_S3C64XX
+ help
+ This enables the NAND flash controller on the S3C24xx and S3C64xx
+ SoCs
+
+ No board specific support is done by this driver, each board
+ must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_S3C2410_DEBUG
+ bool "Samsung S3C NAND driver debug"
+ depends on MTD_NAND_S3C2410
+ help
+ Enable debugging of the S3C NAND driver
+
+config MTD_NAND_NDFC
+ tristate "NDFC NanD Flash Controller"
+ depends on 4xx
+ select MTD_NAND_ECC_SMC
+ help
+ NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
+
+config MTD_NAND_S3C2410_CLKSTOP
+ bool "Samsung S3C NAND IDLE clock stop"
+ depends on MTD_NAND_S3C2410
+ default n
+ help
+ Stop the clock to the NAND controller when there is no chip
+ selected to save power. This will mean there is a small delay
+ when the is NAND chip selected or released, but will save
+ approximately 5mA of power when there is nothing happening.
+
+config MTD_NAND_TANGO
+ tristate "NAND Flash support for Tango chips"
+ depends on ARCH_TANGO || COMPILE_TEST
+ depends on HAS_DMA
+ help
+ Enables the NAND Flash controller on Tango chips.
+
+config MTD_NAND_DISKONCHIP
+ tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)"
+ depends on HAS_IOMEM
+ select REED_SOLOMON
+ select REED_SOLOMON_DEC16
+ help
+ This is a reimplementation of M-Systems DiskOnChip 2000,
+ Millennium and Millennium Plus as a standard NAND device driver,
+ as opposed to the earlier self-contained MTD device drivers.
+ This should enable, among other things, proper JFFS2 operation on
+ these devices.
+
+config MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+ bool "Advanced detection options for DiskOnChip"
+ depends on MTD_NAND_DISKONCHIP
+ help
+ This option allows you to specify nonstandard address at which to
+ probe for a DiskOnChip, or to change the detection options. You
+ are unlikely to need any of this unless you are using LinuxBIOS.
+ Say 'N'.
+
+config MTD_NAND_DISKONCHIP_PROBE_ADDRESS
+ hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+ depends on MTD_NAND_DISKONCHIP
+ default "0"
+ ---help---
+ By default, the probe for DiskOnChip devices will look for a
+ DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+ This option allows you to specify a single address at which to probe
+ for the device, which is useful if you have other devices in that
+ range which get upset when they are probed.
+
+ (Note that on PowerPC, the normal probe will only check at
+ 0xE4000000.)
+
+ Normally, you should leave this set to zero, to allow the probe at
+ the normal addresses.
+
+config MTD_NAND_DISKONCHIP_PROBE_HIGH
+ bool "Probe high addresses"
+ depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+ help
+ By default, the probe for DiskOnChip devices will look for a
+ DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+ This option changes to make it probe between 0xFFFC8000 and
+ 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be
+ useful to you. Say 'N'.
+
+config MTD_NAND_DISKONCHIP_BBTWRITE
+ bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
+ depends on MTD_NAND_DISKONCHIP
+ help
+ On DiskOnChip devices shipped with the INFTL filesystem (Millennium
+ and 2000 TSOP/Alon), Linux reserves some space at the end of the
+ device for the Bad Block Table (BBT). If you have existing INFTL
+ data on your device (created by non-Linux tools such as M-Systems'
+ DOS drivers), your data might overlap the area Linux wants to use for
+ the BBT. If this is a concern for you, leave this option disabled and
+ Linux will not write BBT data into this area.
+ The downside of leaving this option disabled is that if bad blocks
+ are detected by Linux, they will not be recorded in the BBT, which
+ could cause future problems.
+ Once you enable this option, new filesystems (INFTL or others, created
+ in Linux or other operating systems) will not use the reserved area.
+ The only reason not to enable this option is to prevent damage to
+ preexisting filesystems.
+ Even if you leave this disabled, you can enable BBT writes at module
+ load time (assuming you build diskonchip as a module) with the module
+ parameter "inftl_bbt_write=1".
+
+config MTD_NAND_DOCG4
+ tristate "Support for DiskOnChip G4"
+ depends on HAS_IOMEM
+ select BCH
+ select BITREVERSE
+ help
+ Support for diskonchip G4 nand flash, found in various smartphones and
+ PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba
+ Portege G900, Asus P526, and O2 XDA Zinc.
+
+ With this driver you will be able to use UBI and create a ubifs on the
+ device, so you may wish to consider enabling UBI and UBIFS as well.
+
+ These devices ship with the Mys/Sandisk SAFTL formatting, for which
+ there is currently no mtd parser, so you may want to use command line
+ partitioning to segregate write-protected blocks. On the Treo680, the
+ first five erase blocks (256KiB each) are write-protected, followed
+ by the block containing the saftl partition table. This is probably
+ typical.
+
+config MTD_NAND_SHARPSL
+ tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)"
+ depends on ARCH_PXA
+
+config MTD_NAND_CAFE
+ tristate "NAND support for OLPC CAFÉ chip"
+ depends on PCI
+ select REED_SOLOMON
+ select REED_SOLOMON_DEC16
+ help
+ Use NAND flash attached to the CAFÉ chip designed for the OLPC
+ laptop.
+
+config MTD_NAND_CS553X
+ tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)"
+ depends on X86_32
+ depends on !UML && HAS_IOMEM
+ help
+ The CS553x companion chips for the AMD Geode processor
+ include NAND flash controllers with built-in hardware ECC
+ capabilities; enabling this option will allow you to use
+ these. The driver will check the MSRs to verify that the
+ controller is enabled for NAND, and currently requires that
+ the controller be in MMIO mode.
+
+ If you say "m", the module will be called cs553x_nand.
+
+config MTD_NAND_ATMEL
+ tristate "Support for NAND Flash / SmartMedia on AT91"
+ depends on ARCH_AT91
+ select MFD_ATMEL_SMC
+ help
+ Enables support for NAND Flash / Smart Media Card interface
+ on Atmel AT91 processors.
+
+config MTD_NAND_MARVELL
+ tristate "NAND controller support on Marvell boards"
+ depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
+ COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+ This enables the NAND flash controller driver for Marvell boards,
+ including:
+ - PXA3xx processors (NFCv1)
+ - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
+ - 64-bit Aramda platforms (7k, 8k) (NFCv2)
+
+config MTD_NAND_SLC_LPC32XX
+ tristate "NXP LPC32xx SLC Controller"
+ depends on ARCH_LPC32XX
+ help
+ Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell
+ chips) NAND controller. This is the default for the PHYTEC 3250
+ reference board which contains a NAND256R3A2CZA6 chip.
+
+ Please check the actual NAND chip connected and its support
+ by the SLC NAND controller.
+
+config MTD_NAND_MLC_LPC32XX
+ tristate "NXP LPC32xx MLC Controller"
+ depends on ARCH_LPC32XX
+ help
+ Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND
+ controller. This is the default for the WORK92105 controller
+ board.
+
+ Please check the actual NAND chip connected and its support
+ by the MLC NAND controller.
+
+config MTD_NAND_CM_X270
+ tristate "Support for NAND Flash on CM-X270 modules"
+ depends on MACH_ARMCORE
+
+config MTD_NAND_PASEMI
+ tristate "NAND support for PA Semi PWRficient"
+ depends on PPC_PASEMI
+ help
+ Enables support for NAND Flash interface on PA Semi PWRficient
+ based boards
+
+config MTD_NAND_TMIO
+ tristate "NAND Flash device on Toshiba Mobile IO Controller"
+ depends on MFD_TMIO
+ help
+ Support for NAND flash connected to a Toshiba Mobile IO
+ Controller in some PDAs, including the Sharp SL6000x.
+
+config MTD_NAND_NANDSIM
+ tristate "Support for NAND Flash Simulator"
+ help
+ The simulator may simulate various NAND flash chips for the
+ MTD nand layer.
+
+config MTD_NAND_GPMI_NAND
+ tristate "GPMI NAND Flash Controller driver"
+ depends on MTD_NAND && MXS_DMA
+ help
+ Enables NAND Flash support for IMX23, IMX28 or IMX6.
+ The GPMI controller is very powerful, with the help of BCH
+ module, it can do the hardware ECC. The GPMI supports several
+ NAND flashs at the same time.
+
+config MTD_NAND_BRCMNAND
+ tristate "Broadcom STB NAND controller"
+ depends on ARM || ARM64 || MIPS
+ help
+ Enables the Broadcom NAND controller driver. The controller was
+ originally designed for Set-Top Box but is used on various BCM7xxx,
+ BCM3xxx, BCM63xxx, iProc/Cygnus and more.
+
+config MTD_NAND_BCM47XXNFLASH
+ tristate "Support for NAND flash on BCM4706 BCMA bus"
+ depends on BCMA_NFLASH
+ help
+ BCMA bus can have various flash memories attached, they are
+ registered by bcma as platform devices. This enables driver for
+ NAND flash memories. For now only BCM4706 is supported.
+
+config MTD_NAND_PLATFORM
+ tristate "Support for generic platform NAND driver"
+ depends on HAS_IOMEM
+ help
+ This implements a generic NAND driver for on-SOC platform
+ devices. You will need to provide platform-specific functions
+ via platform_data.
+
+config MTD_NAND_ORION
+ tristate "NAND Flash support for Marvell Orion SoC"
+ depends on PLAT_ORION
+ help
+ This enables the NAND flash controller on Orion machines.
+
+ No board specific support is done by this driver, each board
+ must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_OXNAS
+ tristate "NAND Flash support for Oxford Semiconductor SoC"
+ depends on ARCH_OXNAS || COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+ This enables the NAND flash controller on Oxford Semiconductor SoCs.
+
+config MTD_NAND_FSL_ELBC
+ tristate "NAND support for Freescale eLBC controllers"
+ depends on FSL_SOC
+ select FSL_LBC
+ help
+ Various Freescale chips, including the 8313, include a NAND Flash
+ Controller Module with built-in hardware ECC capabilities.
+ Enabling this option will enable you to use this to control
+ external NAND devices.
+
+config MTD_NAND_FSL_IFC
+ tristate "NAND support for Freescale IFC controller"
+ depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A
+ select FSL_IFC
+ select MEMORY
+ help
+ Various Freescale chips e.g P1010, include a NAND Flash machine
+ with built-in hardware ECC capabilities.
+ Enabling this option will enable you to use this to control
+ external NAND devices.
+
+config MTD_NAND_FSL_UPM
+ tristate "Support for NAND on Freescale UPM"
+ depends on PPC_83xx || PPC_85xx
+ select FSL_LBC
+ help
+ Enables support for NAND Flash chips wired onto Freescale PowerPC
+ processor localbus with User-Programmable Machine support.
+
+config MTD_NAND_MPC5121_NFC
+ tristate "MPC5121 built-in NAND Flash Controller support"
+ depends on PPC_MPC512x
+ help
+ This enables the driver for the NAND flash controller on the
+ MPC5121 SoC.
+
+config MTD_NAND_VF610_NFC
+ tristate "Support for Freescale NFC for VF610/MPC5125"
+ depends on (SOC_VF610 || COMPILE_TEST)
+ depends on HAS_IOMEM
+ help
+ Enables support for NAND Flash Controller on some Freescale
+ processors like the VF610, MPC5125, MCF54418 or Kinetis K70.
+ The driver supports a maximum 2k page size. With 2k pages and
+ 64 bytes or more of OOB, hardware ECC with up to 32-bit error
+ correction is supported. Hardware ECC is only enabled through
+ device tree.
+
+config MTD_NAND_MXC
+ tristate "MXC NAND support"
+ depends on ARCH_MXC
+ help
+ This enables the driver for the NAND flash controller on the
+ MXC processors.
+
+config MTD_NAND_SH_FLCTL
+ tristate "Support for NAND on Renesas SuperH FLCTL"
+ depends on SUPERH || COMPILE_TEST
+ depends on HAS_IOMEM
+ depends on HAS_DMA
+ help
+ Several Renesas SuperH CPU has FLCTL. This option enables support
+ for NAND Flash using FLCTL.
+
+config MTD_NAND_DAVINCI
+ tristate "Support NAND on DaVinci/Keystone SoC"
+ depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF)
+ help
+ Enable the driver for NAND flash chips on Texas Instruments
+ DaVinci/Keystone processors.
+
+config MTD_NAND_TXX9NDFMC
+ tristate "NAND Flash support for TXx9 SoC"
+ depends on SOC_TX4938 || SOC_TX4939
+ help
+ This enables the NAND flash controller on the TXx9 SoCs.
+
+config MTD_NAND_SOCRATES
+ tristate "Support for NAND on Socrates board"
+ depends on SOCRATES
+ help
+ Enables support for NAND Flash chips wired onto Socrates board.
+
+config MTD_NAND_NUC900
+ tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards."
+ depends on ARCH_W90X900
+ help
+ This enables the driver for the NAND Flash on evaluation board based
+ on w90p910 / NUC9xx.
+
+config MTD_NAND_JZ4740
+ tristate "Support for JZ4740 SoC NAND controller"
+ depends on MACH_JZ4740
+ help
+ Enables support for NAND Flash on JZ4740 SoC based boards.
+
+config MTD_NAND_JZ4780
+ tristate "Support for NAND on JZ4780 SoC"
+ depends on MACH_JZ4780 && JZ4780_NEMC
+ help
+ Enables support for NAND Flash connected to the NEMC on JZ4780 SoC
+ based boards, using the BCH controller for hardware error correction.
+
+config MTD_NAND_FSMC
+ tristate "Support for NAND on ST Micros FSMC"
+ depends on OF
+ depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300
+ help
+ Enables support for NAND Flash chips on the ST Microelectronics
+ Flexible Static Memory Controller (FSMC)
+
+config MTD_NAND_XWAY
+ bool "Support for NAND on Lantiq XWAY SoC"
+ depends on LANTIQ && SOC_TYPE_XWAY
+ help
+ Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
+ to the External Bus Unit (EBU).
+
+config MTD_NAND_SUNXI
+ tristate "Support for NAND on Allwinner SoCs"
+ depends on ARCH_SUNXI
+ help
+ Enables support for NAND Flash chips on Allwinner SoCs.
+
+config MTD_NAND_HISI504
+ tristate "Support for NAND controller on Hisilicon SoC Hip04"
+ depends on ARCH_HISI || COMPILE_TEST
+ depends on HAS_DMA
+ help
+ Enables support for NAND controller on Hisilicon SoC Hip04.
+
+config MTD_NAND_QCOM
+ tristate "Support for NAND on QCOM SoCs"
+ depends on ARCH_QCOM
+ help
+ Enables support for NAND flash chips on SoCs containing the EBI2 NAND
+ controller. This controller is found on IPQ806x SoC.
+
+config MTD_NAND_MTK
+ tristate "Support for NAND controller on MTK SoCs"
+ depends on ARCH_MEDIATEK || COMPILE_TEST
+ depends on HAS_DMA
+ help
+ Enables support for NAND controller on MTK SoCs.
+ This controller is found on mt27xx, mt81xx, mt65xx SoCs.
+
+endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
new file mode 100644
index 000000000000..165b7ef9e9a1
--- /dev/null
+++ b/drivers/mtd/nand/raw/Makefile
@@ -0,0 +1,66 @@
+# SPDX-License-Identifier: GPL-2.0
+
+obj-$(CONFIG_MTD_NAND) += nand.o
+obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o
+obj-$(CONFIG_MTD_NAND_BCH) += nand_bch.o
+obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o
+
+obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o
+obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o
+obj-$(CONFIG_MTD_NAND_DENALI) += denali.o
+obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o
+obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o
+obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o
+obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o
+obj-$(CONFIG_MTD_NAND_TANGO) += tango_nand.o
+obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o
+obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o
+obj-$(CONFIG_MTD_NAND_DOCG4) += docg4.o
+obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o
+obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o
+obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o
+obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o
+obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
+obj-$(CONFIG_MTD_NAND_ATMEL) += atmel/
+obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
+omap2_nand-objs := omap2.o
+obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o
+obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD) += omap_elm.o
+obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
+obj-$(CONFIG_MTD_NAND_MARVELL) += marvell_nand.o
+obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o
+obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o
+obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o
+obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o
+obj-$(CONFIG_MTD_NAND_OXNAS) += oxnas_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o
+obj-$(CONFIG_MTD_NAND_SLC_LPC32XX) += lpc32xx_slc.o
+obj-$(CONFIG_MTD_NAND_MLC_LPC32XX) += lpc32xx_mlc.o
+obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o
+obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o
+obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o
+obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o
+obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o
+obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o
+obj-$(CONFIG_MTD_NAND_VF610_NFC) += vf610_nfc.o
+obj-$(CONFIG_MTD_NAND_RICOH) += r852.o
+obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o
+obj-$(CONFIG_MTD_NAND_JZ4780) += jz4780_nand.o jz4780_bch.o
+obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/
+obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o
+obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
+obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
+obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
+obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
+obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
+obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
+
+nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
+nand-objs += nand_amd.o
+nand-objs += nand_hynix.o
+nand-objs += nand_macronix.o
+nand-objs += nand_micron.o
+nand-objs += nand_samsung.o
+nand-objs += nand_toshiba.o
diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/raw/ams-delta.c
index d60ada45c549..37a3cc21c7bc 100644
--- a/drivers/mtd/nand/ams-delta.c
+++ b/drivers/mtd/nand/raw/ams-delta.c
@@ -1,11 +1,12 @@
/*
- * drivers/mtd/nand/ams-delta.c
- *
* Copyright (C) 2006 Jonathan McDowell <noodles@earth.li>
*
- * Derived from drivers/mtd/toto.c
+ * Derived from drivers/mtd/nand/toto.c (removed in v2.6.28)
+ * Copyright (c) 2003 Texas Instruments
+ * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
+ *
* Converted to platform driver by Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
- * Partially stolen from drivers/mtd/nand/plat_nand.c
+ * Partially stolen from plat_nand.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -185,7 +186,7 @@ static int ams_delta_init(struct platform_device *pdev)
/* Allocate memory for MTD device structure and private data */
this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
if (!this) {
- printk (KERN_WARNING "Unable to allocate E3 NAND MTD device structure.\n");
+ pr_warn("Unable to allocate E3 NAND MTD device structure.\n");
err = -ENOMEM;
goto out;
}
@@ -219,7 +220,7 @@ static int ams_delta_init(struct platform_device *pdev)
this->dev_ready = ams_delta_nand_ready;
} else {
this->dev_ready = NULL;
- printk(KERN_NOTICE "Couldn't request gpio for Delta NAND ready.\n");
+ pr_notice("Couldn't request gpio for Delta NAND ready.\n");
}
/* 25 us command delay time */
this->chip_delay = 30;
diff --git a/drivers/mtd/nand/atmel/Makefile b/drivers/mtd/nand/raw/atmel/Makefile
index 288db4f38a8f..288db4f38a8f 100644
--- a/drivers/mtd/nand/atmel/Makefile
+++ b/drivers/mtd/nand/raw/atmel/Makefile
diff --git a/drivers/mtd/nand/atmel/nand-controller.c b/drivers/mtd/nand/raw/atmel/nand-controller.c
index b2f00b398490..12f6753d47ae 100644
--- a/drivers/mtd/nand/atmel/nand-controller.c
+++ b/drivers/mtd/nand/raw/atmel/nand-controller.c
@@ -9,10 +9,10 @@
*
* Copyright 2003 Rick Bronson
*
- * Derived from drivers/mtd/nand/autcpu12.c
+ * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
* Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
*
- * Derived from drivers/mtd/spia.c
+ * Derived from drivers/mtd/spia.c (removed in v3.8)
* Copyright 2000 Steven J. Hill (sjhill@cotw.com)
*
*
diff --git a/drivers/mtd/nand/atmel/pmecc.c b/drivers/mtd/nand/raw/atmel/pmecc.c
index fcbe4fd6e684..9de29c9afb0c 100644
--- a/drivers/mtd/nand/atmel/pmecc.c
+++ b/drivers/mtd/nand/raw/atmel/pmecc.c
@@ -9,10 +9,10 @@
*
* Copyright 2003 Rick Bronson
*
- * Derived from drivers/mtd/nand/autcpu12.c
+ * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
* Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
*
- * Derived from drivers/mtd/spia.c
+ * Derived from drivers/mtd/spia.c (removed in v3.8)
* Copyright 2000 Steven J. Hill (sjhill@cotw.com)
*
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
diff --git a/drivers/mtd/nand/atmel/pmecc.h b/drivers/mtd/nand/raw/atmel/pmecc.h
index 817e0dd9fd15..808f1be0d6ad 100644
--- a/drivers/mtd/nand/atmel/pmecc.h
+++ b/drivers/mtd/nand/raw/atmel/pmecc.h
@@ -9,10 +9,10 @@
*
* Copyright © 2003 Rick Bronson
*
- * Derived from drivers/mtd/nand/autcpu12.c
+ * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
* Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
*
- * Derived from drivers/mtd/spia.c
+ * Derived from drivers/mtd/spia.c (removed in v3.8)
* Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
*
*
diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/raw/au1550nd.c
index 8ab827edf94e..df0ef1f1e2f5 100644
--- a/drivers/mtd/nand/au1550nd.c
+++ b/drivers/mtd/nand/raw/au1550nd.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/au1550nd.c
- *
* Copyright (C) 2004 Embedded Edge, LLC
*
* This program is free software; you can redistribute it and/or modify
diff --git a/drivers/mtd/nand/bcm47xxnflash/Makefile b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile
index f05b119e134b..f05b119e134b 100644
--- a/drivers/mtd/nand/bcm47xxnflash/Makefile
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile
diff --git a/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h b/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h
index 201b9baa52a0..201b9baa52a0 100644
--- a/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h
diff --git a/drivers/mtd/nand/bcm47xxnflash/main.c b/drivers/mtd/nand/raw/bcm47xxnflash/main.c
index fb31429b70a9..fb31429b70a9 100644
--- a/drivers/mtd/nand/bcm47xxnflash/main.c
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/main.c
diff --git a/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
index 54bac5b73f0a..60874de430eb 100644
--- a/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
@@ -392,8 +392,8 @@ int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n)
b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte;
b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf;
b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf;
- b47n->nand_chip.onfi_set_features = nand_onfi_get_set_features_notsupp;
- b47n->nand_chip.onfi_get_features = nand_onfi_get_set_features_notsupp;
+ b47n->nand_chip.set_features = nand_get_set_features_notsupp;
+ b47n->nand_chip.get_features = nand_get_set_features_notsupp;
nand_chip->chip_delay = 50;
b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH;
diff --git a/drivers/mtd/nand/brcmnand/Makefile b/drivers/mtd/nand/raw/brcmnand/Makefile
index 195b845e48b8..195b845e48b8 100644
--- a/drivers/mtd/nand/brcmnand/Makefile
+++ b/drivers/mtd/nand/raw/brcmnand/Makefile
diff --git a/drivers/mtd/nand/brcmnand/bcm63138_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c
index 59444b3a697d..59444b3a697d 100644
--- a/drivers/mtd/nand/brcmnand/bcm63138_nand.c
+++ b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c
diff --git a/drivers/mtd/nand/brcmnand/bcm6368_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c
index 34c91b0e1e69..34c91b0e1e69 100644
--- a/drivers/mtd/nand/brcmnand/bcm6368_nand.c
+++ b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c
diff --git a/drivers/mtd/nand/brcmnand/brcmnand.c b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
index c28fd2bc1a84..1306aaa7a8bf 100644
--- a/drivers/mtd/nand/brcmnand/brcmnand.c
+++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
@@ -2297,7 +2297,11 @@ static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
if (ret)
return ret;
- return mtd_device_register(mtd, NULL, 0);
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret)
+ nand_cleanup(chip);
+
+ return ret;
}
static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
diff --git a/drivers/mtd/nand/brcmnand/brcmnand.h b/drivers/mtd/nand/raw/brcmnand/brcmnand.h
index 5c44cd4aba87..5c44cd4aba87 100644
--- a/drivers/mtd/nand/brcmnand/brcmnand.h
+++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.h
diff --git a/drivers/mtd/nand/brcmnand/brcmstb_nand.c b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c
index 5c271077ac87..5c271077ac87 100644
--- a/drivers/mtd/nand/brcmnand/brcmstb_nand.c
+++ b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c
diff --git a/drivers/mtd/nand/brcmnand/iproc_nand.c b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c
index 4c6ae113664d..4c6ae113664d 100644
--- a/drivers/mtd/nand/brcmnand/iproc_nand.c
+++ b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c
diff --git a/drivers/mtd/nand/cafe_nand.c b/drivers/mtd/nand/raw/cafe_nand.c
index 567ff972d5fc..d8c8c9d1e640 100644
--- a/drivers/mtd/nand/cafe_nand.c
+++ b/drivers/mtd/nand/raw/cafe_nand.c
@@ -645,8 +645,8 @@ static int cafe_nand_probe(struct pci_dev *pdev,
cafe->nand.read_buf = cafe_read_buf;
cafe->nand.write_buf = cafe_write_buf;
cafe->nand.select_chip = cafe_select_chip;
- cafe->nand.onfi_set_features = nand_onfi_get_set_features_notsupp;
- cafe->nand.onfi_get_features = nand_onfi_get_set_features_notsupp;
+ cafe->nand.set_features = nand_get_set_features_notsupp;
+ cafe->nand.get_features = nand_get_set_features_notsupp;
cafe->nand.chip_delay = 0;
@@ -751,8 +751,8 @@ static int cafe_nand_probe(struct pci_dev *pdev,
cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
} else {
- printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
- mtd->writesize);
+ pr_warn("Unexpected NAND flash writesize %d. Aborting\n",
+ mtd->writesize);
goto out_free_dma;
}
cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
@@ -774,10 +774,14 @@ static int cafe_nand_probe(struct pci_dev *pdev,
pci_set_drvdata(pdev, mtd);
mtd->name = "cafe_nand";
- mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
+ err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
+ if (err)
+ goto out_cleanup_nand;
goto out;
+ out_cleanup_nand:
+ nand_cleanup(&cafe->nand);
out_free_dma:
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
out_irq:
diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/raw/cmx270_nand.c
index b01c9804590e..02d6751e9efe 100644
--- a/drivers/mtd/nand/cmx270_nand.c
+++ b/drivers/mtd/nand/raw/cmx270_nand.c
@@ -1,10 +1,8 @@
/*
- * linux/drivers/mtd/nand/cmx270-nand.c
- *
* Copyright (C) 2006 Compulab, Ltd.
* Mike Rapoport <mike@compulab.co.il>
*
- * Derived from drivers/mtd/nand/h1910.c
+ * Derived from drivers/mtd/nand/h1910.c (removed in v3.10)
* Copyright (C) 2002 Marius Gröger (mag@sysgo.de)
* Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
*
diff --git a/drivers/mtd/nand/cs553x_nand.c b/drivers/mtd/nand/raw/cs553x_nand.c
index d48877540f14..82269fde9e66 100644
--- a/drivers/mtd/nand/cs553x_nand.c
+++ b/drivers/mtd/nand/raw/cs553x_nand.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/cs553x_nand.c
- *
* (C) 2005, 2006 Red Hat Inc.
*
* Author: David Woodhouse <dwmw2@infradead.org>
@@ -189,10 +187,11 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
struct nand_chip *this;
struct mtd_info *new_mtd;
- printk(KERN_NOTICE "Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", cs, mmio?"MM":"P", adr);
+ pr_notice("Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n",
+ cs, mmio ? "MM" : "P", adr);
if (!mmio) {
- printk(KERN_NOTICE "PIO mode not yet implemented for CS553X NAND controller\n");
+ pr_notice("PIO mode not yet implemented for CS553X NAND controller\n");
return -ENXIO;
}
@@ -211,7 +210,7 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
/* map physical address */
this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096);
if (!this->IO_ADDR_R) {
- printk(KERN_WARNING "ioremap cs553x NAND @0x%08lx failed\n", adr);
+ pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr);
err = -EIO;
goto out_mtd;
}
@@ -295,7 +294,7 @@ static int __init cs553x_init(void)
/* If it doesn't have the NAND controller enabled, abort */
rdmsrl(MSR_DIVIL_BALL_OPTS, val);
if (val & PIN_OPT_IDE) {
- printk(KERN_INFO "CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n");
+ pr_info("CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n");
return -ENXIO;
}
diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c
index ccc8c43abcff..0f09518d980f 100644
--- a/drivers/mtd/nand/davinci_nand.c
+++ b/drivers/mtd/nand/raw/davinci_nand.c
@@ -826,7 +826,7 @@ static int nand_davinci_probe(struct platform_device *pdev)
else
ret = mtd_device_register(mtd, NULL, 0);
if (ret < 0)
- goto err;
+ goto err_cleanup_nand;
val = davinci_nand_readl(info, NRCSR_OFFSET);
dev_info(&pdev->dev, "controller rev. %d.%d\n",
@@ -834,6 +834,9 @@ static int nand_davinci_probe(struct platform_device *pdev)
return 0;
+err_cleanup_nand:
+ nand_cleanup(&info->chip);
+
err:
clk_disable_unprepare(info->clk);
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/raw/denali.c
index 313c7f50621b..2a302a1d1430 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/raw/denali.c
@@ -1384,10 +1384,12 @@ int denali_init(struct denali_nand_info *denali)
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
- goto free_buf;
+ goto cleanup_nand;
}
return 0;
+cleanup_nand:
+ nand_cleanup(chip);
free_buf:
kfree(denali->buf);
disable_irq:
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/raw/denali.h
index 9ad33d237378..9ad33d237378 100644
--- a/drivers/mtd/nand/denali.h
+++ b/drivers/mtd/nand/raw/denali.h
diff --git a/drivers/mtd/nand/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c
index cfd33e6ca77f..cfd33e6ca77f 100644
--- a/drivers/mtd/nand/denali_dt.c
+++ b/drivers/mtd/nand/raw/denali_dt.c
diff --git a/drivers/mtd/nand/denali_pci.c b/drivers/mtd/nand/raw/denali_pci.c
index 49cb3e1f8bd0..49cb3e1f8bd0 100644
--- a/drivers/mtd/nand/denali_pci.c
+++ b/drivers/mtd/nand/raw/denali_pci.c
diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/raw/diskonchip.c
index 6bc93ea66f50..86a258de0b75 100644
--- a/drivers/mtd/nand/diskonchip.c
+++ b/drivers/mtd/nand/raw/diskonchip.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/diskonchip.c
- *
* (C) 2003 Red Hat, Inc.
* (C) 2004 Dan Brown <dan_brown@ieee.org>
* (C) 2004 Kalev Lember <kalev@smartlink.ee>
@@ -411,7 +409,7 @@ static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
ident.dword = readl(docptr + DoC_2k_CDSN_IO);
if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
- printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
+ pr_info("DiskOnChip 2000 responds to DWORD access\n");
this->read_buf = &doc2000_readbuf_dword;
}
}
@@ -438,7 +436,7 @@ static void __init doc2000_count_chips(struct mtd_info *mtd)
break;
}
doc->chips_per_floor = i;
- printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
+ pr_debug("Detected %d chips per floor.\n", i);
}
static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
@@ -934,14 +932,15 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
if (ret > 0)
- printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
+ pr_err("doc200x_correct_data corrected %d errors\n",
+ ret);
}
if (DoC_is_MillenniumPlus(doc))
WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
else
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
if (no_ecc_failures && mtd_is_eccerr(ret)) {
- printk(KERN_ERR "suppressing ECC failure\n");
+ pr_err("suppressing ECC failure\n");
ret = 0;
}
return ret;
@@ -1014,11 +1013,11 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch
if (retlen != mtd->writesize)
continue;
if (ret) {
- printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
+ pr_warn("ECC error scanning DOC at 0x%x\n", offs);
}
if (memcmp(buf, id, 6))
continue;
- printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+ pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
if (doc->mh0_page == -1) {
doc->mh0_page = offs >> this->page_shift;
if (!findmirror)
@@ -1029,7 +1028,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch
return 2;
}
if (doc->mh0_page == -1) {
- printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
+ pr_warn("DiskOnChip %s Media Header not found.\n", id);
return 0;
}
/* Only one mediaheader was found. We want buf to contain a
@@ -1038,7 +1037,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch
ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
if (retlen != mtd->writesize) {
/* Insanity. Give up. */
- printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
+ pr_err("Read DiskOnChip Media Header once, but can't reread it???\n");
return 0;
}
return 1;
@@ -1068,11 +1067,11 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio
le16_to_cpus(&mh->FirstPhysicalEUN);
le32_to_cpus(&mh->FormattedSize);
- printk(KERN_INFO " DataOrgID = %s\n"
- " NumEraseUnits = %d\n"
- " FirstPhysicalEUN = %d\n"
- " FormattedSize = %d\n"
- " UnitSizeFactor = %d\n",
+ pr_info(" DataOrgID = %s\n"
+ " NumEraseUnits = %d\n"
+ " FirstPhysicalEUN = %d\n"
+ " FormattedSize = %d\n"
+ " UnitSizeFactor = %d\n",
mh->DataOrgID, mh->NumEraseUnits,
mh->FirstPhysicalEUN, mh->FormattedSize,
mh->UnitSizeFactor);
@@ -1092,7 +1091,7 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio
maxblocks = min(32768U, (maxblocks << 1) + psize);
mh->UnitSizeFactor--;
}
- printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+ pr_warn("UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
}
/* NOTE: The lines below modify internal variables of the NAND and MTD
@@ -1103,13 +1102,13 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio
if (mh->UnitSizeFactor != 0xff) {
this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
- printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
+ pr_info("Setting virtual erase size to %d\n", mtd->erasesize);
blocks = mtd->size >> this->bbt_erase_shift;
maxblocks = min(32768U, mtd->erasesize - psize);
}
if (blocks > maxblocks) {
- printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
+ pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
goto out;
}
@@ -1180,14 +1179,14 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti
le32_to_cpus(&mh->FormatFlags);
le32_to_cpus(&mh->PercentUsed);
- printk(KERN_INFO " bootRecordID = %s\n"
- " NoOfBootImageBlocks = %d\n"
- " NoOfBinaryPartitions = %d\n"
- " NoOfBDTLPartitions = %d\n"
- " BlockMultiplerBits = %d\n"
- " FormatFlgs = %d\n"
- " OsakVersion = %d.%d.%d.%d\n"
- " PercentUsed = %d\n",
+ pr_info(" bootRecordID = %s\n"
+ " NoOfBootImageBlocks = %d\n"
+ " NoOfBinaryPartitions = %d\n"
+ " NoOfBDTLPartitions = %d\n"
+ " BlockMultiplerBits = %d\n"
+ " FormatFlgs = %d\n"
+ " OsakVersion = %d.%d.%d.%d\n"
+ " PercentUsed = %d\n",
mh->bootRecordID, mh->NoOfBootImageBlocks,
mh->NoOfBinaryPartitions,
mh->NoOfBDTLPartitions,
@@ -1202,13 +1201,13 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti
blocks = mtd->size >> vshift;
if (blocks > 32768) {
- printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
+ pr_err("BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
goto out;
}
blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
if (inftl_bbt_write && (blocks > mtd->erasesize)) {
- printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
+ pr_err("Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
goto out;
}
@@ -1222,7 +1221,7 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti
le32_to_cpus(&ip->spareUnits);
le32_to_cpus(&ip->Reserved0);
- printk(KERN_INFO " PARTITION[%d] ->\n"
+ pr_info(" PARTITION[%d] ->\n"
" virtualUnits = %d\n"
" firstUnit = %d\n"
" lastUnit = %d\n"
@@ -1308,7 +1307,7 @@ static int __init inftl_scan_bbt(struct mtd_info *mtd)
struct mtd_partition parts[5];
if (this->numchips > doc->chips_per_floor) {
- printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
+ pr_err("Multi-floor INFTL devices not yet supported.\n");
return -EIO;
}
@@ -1436,7 +1435,8 @@ static int __init doc_probe(unsigned long physadr)
return -EBUSY;
virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
if (!virtadr) {
- printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
+ pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n",
+ DOC_IOREMAP_LEN, physadr);
ret = -EIO;
goto error_ioremap;
}
@@ -1495,7 +1495,7 @@ static int __init doc_probe(unsigned long physadr)
reg = DoC_Mplus_Toggle;
break;
case DOC_ChipID_DocMilPlus32:
- printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+ pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
default:
ret = -ENODEV;
goto notfound;
@@ -1511,7 +1511,7 @@ static int __init doc_probe(unsigned long physadr)
tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
if ((tmp == tmpb) || (tmp != tmpc)) {
- printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+ pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
ret = -ENODEV;
goto notfound;
}
@@ -1545,12 +1545,13 @@ static int __init doc_probe(unsigned long physadr)
}
newval = ~newval;
if (oldval == newval) {
- printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
+ pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n",
+ doc->physadr, physadr);
goto notfound;
}
}
- printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
+ pr_notice("DiskOnChip found at 0x%lx\n", physadr);
len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
(2 * sizeof(struct nand_bbt_descr));
@@ -1665,12 +1666,13 @@ static int __init init_nanddoc(void)
*/
rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
if (!rs_decoder) {
- printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
+ pr_err("DiskOnChip: Could not create a RS decoder\n");
return -ENOMEM;
}
if (doc_config_location) {
- printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+ pr_info("Using configured DiskOnChip probe address 0x%lx\n",
+ doc_config_location);
ret = doc_probe(doc_config_location);
if (ret < 0)
goto outerr;
@@ -1682,7 +1684,7 @@ static int __init init_nanddoc(void)
/* No banner message any more. Print a message if no DiskOnChip
found, so the user knows we at least tried. */
if (!doclist) {
- printk(KERN_INFO "No valid DiskOnChip devices found\n");
+ pr_info("No valid DiskOnChip devices found\n");
ret = -ENODEV;
goto outerr;
}
diff --git a/drivers/mtd/nand/docg4.c b/drivers/mtd/nand/raw/docg4.c
index 72f1327c4430..1314aa99b9ab 100644
--- a/drivers/mtd/nand/docg4.c
+++ b/drivers/mtd/nand/raw/docg4.c
@@ -1269,8 +1269,8 @@ static void __init init_mtd_structs(struct mtd_info *mtd)
nand->read_buf = docg4_read_buf;
nand->write_buf = docg4_write_buf16;
nand->erase = docg4_erase_block;
- nand->onfi_set_features = nand_onfi_get_set_features_notsupp;
- nand->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ nand->set_features = nand_get_set_features_notsupp;
+ nand->get_features = nand_get_set_features_notsupp;
nand->ecc.read_page = docg4_read_page;
nand->ecc.write_page = docg4_write_page;
nand->ecc.read_page_raw = docg4_read_page_raw;
diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/raw/fsl_elbc_nand.c
index 8b6dcd739ecb..d28df991c73c 100644
--- a/drivers/mtd/nand/fsl_elbc_nand.c
+++ b/drivers/mtd/nand/raw/fsl_elbc_nand.c
@@ -775,8 +775,8 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
chip->select_chip = fsl_elbc_select_chip;
chip->cmdfunc = fsl_elbc_cmdfunc;
chip->waitfunc = fsl_elbc_wait;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
@@ -929,8 +929,8 @@ static int fsl_elbc_nand_probe(struct platform_device *pdev)
mtd_device_parse_register(mtd, part_probe_types, NULL,
NULL, 0);
- printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
- (unsigned long long)res.start, priv->bank);
+ pr_info("eLBC NAND device at 0x%llx, bank %d\n",
+ (unsigned long long)res.start, priv->bank);
return 0;
err:
diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/raw/fsl_ifc_nand.c
index 4872a7ba6503..7ca678f05ae3 100644
--- a/drivers/mtd/nand/fsl_ifc_nand.c
+++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c
@@ -805,7 +805,7 @@ static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
msecs_to_jiffies(IFC_TIMEOUT_MSECS));
if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
- printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n");
+ pr_err("fsl-ifc: Failed to Initialise SRAM\n");
/* Restore CSOR and CSOR_ext */
ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
@@ -838,8 +838,8 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
chip->select_chip = fsl_ifc_select_chip;
chip->cmdfunc = fsl_ifc_cmdfunc;
chip->waitfunc = fsl_ifc_wait;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
diff --git a/drivers/mtd/nand/fsl_upm.c b/drivers/mtd/nand/raw/fsl_upm.c
index a88e2cf66e0f..a88e2cf66e0f 100644
--- a/drivers/mtd/nand/fsl_upm.c
+++ b/drivers/mtd/nand/raw/fsl_upm.c
diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c
index f49ed46fa770..28c48dcc514e 100644
--- a/drivers/mtd/nand/fsmc_nand.c
+++ b/drivers/mtd/nand/raw/fsmc_nand.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/fsmc_nand.c
- *
* ST Microelectronics
* Flexible Static Memory Controller (FSMC)
* Driver for NAND portions
@@ -9,7 +7,9 @@
* Vipin Kumar <vipin.kumar@st.com>
* Ashish Priyadarshi
*
- * Based on drivers/mtd/nand/nomadik_nand.c
+ * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
+ * Copyright © 2007 STMicroelectronics Pvt. Ltd.
+ * Copyright © 2009 Alessandro Rubini
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
@@ -103,10 +103,6 @@
#define ECC3 0x1C
#define FSMC_NAND_BANK_SZ 0x20
-#define FSMC_NAND_REG(base, bank, reg) (base + FSMC_NOR_REG_SIZE + \
- (FSMC_NAND_BANK_SZ * (bank)) + \
- reg)
-
#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
struct fsmc_nand_timings {
@@ -143,7 +139,7 @@ enum access_mode {
* @data_va: NAND port for Data.
* @cmd_va: NAND port for Command.
* @addr_va: NAND port for Address.
- * @regs_va: FSMC regs base address.
+ * @regs_va: Registers base address for a given bank.
*/
struct fsmc_nand_data {
u32 pid;
@@ -258,45 +254,6 @@ static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
}
/*
- * fsmc_cmd_ctrl - For facilitaing Hardware access
- * This routine allows hardware specific access to control-lines(ALE,CLE)
- */
-static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
-{
- struct nand_chip *this = mtd_to_nand(mtd);
- struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- unsigned int bank = host->bank;
-
- if (ctrl & NAND_CTRL_CHANGE) {
- u32 pc;
-
- if (ctrl & NAND_CLE) {
- this->IO_ADDR_R = host->cmd_va;
- this->IO_ADDR_W = host->cmd_va;
- } else if (ctrl & NAND_ALE) {
- this->IO_ADDR_R = host->addr_va;
- this->IO_ADDR_W = host->addr_va;
- } else {
- this->IO_ADDR_R = host->data_va;
- this->IO_ADDR_W = host->data_va;
- }
-
- pc = readl(FSMC_NAND_REG(regs, bank, PC));
- if (ctrl & NAND_NCE)
- pc |= FSMC_ENABLE;
- else
- pc &= ~FSMC_ENABLE;
- writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
- }
-
- mb();
-
- if (cmd != NAND_CMD_NONE)
- writeb_relaxed(cmd, this->IO_ADDR_W);
-}
-
-/*
* fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
*
* This routine initializes timing parameters related to NAND memory access in
@@ -307,8 +264,6 @@ static void fsmc_nand_setup(struct fsmc_nand_data *host,
{
uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
uint32_t tclr, tar, thiz, thold, twait, tset;
- unsigned int bank = host->bank;
- void __iomem *regs = host->regs_va;
tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
@@ -318,18 +273,14 @@ static void fsmc_nand_setup(struct fsmc_nand_data *host,
tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
if (host->nand.options & NAND_BUSWIDTH_16)
- writel_relaxed(value | FSMC_DEVWID_16,
- FSMC_NAND_REG(regs, bank, PC));
+ writel_relaxed(value | FSMC_DEVWID_16, host->regs_va + PC);
else
- writel_relaxed(value | FSMC_DEVWID_8,
- FSMC_NAND_REG(regs, bank, PC));
-
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
- FSMC_NAND_REG(regs, bank, PC));
- writel_relaxed(thiz | thold | twait | tset,
- FSMC_NAND_REG(regs, bank, COMM));
- writel_relaxed(thiz | thold | twait | tset,
- FSMC_NAND_REG(regs, bank, ATTRIB));
+ writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + PC);
+
+ writel_relaxed(readl(host->regs_va + PC) | tclr | tar,
+ host->regs_va + PC);
+ writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
+ writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
}
static int fsmc_calc_timings(struct fsmc_nand_data *host,
@@ -419,15 +370,13 @@ static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- uint32_t bank = host->bank;
-
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
- FSMC_NAND_REG(regs, bank, PC));
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
- FSMC_NAND_REG(regs, bank, PC));
- writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
- FSMC_NAND_REG(regs, bank, PC));
+
+ writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCPLEN_256,
+ host->regs_va + PC);
+ writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCEN,
+ host->regs_va + PC);
+ writel_relaxed(readl(host->regs_va + PC) | FSMC_ECCEN,
+ host->regs_va + PC);
}
/*
@@ -439,13 +388,11 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc)
{
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- uint32_t bank = host->bank;
uint32_t ecc_tmp;
unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
do {
- if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
+ if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
break;
else
cond_resched();
@@ -456,25 +403,25 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
return -ETIMEDOUT;
}
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
+ ecc_tmp = readl_relaxed(host->regs_va + ECC1);
ecc[0] = (uint8_t) (ecc_tmp >> 0);
ecc[1] = (uint8_t) (ecc_tmp >> 8);
ecc[2] = (uint8_t) (ecc_tmp >> 16);
ecc[3] = (uint8_t) (ecc_tmp >> 24);
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
+ ecc_tmp = readl_relaxed(host->regs_va + ECC2);
ecc[4] = (uint8_t) (ecc_tmp >> 0);
ecc[5] = (uint8_t) (ecc_tmp >> 8);
ecc[6] = (uint8_t) (ecc_tmp >> 16);
ecc[7] = (uint8_t) (ecc_tmp >> 24);
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
+ ecc_tmp = readl_relaxed(host->regs_va + ECC3);
ecc[8] = (uint8_t) (ecc_tmp >> 0);
ecc[9] = (uint8_t) (ecc_tmp >> 8);
ecc[10] = (uint8_t) (ecc_tmp >> 16);
ecc[11] = (uint8_t) (ecc_tmp >> 24);
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
+ ecc_tmp = readl_relaxed(host->regs_va + STS);
ecc[12] = (uint8_t) (ecc_tmp >> 16);
return 0;
@@ -489,11 +436,9 @@ static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc)
{
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- uint32_t bank = host->bank;
uint32_t ecc_tmp;
- ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
+ ecc_tmp = readl_relaxed(host->regs_va + ECC1);
ecc[0] = (uint8_t) (ecc_tmp >> 0);
ecc[1] = (uint8_t) (ecc_tmp >> 8);
ecc[2] = (uint8_t) (ecc_tmp >> 16);
@@ -598,18 +543,18 @@ unmap_dma:
*/
static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
+ struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
int i;
- struct nand_chip *chip = mtd_to_nand(mtd);
if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
IS_ALIGNED(len, sizeof(uint32_t))) {
uint32_t *p = (uint32_t *)buf;
len = len >> 2;
for (i = 0; i < len; i++)
- writel_relaxed(p[i], chip->IO_ADDR_W);
+ writel_relaxed(p[i], host->data_va);
} else {
for (i = 0; i < len; i++)
- writeb_relaxed(buf[i], chip->IO_ADDR_W);
+ writeb_relaxed(buf[i], host->data_va);
}
}
@@ -621,18 +566,18 @@ static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
*/
static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
+ struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
int i;
- struct nand_chip *chip = mtd_to_nand(mtd);
if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
IS_ALIGNED(len, sizeof(uint32_t))) {
uint32_t *p = (uint32_t *)buf;
len = len >> 2;
for (i = 0; i < len; i++)
- p[i] = readl_relaxed(chip->IO_ADDR_R);
+ p[i] = readl_relaxed(host->data_va);
} else {
for (i = 0; i < len; i++)
- buf[i] = readb_relaxed(chip->IO_ADDR_R);
+ buf[i] = readb_relaxed(host->data_va);
}
}
@@ -663,6 +608,102 @@ static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
}
+/* fsmc_select_chip - assert or deassert nCE */
+static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+ u32 pc;
+
+ /* Support only one CS */
+ if (chipnr > 0)
+ return;
+
+ pc = readl(host->regs_va + PC);
+ if (chipnr < 0)
+ writel_relaxed(pc & ~FSMC_ENABLE, host->regs_va + PC);
+ else
+ writel_relaxed(pc | FSMC_ENABLE, host->regs_va + PC);
+
+ /* nCE line must be asserted before starting any operation */
+ mb();
+}
+
+/*
+ * fsmc_exec_op - hook called by the core to execute NAND operations
+ *
+ * This controller is simple enough and thus does not need to use the parser
+ * provided by the core, instead, handle every situation here.
+ */
+static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
+ bool check_only)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+ const struct nand_op_instr *instr = NULL;
+ int ret = 0;
+ unsigned int op_id;
+ int i;
+
+ pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
+ for (op_id = 0; op_id < op->ninstrs; op_id++) {
+ instr = &op->instrs[op_id];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ pr_debug(" ->CMD [0x%02x]\n",
+ instr->ctx.cmd.opcode);
+
+ writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ pr_debug(" ->ADDR [%d cyc]",
+ instr->ctx.addr.naddrs);
+
+ for (i = 0; i < instr->ctx.addr.naddrs; i++)
+ writeb_relaxed(instr->ctx.addr.addrs[i],
+ host->addr_va);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ pr_debug(" ->DATA_IN [%d B%s]\n", instr->ctx.data.len,
+ instr->ctx.data.force_8bit ?
+ ", force 8-bit" : "");
+
+ if (host->mode == USE_DMA_ACCESS)
+ fsmc_read_buf_dma(mtd, instr->ctx.data.buf.in,
+ instr->ctx.data.len);
+ else
+ fsmc_read_buf(mtd, instr->ctx.data.buf.in,
+ instr->ctx.data.len);
+ break;
+
+ case NAND_OP_DATA_OUT_INSTR:
+ pr_debug(" ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
+ instr->ctx.data.force_8bit ?
+ ", force 8-bit" : "");
+
+ if (host->mode == USE_DMA_ACCESS)
+ fsmc_write_buf_dma(mtd, instr->ctx.data.buf.out,
+ instr->ctx.data.len);
+ else
+ fsmc_write_buf(mtd, instr->ctx.data.buf.out,
+ instr->ctx.data.len);
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ pr_debug(" ->WAITRDY [max %d ms]\n",
+ instr->ctx.waitrdy.timeout_ms);
+
+ ret = nand_soft_waitrdy(chip,
+ instr->ctx.waitrdy.timeout_ms);
+ break;
+ }
+ }
+
+ return ret;
+}
+
/*
* fsmc_read_page_hwecc
* @mtd: mtd info structure
@@ -754,13 +795,11 @@ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
- void __iomem *regs = host->regs_va;
- unsigned int bank = host->bank;
uint32_t err_idx[8];
uint32_t num_err, i;
uint32_t ecc1, ecc2, ecc3, ecc4;
- num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
+ num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
/* no bit flipping */
if (likely(num_err == 0))
@@ -803,10 +842,10 @@ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
* uint64_t array and error offset indexes are populated in err_idx
* array
*/
- ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
- ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
- ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
- ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
+ ecc1 = readl_relaxed(host->regs_va + ECC1);
+ ecc2 = readl_relaxed(host->regs_va + ECC2);
+ ecc3 = readl_relaxed(host->regs_va + ECC3);
+ ecc4 = readl_relaxed(host->regs_va + STS);
err_idx[0] = (ecc1 >> 0) & 0x1FFF;
err_idx[1] = (ecc1 >> 13) & 0x1FFF;
@@ -889,6 +928,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
struct mtd_info *mtd;
struct nand_chip *nand;
struct resource *res;
+ void __iomem *base;
dma_cap_mask_t mask;
int ret = 0;
u32 pid;
@@ -923,9 +963,12 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
return PTR_ERR(host->cmd_va);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
- host->regs_va = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(host->regs_va))
- return PTR_ERR(host->regs_va);
+ base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(base))
+ return PTR_ERR(base);
+
+ host->regs_va = base + FSMC_NOR_REG_SIZE +
+ (host->bank * FSMC_NAND_BANK_SZ);
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk)) {
@@ -942,7 +985,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
* AMBA PrimeCell bus. However it is not a PrimeCell.
*/
for (pid = 0, i = 0; i < 4; i++)
- pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
+ pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
host->pid = pid;
dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
"revision %02x, config %02x\n",
@@ -960,9 +1003,8 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
nand_set_flash_node(nand, pdev->dev.of_node);
mtd->dev.parent = &pdev->dev;
- nand->IO_ADDR_R = host->data_va;
- nand->IO_ADDR_W = host->data_va;
- nand->cmd_ctrl = fsmc_cmd_ctrl;
+ nand->exec_op = fsmc_exec_op;
+ nand->select_chip = fsmc_select_chip;
nand->chip_delay = 30;
/*
@@ -974,8 +1016,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
nand->ecc.size = 512;
nand->badblockbits = 7;
- switch (host->mode) {
- case USE_DMA_ACCESS:
+ if (host->mode == USE_DMA_ACCESS) {
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
host->read_dma_chan = dma_request_channel(mask, filter, NULL);
@@ -988,15 +1029,6 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
dev_err(&pdev->dev, "Unable to get write dma channel\n");
goto err_req_write_chnl;
}
- nand->read_buf = fsmc_read_buf_dma;
- nand->write_buf = fsmc_write_buf_dma;
- break;
-
- default:
- case USE_WORD_ACCESS:
- nand->read_buf = fsmc_read_buf;
- nand->write_buf = fsmc_write_buf;
- break;
}
if (host->dev_timings)
diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/raw/gpio.c
index a8bde6665c24..2780af26d9ab 100644
--- a/drivers/mtd/nand/gpio.c
+++ b/drivers/mtd/nand/raw/gpio.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/gpio.c
- *
* Updated, and converted to generic GPIO based driver by Russell King.
*
* Written by Ben Dooks <ben@simtec.co.uk>
diff --git a/drivers/mtd/nand/gpmi-nand/Makefile b/drivers/mtd/nand/raw/gpmi-nand/Makefile
index 3a462487c35e..3a462487c35e 100644
--- a/drivers/mtd/nand/gpmi-nand/Makefile
+++ b/drivers/mtd/nand/raw/gpmi-nand/Makefile
diff --git a/drivers/mtd/nand/gpmi-nand/bch-regs.h b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h
index 05bb91f2f4c4..05bb91f2f4c4 100644
--- a/drivers/mtd/nand/gpmi-nand/bch-regs.h
+++ b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
index 97787246af41..e94556705dc7 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
@@ -26,15 +26,8 @@
#include "gpmi-regs.h"
#include "bch-regs.h"
-static struct timing_threshold timing_default_threshold = {
- .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
- BP_GPMI_TIMING0_DATA_SETUP),
- .internal_data_setup_in_ns = 0,
- .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
- BP_GPMI_CTRL1_RDN_DELAY),
- .max_dll_clock_period_in_ns = 32,
- .max_dll_delay_in_ns = 16,
-};
+/* Converts time to clock cycles */
+#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
#define MXS_SET_ADDR 0x4
#define MXS_CLR_ADDR 0x8
@@ -151,8 +144,15 @@ err_clk:
return ret;
}
-#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
-#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
+int gpmi_enable_clk(struct gpmi_nand_data *this)
+{
+ return __gpmi_enable_clk(this, true);
+}
+
+int gpmi_disable_clk(struct gpmi_nand_data *this)
+{
+ return __gpmi_enable_clk(this, false);
+}
int gpmi_init(struct gpmi_nand_data *this)
{
@@ -174,7 +174,6 @@ int gpmi_init(struct gpmi_nand_data *this)
if (ret)
goto err_out;
-
/* Choose NAND mode. */
writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
@@ -313,467 +312,6 @@ err_out:
return ret;
}
-/* Converts time in nanoseconds to cycles. */
-static unsigned int ns_to_cycles(unsigned int time,
- unsigned int period, unsigned int min)
-{
- unsigned int k;
-
- k = (time + period - 1) / period;
- return max(k, min);
-}
-
-#define DEF_MIN_PROP_DELAY 5
-#define DEF_MAX_PROP_DELAY 9
-/* Apply timing to current hardware conditions. */
-static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
- struct gpmi_nfc_hardware_timing *hw)
-{
- struct timing_threshold *nfc = &timing_default_threshold;
- struct resources *r = &this->resources;
- struct nand_chip *nand = &this->nand;
- struct nand_timing target = this->timing;
- bool improved_timing_is_available;
- unsigned long clock_frequency_in_hz;
- unsigned int clock_period_in_ns;
- bool dll_use_half_periods;
- unsigned int dll_delay_shift;
- unsigned int max_sample_delay_in_ns;
- unsigned int address_setup_in_cycles;
- unsigned int data_setup_in_ns;
- unsigned int data_setup_in_cycles;
- unsigned int data_hold_in_cycles;
- int ideal_sample_delay_in_ns;
- unsigned int sample_delay_factor;
- int tEYE;
- unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
- unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
-
- /*
- * If there are multiple chips, we need to relax the timings to allow
- * for signal distortion due to higher capacitance.
- */
- if (nand->numchips > 2) {
- target.data_setup_in_ns += 10;
- target.data_hold_in_ns += 10;
- target.address_setup_in_ns += 10;
- } else if (nand->numchips > 1) {
- target.data_setup_in_ns += 5;
- target.data_hold_in_ns += 5;
- target.address_setup_in_ns += 5;
- }
-
- /* Check if improved timing information is available. */
- improved_timing_is_available =
- (target.tREA_in_ns >= 0) &&
- (target.tRLOH_in_ns >= 0) &&
- (target.tRHOH_in_ns >= 0);
-
- /* Inspect the clock. */
- nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
- clock_frequency_in_hz = nfc->clock_frequency_in_hz;
- clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz;
-
- /*
- * The NFC quantizes setup and hold parameters in terms of clock cycles.
- * Here, we quantize the setup and hold timing parameters to the
- * next-highest clock period to make sure we apply at least the
- * specified times.
- *
- * For data setup and data hold, the hardware interprets a value of zero
- * as the largest possible delay. This is not what's intended by a zero
- * in the input parameter, so we impose a minimum of one cycle.
- */
- data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
- clock_period_in_ns, 1);
- data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
- clock_period_in_ns, 1);
- address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
- clock_period_in_ns, 0);
-
- /*
- * The clock's period affects the sample delay in a number of ways:
- *
- * (1) The NFC HAL tells us the maximum clock period the sample delay
- * DLL can tolerate. If the clock period is greater than half that
- * maximum, we must configure the DLL to be driven by half periods.
- *
- * (2) We need to convert from an ideal sample delay, in ns, to a
- * "sample delay factor," which the NFC uses. This factor depends on
- * whether we're driving the DLL with full or half periods.
- * Paraphrasing the reference manual:
- *
- * AD = SDF x 0.125 x RP
- *
- * where:
- *
- * AD is the applied delay, in ns.
- * SDF is the sample delay factor, which is dimensionless.
- * RP is the reference period, in ns, which is a full clock period
- * if the DLL is being driven by full periods, or half that if
- * the DLL is being driven by half periods.
- *
- * Let's re-arrange this in a way that's more useful to us:
- *
- * 8
- * SDF = AD x ----
- * RP
- *
- * The reference period is either the clock period or half that, so this
- * is:
- *
- * 8 AD x DDF
- * SDF = AD x ----- = --------
- * f x P P
- *
- * where:
- *
- * f is 1 or 1/2, depending on how we're driving the DLL.
- * P is the clock period.
- * DDF is the DLL Delay Factor, a dimensionless value that
- * incorporates all the constants in the conversion.
- *
- * DDF will be either 8 or 16, both of which are powers of two. We can
- * reduce the cost of this conversion by using bit shifts instead of
- * multiplication or division. Thus:
- *
- * AD << DDS
- * SDF = ---------
- * P
- *
- * or
- *
- * AD = (SDF >> DDS) x P
- *
- * where:
- *
- * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
- */
- if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
- dll_use_half_periods = true;
- dll_delay_shift = 3 + 1;
- } else {
- dll_use_half_periods = false;
- dll_delay_shift = 3;
- }
-
- /*
- * Compute the maximum sample delay the NFC allows, under current
- * conditions. If the clock is running too slowly, no sample delay is
- * possible.
- */
- if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
- max_sample_delay_in_ns = 0;
- else {
- /*
- * Compute the delay implied by the largest sample delay factor
- * the NFC allows.
- */
- max_sample_delay_in_ns =
- (nfc->max_sample_delay_factor * clock_period_in_ns) >>
- dll_delay_shift;
-
- /*
- * Check if the implied sample delay larger than the NFC
- * actually allows.
- */
- if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
- max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
- }
-
- /*
- * Check if improved timing information is available. If not, we have to
- * use a less-sophisticated algorithm.
- */
- if (!improved_timing_is_available) {
- /*
- * Fold the read setup time required by the NFC into the ideal
- * sample delay.
- */
- ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
- nfc->internal_data_setup_in_ns;
-
- /*
- * The ideal sample delay may be greater than the maximum
- * allowed by the NFC. If so, we can trade off sample delay time
- * for more data setup time.
- *
- * In each iteration of the following loop, we add a cycle to
- * the data setup time and subtract a corresponding amount from
- * the sample delay until we've satisified the constraints or
- * can't do any better.
- */
- while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
- (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
-
- data_setup_in_cycles++;
- ideal_sample_delay_in_ns -= clock_period_in_ns;
-
- if (ideal_sample_delay_in_ns < 0)
- ideal_sample_delay_in_ns = 0;
-
- }
-
- /*
- * Compute the sample delay factor that corresponds most closely
- * to the ideal sample delay. If the result is too large for the
- * NFC, use the maximum value.
- *
- * Notice that we use the ns_to_cycles function to compute the
- * sample delay factor. We do this because the form of the
- * computation is the same as that for calculating cycles.
- */
- sample_delay_factor =
- ns_to_cycles(
- ideal_sample_delay_in_ns << dll_delay_shift,
- clock_period_in_ns, 0);
-
- if (sample_delay_factor > nfc->max_sample_delay_factor)
- sample_delay_factor = nfc->max_sample_delay_factor;
-
- /* Skip to the part where we return our results. */
- goto return_results;
- }
-
- /*
- * If control arrives here, we have more detailed timing information,
- * so we can use a better algorithm.
- */
-
- /*
- * Fold the read setup time required by the NFC into the maximum
- * propagation delay.
- */
- max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
-
- /*
- * Earlier, we computed the number of clock cycles required to satisfy
- * the data setup time. Now, we need to know the actual nanoseconds.
- */
- data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
-
- /*
- * Compute tEYE, the width of the data eye when reading from the NAND
- * Flash. The eye width is fundamentally determined by the data setup
- * time, perturbed by propagation delays and some characteristics of the
- * NAND Flash device.
- *
- * start of the eye = max_prop_delay + tREA
- * end of the eye = min_prop_delay + tRHOH + data_setup
- */
- tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
- (int)data_setup_in_ns;
-
- tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
-
- /*
- * The eye must be open. If it's not, we can try to open it by
- * increasing its main forcer, the data setup time.
- *
- * In each iteration of the following loop, we increase the data setup
- * time by a single clock cycle. We do this until either the eye is
- * open or we run into NFC limits.
- */
- while ((tEYE <= 0) &&
- (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
- /* Give a cycle to data setup. */
- data_setup_in_cycles++;
- /* Synchronize the data setup time with the cycles. */
- data_setup_in_ns += clock_period_in_ns;
- /* Adjust tEYE accordingly. */
- tEYE += clock_period_in_ns;
- }
-
- /*
- * When control arrives here, the eye is open. The ideal time to sample
- * the data is in the center of the eye:
- *
- * end of the eye + start of the eye
- * --------------------------------- - data_setup
- * 2
- *
- * After some algebra, this simplifies to the code immediately below.
- */
- ideal_sample_delay_in_ns =
- ((int)max_prop_delay_in_ns +
- (int)target.tREA_in_ns +
- (int)min_prop_delay_in_ns +
- (int)target.tRHOH_in_ns -
- (int)data_setup_in_ns) >> 1;
-
- /*
- * The following figure illustrates some aspects of a NAND Flash read:
- *
- *
- * __ _____________________________________
- * RDN \_________________/
- *
- * <---- tEYE ----->
- * /-----------------\
- * Read Data ----------------------------< >---------
- * \-----------------/
- * ^ ^ ^ ^
- * | | | |
- * |<--Data Setup -->|<--Delay Time -->| |
- * | | | |
- * | | |
- * | |<-- Quantized Delay Time -->|
- * | | |
- *
- *
- * We have some issues we must now address:
- *
- * (1) The *ideal* sample delay time must not be negative. If it is, we
- * jam it to zero.
- *
- * (2) The *ideal* sample delay time must not be greater than that
- * allowed by the NFC. If it is, we can increase the data setup
- * time, which will reduce the delay between the end of the data
- * setup and the center of the eye. It will also make the eye
- * larger, which might help with the next issue...
- *
- * (3) The *quantized* sample delay time must not fall either before the
- * eye opens or after it closes (the latter is the problem
- * illustrated in the above figure).
- */
-
- /* Jam a negative ideal sample delay to zero. */
- if (ideal_sample_delay_in_ns < 0)
- ideal_sample_delay_in_ns = 0;
-
- /*
- * Extend the data setup as needed to reduce the ideal sample delay
- * below the maximum permitted by the NFC.
- */
- while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
- (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
-
- /* Give a cycle to data setup. */
- data_setup_in_cycles++;
- /* Synchronize the data setup time with the cycles. */
- data_setup_in_ns += clock_period_in_ns;
- /* Adjust tEYE accordingly. */
- tEYE += clock_period_in_ns;
-
- /*
- * Decrease the ideal sample delay by one half cycle, to keep it
- * in the middle of the eye.
- */
- ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
-
- /* Jam a negative ideal sample delay to zero. */
- if (ideal_sample_delay_in_ns < 0)
- ideal_sample_delay_in_ns = 0;
- }
-
- /*
- * Compute the sample delay factor that corresponds to the ideal sample
- * delay. If the result is too large, then use the maximum allowed
- * value.
- *
- * Notice that we use the ns_to_cycles function to compute the sample
- * delay factor. We do this because the form of the computation is the
- * same as that for calculating cycles.
- */
- sample_delay_factor =
- ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
- clock_period_in_ns, 0);
-
- if (sample_delay_factor > nfc->max_sample_delay_factor)
- sample_delay_factor = nfc->max_sample_delay_factor;
-
- /*
- * These macros conveniently encapsulate a computation we'll use to
- * continuously evaluate whether or not the data sample delay is inside
- * the eye.
- */
- #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
-
- #define QUANTIZED_DELAY \
- ((int) ((sample_delay_factor * clock_period_in_ns) >> \
- dll_delay_shift))
-
- #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
-
- #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
-
- /*
- * While the quantized sample time falls outside the eye, reduce the
- * sample delay or extend the data setup to move the sampling point back
- * toward the eye. Do not allow the number of data setup cycles to
- * exceed the maximum allowed by the NFC.
- */
- while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
- (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
- /*
- * If control arrives here, the quantized sample delay falls
- * outside the eye. Check if it's before the eye opens, or after
- * the eye closes.
- */
- if (QUANTIZED_DELAY > IDEAL_DELAY) {
- /*
- * If control arrives here, the quantized sample delay
- * falls after the eye closes. Decrease the quantized
- * delay time and then go back to re-evaluate.
- */
- if (sample_delay_factor != 0)
- sample_delay_factor--;
- continue;
- }
-
- /*
- * If control arrives here, the quantized sample delay falls
- * before the eye opens. Shift the sample point by increasing
- * data setup time. This will also make the eye larger.
- */
-
- /* Give a cycle to data setup. */
- data_setup_in_cycles++;
- /* Synchronize the data setup time with the cycles. */
- data_setup_in_ns += clock_period_in_ns;
- /* Adjust tEYE accordingly. */
- tEYE += clock_period_in_ns;
-
- /*
- * Decrease the ideal sample delay by one half cycle, to keep it
- * in the middle of the eye.
- */
- ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
-
- /* ...and one less period for the delay time. */
- ideal_sample_delay_in_ns -= clock_period_in_ns;
-
- /* Jam a negative ideal sample delay to zero. */
- if (ideal_sample_delay_in_ns < 0)
- ideal_sample_delay_in_ns = 0;
-
- /*
- * We have a new ideal sample delay, so re-compute the quantized
- * delay.
- */
- sample_delay_factor =
- ns_to_cycles(
- ideal_sample_delay_in_ns << dll_delay_shift,
- clock_period_in_ns, 0);
-
- if (sample_delay_factor > nfc->max_sample_delay_factor)
- sample_delay_factor = nfc->max_sample_delay_factor;
- }
-
- /* Control arrives here when we're ready to return our results. */
-return_results:
- hw->data_setup_in_cycles = data_setup_in_cycles;
- hw->data_hold_in_cycles = data_hold_in_cycles;
- hw->address_setup_in_cycles = address_setup_in_cycles;
- hw->use_half_periods = dll_use_half_periods;
- hw->sample_delay_factor = sample_delay_factor;
- hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT;
- hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
-
- /* Return success. */
- return 0;
-}
-
/*
* <1> Firstly, we should know what's the GPMI-clock means.
* The GPMI-clock is the internal clock in the gpmi nand controller.
@@ -824,13 +362,10 @@ return_results:
* 4.1) From the aspect of the nand chip pins:
* Delay = (tREA + C - tRP) {1}
*
- * tREA : the maximum read access time. From the ONFI nand standards,
- * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
- * Please check it in : www.onfi.org
- * C : a constant for adjust the delay. default is 4.
- * tRP : the read pulse width.
- * Specified by the HW_GPMI_TIMING0:DATA_SETUP:
- * tRP = (GPMI-clock-period) * DATA_SETUP
+ * tREA : the maximum read access time.
+ * C : a constant to adjust the delay. default is 4000ps.
+ * tRP : the read pulse width, which is exactly:
+ * tRP = (GPMI-clock-period) * DATA_SETUP
*
* 4.2) From the aspect of the GPMI nand controller:
* Delay = RDN_DELAY * 0.125 * RP {2}
@@ -843,239 +378,137 @@ return_results:
*
* Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
* is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
- * is 16ns, but in mx6q, we use 12ns.
+ * is 16000ps, but in mx6q, we use 12000ps.
*
* 4.3) since {1} equals {2}, we get:
*
- * (tREA + 4 - tRP) * 8
- * RDN_DELAY = --------------------- {3}
+ * (tREA + 4000 - tRP) * 8
+ * RDN_DELAY = ----------------------- {3}
* RP
- *
- * 4.4) We only support the fastest asynchronous mode of ONFI nand.
- * For some ONFI nand, the mode 4 is the fastest mode;
- * while for some ONFI nand, the mode 5 is the fastest mode.
- * So we only support the mode 4 and mode 5. It is no need to
- * support other modes.
*/
-static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
- struct gpmi_nfc_hardware_timing *hw)
+static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
+ const struct nand_sdr_timings *sdr)
{
- struct resources *r = &this->resources;
- unsigned long rate = clk_get_rate(r->clock[0]);
- int mode = this->timing_mode;
- int dll_threshold = this->devdata->max_chain_delay;
- unsigned long delay;
- unsigned long clk_period;
- int t_rea;
- int c = 4;
- int t_rp;
- int rp;
+ struct gpmi_nfc_hardware_timing *hw = &this->hw;
+ unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
+ unsigned int period_ps, reference_period_ps;
+ unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
+ unsigned int tRP_ps;
+ bool use_half_period;
+ int sample_delay_ps, sample_delay_factor;
+ u16 busy_timeout_cycles;
+ u8 wrn_dly_sel;
+
+ if (sdr->tRC_min >= 30000) {
+ /* ONFI non-EDO modes [0-3] */
+ hw->clk_rate = 22000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
+ } else if (sdr->tRC_min >= 25000) {
+ /* ONFI EDO mode 4 */
+ hw->clk_rate = 80000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+ } else {
+ /* ONFI EDO mode 5 */
+ hw->clk_rate = 100000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+ }
- /*
- * [1] for GPMI_HW_GPMI_TIMING0:
- * The async mode requires 40MHz for mode 4, 50MHz for mode 5.
- * The GPMI can support 100MHz at most. So if we want to
- * get the 40MHz or 50MHz, we have to set DS=1, DH=1.
- * Set the ADDRESS_SETUP to 0 in mode 4.
- */
- hw->data_setup_in_cycles = 1;
- hw->data_hold_in_cycles = 1;
- hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
+ /* SDR core timings are given in picoseconds */
+ period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
- /* [2] for GPMI_HW_GPMI_TIMING1 */
- hw->device_busy_timeout = 0x9000;
+ addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
+ data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
+ data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
+ busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
- /* [3] for GPMI_HW_GPMI_CTRL1 */
- hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+ hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
+ BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
+ BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
+ hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
/*
- * Enlarge 10 times for the numerator and denominator in {3}.
- * This make us to get more accurate result.
+ * Derive NFC ideal delay from {3}:
+ *
+ * (tREA + 4000 - tRP) * 8
+ * RDN_DELAY = -----------------------
+ * RP
*/
- clk_period = NSEC_PER_SEC / (rate / 10);
- dll_threshold *= 10;
- t_rea = ((mode == 5) ? 16 : 20) * 10;
- c *= 10;
-
- t_rp = clk_period * 1; /* DATA_SETUP is 1 */
-
- if (clk_period > dll_threshold) {
- hw->use_half_periods = 1;
- rp = clk_period / 2;
+ if (period_ps > dll_threshold_ps) {
+ use_half_period = true;
+ reference_period_ps = period_ps / 2;
} else {
- hw->use_half_periods = 0;
- rp = clk_period;
+ use_half_period = false;
+ reference_period_ps = period_ps;
}
- /*
- * Multiply the numerator with 10, we could do a round off:
- * 7.8 round up to 8; 7.4 round down to 7.
- */
- delay = (((t_rea + c - t_rp) * 8) * 10) / rp;
- delay = (delay + 5) / 10;
-
- hw->sample_delay_factor = delay;
-}
-
-static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
-{
- struct resources *r = &this->resources;
- struct nand_chip *nand = &this->nand;
- struct mtd_info *mtd = nand_to_mtd(nand);
- uint8_t *feature;
- unsigned long rate;
- int ret;
-
- feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL);
- if (!feature)
- return -ENOMEM;
-
- nand->select_chip(mtd, 0);
-
- /* [1] send SET FEATURE command to NAND */
- feature[0] = mode;
- ret = nand->onfi_set_features(mtd, nand,
- ONFI_FEATURE_ADDR_TIMING_MODE, feature);
- if (ret)
- goto err_out;
-
- /* [2] send GET FEATURE command to double-check the timing mode */
- memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
- ret = nand->onfi_get_features(mtd, nand,
- ONFI_FEATURE_ADDR_TIMING_MODE, feature);
- if (ret || feature[0] != mode)
- goto err_out;
-
- nand->select_chip(mtd, -1);
-
- /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
- rate = (mode == 5) ? 100000000 : 80000000;
- clk_set_rate(r->clock[0], rate);
-
- /* Let the gpmi_begin() re-compute the timing again. */
- this->flags &= ~GPMI_TIMING_INIT_OK;
-
- this->flags |= GPMI_ASYNC_EDO_ENABLED;
- this->timing_mode = mode;
- kfree(feature);
- dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
- return 0;
-
-err_out:
- nand->select_chip(mtd, -1);
- kfree(feature);
- dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
- return -EINVAL;
-}
-
-int gpmi_extra_init(struct gpmi_nand_data *this)
-{
- struct nand_chip *chip = &this->nand;
-
- /* Enable the asynchronous EDO feature. */
- if (GPMI_IS_MX6(this) && chip->onfi_version) {
- int mode = onfi_get_async_timing_mode(chip);
-
- /* We only support the timing mode 4 and mode 5. */
- if (mode & ONFI_TIMING_MODE_5)
- mode = 5;
- else if (mode & ONFI_TIMING_MODE_4)
- mode = 4;
- else
- return 0;
+ tRP_ps = data_setup_cycles * period_ps;
+ sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
+ if (sample_delay_ps > 0)
+ sample_delay_factor = sample_delay_ps / reference_period_ps;
+ else
+ sample_delay_factor = 0;
- return enable_edo_mode(this, mode);
- }
- return 0;
+ hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
+ if (sample_delay_factor)
+ hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
+ BM_GPMI_CTRL1_DLL_ENABLE |
+ (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
}
-/* Begin the I/O */
-void gpmi_begin(struct gpmi_nand_data *this)
+void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
{
+ struct gpmi_nfc_hardware_timing *hw = &this->hw;
struct resources *r = &this->resources;
void __iomem *gpmi_regs = r->gpmi_regs;
- unsigned int clock_period_in_ns;
- uint32_t reg;
- unsigned int dll_wait_time_in_us;
- struct gpmi_nfc_hardware_timing hw;
- int ret;
-
- /* Enable the clock. */
- ret = gpmi_enable_clk(this);
- if (ret) {
- dev_err(this->dev, "We failed in enable the clk\n");
- goto err_out;
- }
-
- /* Only initialize the timing once */
- if (this->flags & GPMI_TIMING_INIT_OK)
- return;
- this->flags |= GPMI_TIMING_INIT_OK;
+ unsigned int dll_wait_time_us;
- if (this->flags & GPMI_ASYNC_EDO_ENABLED)
- gpmi_compute_edo_timing(this, &hw);
- else
- gpmi_nfc_compute_hardware_timing(this, &hw);
-
- /* [1] Set HW_GPMI_TIMING0 */
- reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
- BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
- BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles);
-
- writel(reg, gpmi_regs + HW_GPMI_TIMING0);
-
- /* [2] Set HW_GPMI_TIMING1 */
- writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
- gpmi_regs + HW_GPMI_TIMING1);
+ clk_set_rate(r->clock[0], hw->clk_rate);
- /* [3] The following code is to set the HW_GPMI_CTRL1. */
+ writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
+ writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
- /* Set the WRN_DLY_SEL */
- writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
- writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
- gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
- writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
-
- /* Clear out the DLL control fields. */
- reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
- writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
+ /*
+ * Clear several CTRL1 fields, DLL must be disabled when setting
+ * RDN_DELAY or HALF_PERIOD.
+ */
+ writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
+ writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
- /* If no sample delay is called for, return immediately. */
- if (!hw.sample_delay_factor)
- return;
+ /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
+ dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
+ if (!dll_wait_time_us)
+ dll_wait_time_us = 1;
- /* Set RDN_DELAY or HALF_PERIOD. */
- reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
- | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
+ /* Wait for the DLL to settle. */
+ udelay(dll_wait_time_us);
+}
- writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
+int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ const struct nand_sdr_timings *sdr;
- /* At last, we enable the DLL. */
- writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
+ /* Retrieve required NAND timings */
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
- /*
- * After we enable the GPMI DLL, we have to wait 64 clock cycles before
- * we can use the GPMI. Calculate the amount of time we need to wait,
- * in microseconds.
- */
- clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
- dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
+ /* Only MX6 GPMI controller can reach EDO timings */
+ if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
+ return -ENOTSUPP;
- if (!dll_wait_time_in_us)
- dll_wait_time_in_us = 1;
+ /* Stop here if this call was just a check */
+ if (chipnr < 0)
+ return 0;
- /* Wait for the DLL to settle. */
- udelay(dll_wait_time_in_us);
+ /* Do the actual derivation of the controller timings */
+ gpmi_nfc_compute_timings(this, sdr);
-err_out:
- return;
-}
+ this->hw.must_apply_timings = true;
-void gpmi_end(struct gpmi_nand_data *this)
-{
- gpmi_disable_clk(this);
+ return 0;
}
/* Clears a BCH interrupt. */
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
index 61fdd733492f..c2597c8107a0 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
@@ -94,7 +94,7 @@ static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
static const struct gpmi_devdata gpmi_devdata_imx23 = {
.type = IS_MX23,
.bch_max_ecc_strength = 20,
- .max_chain_delay = 16,
+ .max_chain_delay = 16000,
.clks = gpmi_clks_for_mx2x,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};
@@ -102,7 +102,7 @@ static const struct gpmi_devdata gpmi_devdata_imx23 = {
static const struct gpmi_devdata gpmi_devdata_imx28 = {
.type = IS_MX28,
.bch_max_ecc_strength = 20,
- .max_chain_delay = 16,
+ .max_chain_delay = 16000,
.clks = gpmi_clks_for_mx2x,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};
@@ -114,7 +114,7 @@ static const char * const gpmi_clks_for_mx6[] = {
static const struct gpmi_devdata gpmi_devdata_imx6q = {
.type = IS_MX6Q,
.bch_max_ecc_strength = 40,
- .max_chain_delay = 12,
+ .max_chain_delay = 12000,
.clks = gpmi_clks_for_mx6,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};
@@ -122,7 +122,7 @@ static const struct gpmi_devdata gpmi_devdata_imx6q = {
static const struct gpmi_devdata gpmi_devdata_imx6sx = {
.type = IS_MX6SX,
.bch_max_ecc_strength = 62,
- .max_chain_delay = 12,
+ .max_chain_delay = 12000,
.clks = gpmi_clks_for_mx6,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};
@@ -134,7 +134,7 @@ static const char * const gpmi_clks_for_mx7d[] = {
static const struct gpmi_devdata gpmi_devdata_imx7d = {
.type = IS_MX7D,
.bch_max_ecc_strength = 62,
- .max_chain_delay = 12,
+ .max_chain_delay = 12000,
.clks = gpmi_clks_for_mx7d,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
};
@@ -695,34 +695,6 @@ static void release_resources(struct gpmi_nand_data *this)
release_dma_channels(this);
}
-static int init_hardware(struct gpmi_nand_data *this)
-{
- int ret;
-
- /*
- * This structure contains the "safe" GPMI timing that should succeed
- * with any NAND Flash device
- * (although, with less-than-optimal performance).
- */
- struct nand_timing safe_timing = {
- .data_setup_in_ns = 80,
- .data_hold_in_ns = 60,
- .address_setup_in_ns = 25,
- .gpmi_sample_delay_in_ns = 6,
- .tREA_in_ns = -1,
- .tRLOH_in_ns = -1,
- .tRHOH_in_ns = -1,
- };
-
- /* Initialize the hardwares. */
- ret = gpmi_init(this);
- if (ret)
- return ret;
-
- this->timing = safe_timing;
- return 0;
-}
-
static int read_page_prepare(struct gpmi_nand_data *this,
void *destination, unsigned length,
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
@@ -938,11 +910,32 @@ static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ int ret;
- if ((this->current_chip < 0) && (chipnr >= 0))
- gpmi_begin(this);
- else if ((this->current_chip >= 0) && (chipnr < 0))
- gpmi_end(this);
+ /*
+ * For power consumption matters, disable/enable the clock each time a
+ * die is selected/unselected.
+ */
+ if (this->current_chip < 0 && chipnr >= 0) {
+ ret = gpmi_enable_clk(this);
+ if (ret)
+ dev_err(this->dev, "Failed to enable the clock\n");
+ } else if (this->current_chip >= 0 && chipnr < 0) {
+ ret = gpmi_disable_clk(this);
+ if (ret)
+ dev_err(this->dev, "Failed to disable the clock\n");
+ }
+
+ /*
+ * This driver currently supports only one NAND chip. Plus, dies share
+ * the same configuration. So once timings have been applied on the
+ * controller side, they will not change anymore. When the time will
+ * come, the check on must_apply_timings will have to be dropped.
+ */
+ if (chipnr >= 0 && this->hw.must_apply_timings) {
+ this->hw.must_apply_timings = false;
+ gpmi_nfc_apply_timings(this);
+ }
this->current_chip = chipnr;
}
@@ -1955,14 +1948,6 @@ static int gpmi_init_last(struct gpmi_nand_data *this)
chip->options |= NAND_SUBPAGE_READ;
}
- /*
- * Can we enable the extra features? such as EDO or Sync mode.
- *
- * We do not check the return value now. That's means if we fail in
- * enable the extra features, we still can run in the normal way.
- */
- gpmi_extra_init(this);
-
return 0;
}
@@ -1983,6 +1968,7 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
nand_set_controller_data(chip, this);
nand_set_flash_node(chip, this->pdev->dev.of_node);
chip->select_chip = gpmi_select_chip;
+ chip->setup_data_interface = gpmi_setup_data_interface;
chip->cmd_ctrl = gpmi_cmd_ctrl;
chip->dev_ready = gpmi_dev_ready;
chip->read_byte = gpmi_read_byte;
@@ -2093,7 +2079,7 @@ static int gpmi_nand_probe(struct platform_device *pdev)
if (ret)
goto exit_acquire_resources;
- ret = init_hardware(this);
+ ret = gpmi_init(this);
if (ret)
goto exit_nfc_init;
@@ -2141,7 +2127,6 @@ static int gpmi_pm_resume(struct device *dev)
return ret;
/* re-init the GPMI registers */
- this->flags &= ~GPMI_TIMING_INIT_OK;
ret = gpmi_init(this);
if (ret) {
dev_err(this->dev, "Error setting GPMI : %d\n", ret);
@@ -2155,9 +2140,6 @@ static int gpmi_pm_resume(struct device *dev)
return ret;
}
- /* re-init others */
- gpmi_extra_init(this);
-
return 0;
}
#endif /* CONFIG_PM_SLEEP */
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
index 06c1f993912c..62fde59b995f 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
@@ -86,39 +86,6 @@ enum dma_ops_type {
DMA_FOR_WRITE_ECC_PAGE
};
-/**
- * struct nand_timing - Fundamental timing attributes for NAND.
- * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the
- * maximum of tDS and tWP. A negative value
- * indicates this characteristic isn't known.
- * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the
- * maximum of tDH, tWH and tREH. A negative value
- * indicates this characteristic isn't known.
- * @address_setup_in_ns: The address setup time, in nanoseconds. Usually
- * the maximum of tCLS, tCS and tALS. A negative
- * value indicates this characteristic isn't known.
- * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value
- * indicates this characteristic isn't known.
- * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A
- * negative value indicates this characteristic isn't
- * known.
- * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A
- * negative value indicates this characteristic isn't
- * known.
- * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A
- * negative value indicates this characteristic isn't
- * known.
- */
-struct nand_timing {
- int8_t data_setup_in_ns;
- int8_t data_hold_in_ns;
- int8_t address_setup_in_ns;
- int8_t gpmi_sample_delay_in_ns;
- int8_t tREA_in_ns;
- int8_t tRLOH_in_ns;
- int8_t tRHOH_in_ns;
-};
-
enum gpmi_type {
IS_MX23,
IS_MX28,
@@ -135,11 +102,27 @@ struct gpmi_devdata {
const int clks_count;
};
+/**
+ * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters.
+ * @must_apply_timings: Whether controller timings have already been
+ * applied or not (useful only while there is
+ * support for only one chip select)
+ * @clk_rate: The clock rate that must be used to derive the
+ * following parameters
+ * @timing0: HW_GPMI_TIMING0 register
+ * @timing1: HW_GPMI_TIMING1 register
+ * @ctrl1n: HW_GPMI_CTRL1n register
+ */
+struct gpmi_nfc_hardware_timing {
+ bool must_apply_timings;
+ unsigned long int clk_rate;
+ u32 timing0;
+ u32 timing1;
+ u32 ctrl1n;
+};
+
struct gpmi_nand_data {
- /* flags */
-#define GPMI_ASYNC_EDO_ENABLED (1 << 0)
-#define GPMI_TIMING_INIT_OK (1 << 1)
- int flags;
+ /* Devdata */
const struct gpmi_devdata *devdata;
/* System Interface */
@@ -150,8 +133,7 @@ struct gpmi_nand_data {
struct resources resources;
/* Flash Hardware */
- struct nand_timing timing;
- int timing_mode;
+ struct gpmi_nfc_hardware_timing hw;
/* BCH */
struct bch_geometry bch_geometry;
@@ -204,69 +186,6 @@ struct gpmi_nand_data {
void *private;
};
-/**
- * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters.
- * @data_setup_in_cycles: The data setup time, in cycles.
- * @data_hold_in_cycles: The data hold time, in cycles.
- * @address_setup_in_cycles: The address setup time, in cycles.
- * @device_busy_timeout: The timeout waiting for NAND Ready/Busy,
- * this value is the number of cycles multiplied
- * by 4096.
- * @use_half_periods: Indicates the clock is running slowly, so the
- * NFC DLL should use half-periods.
- * @sample_delay_factor: The sample delay factor.
- * @wrn_dly_sel: The delay on the GPMI write strobe.
- */
-struct gpmi_nfc_hardware_timing {
- /* for HW_GPMI_TIMING0 */
- uint8_t data_setup_in_cycles;
- uint8_t data_hold_in_cycles;
- uint8_t address_setup_in_cycles;
-
- /* for HW_GPMI_TIMING1 */
- uint16_t device_busy_timeout;
-#define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/
-
- /* for HW_GPMI_CTRL1 */
- bool use_half_periods;
- uint8_t sample_delay_factor;
- uint8_t wrn_dly_sel;
-};
-
-/**
- * struct timing_threshold - Timing threshold
- * @max_data_setup_cycles: The maximum number of data setup cycles that
- * can be expressed in the hardware.
- * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires
- * for data read internal setup. In the Reference
- * Manual, see the chapter "High-Speed NAND
- * Timing" for more details.
- * @max_sample_delay_factor: The maximum sample delay factor that can be
- * expressed in the hardware.
- * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the
- * sample delay DLL hardware can possibly work
- * with (the DLL is unusable with longer periods).
- * If the full-cycle period is greater than HALF
- * this value, the DLL must be configured to use
- * half-periods.
- * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the
- * DLL can implement.
- * @clock_frequency_in_hz: The clock frequency, in Hz, during the current
- * I/O transaction. If no I/O transaction is in
- * progress, this is the clock frequency during
- * the most recent I/O transaction.
- */
-struct timing_threshold {
- const unsigned int max_chip_count;
- const unsigned int max_data_setup_cycles;
- const unsigned int internal_data_setup_in_ns;
- const unsigned int max_sample_delay_factor;
- const unsigned int max_dll_clock_period_in_ns;
- const unsigned int max_dll_delay_in_ns;
- unsigned long clock_frequency_in_hz;
-
-};
-
/* Common Services */
int common_nfc_set_geometry(struct gpmi_nand_data *);
struct dma_chan *get_dma_chan(struct gpmi_nand_data *);
@@ -279,14 +198,16 @@ int start_dma_with_bch_irq(struct gpmi_nand_data *,
/* GPMI-NAND helper function library */
int gpmi_init(struct gpmi_nand_data *);
-int gpmi_extra_init(struct gpmi_nand_data *);
void gpmi_clear_bch(struct gpmi_nand_data *);
void gpmi_dump_info(struct gpmi_nand_data *);
int bch_set_geometry(struct gpmi_nand_data *);
int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip);
int gpmi_send_command(struct gpmi_nand_data *);
-void gpmi_begin(struct gpmi_nand_data *);
-void gpmi_end(struct gpmi_nand_data *);
+int gpmi_enable_clk(struct gpmi_nand_data *this);
+int gpmi_disable_clk(struct gpmi_nand_data *this);
+int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface *conf);
+void gpmi_nfc_apply_timings(struct gpmi_nand_data *this);
int gpmi_read_data(struct gpmi_nand_data *);
int gpmi_send_data(struct gpmi_nand_data *);
int gpmi_send_page(struct gpmi_nand_data *,
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
index 82114cdc8330..d92bf32221ca 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
@@ -147,6 +147,11 @@
#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0)
+#define BM_GPMI_CTRL1_CLEAR_MASK (BM_GPMI_CTRL1_WRN_DLY_SEL | \
+ BM_GPMI_CTRL1_DLL_ENABLE | \
+ BM_GPMI_CTRL1_RDN_DELAY | \
+ BM_GPMI_CTRL1_HALF_PERIOD)
+
#define HW_GPMI_TIMING0 0x00000070
#define BP_GPMI_TIMING0_ADDRESS_SETUP 16
diff --git a/drivers/mtd/nand/hisi504_nand.c b/drivers/mtd/nand/raw/hisi504_nand.c
index cb862793ab6d..27558a67fa41 100644
--- a/drivers/mtd/nand/hisi504_nand.c
+++ b/drivers/mtd/nand/raw/hisi504_nand.c
@@ -762,8 +762,8 @@ static int hisi_nfc_probe(struct platform_device *pdev)
chip->write_buf = hisi_nfc_write_buf;
chip->read_buf = hisi_nfc_read_buf;
chip->chip_delay = HINFC504_CHIP_DELAY;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
hisi_nfc_host_init(host);
diff --git a/drivers/mtd/nand/jz4740_nand.c b/drivers/mtd/nand/raw/jz4740_nand.c
index 613b00a9604b..613b00a9604b 100644
--- a/drivers/mtd/nand/jz4740_nand.c
+++ b/drivers/mtd/nand/raw/jz4740_nand.c
diff --git a/drivers/mtd/nand/jz4780_bch.c b/drivers/mtd/nand/raw/jz4780_bch.c
index 731c6051d91e..731c6051d91e 100644
--- a/drivers/mtd/nand/jz4780_bch.c
+++ b/drivers/mtd/nand/raw/jz4780_bch.c
diff --git a/drivers/mtd/nand/jz4780_bch.h b/drivers/mtd/nand/raw/jz4780_bch.h
index bf4718088a3a..bf4718088a3a 100644
--- a/drivers/mtd/nand/jz4780_bch.h
+++ b/drivers/mtd/nand/raw/jz4780_bch.h
diff --git a/drivers/mtd/nand/jz4780_nand.c b/drivers/mtd/nand/raw/jz4780_nand.c
index e69f6ae4c539..e69f6ae4c539 100644
--- a/drivers/mtd/nand/jz4780_nand.c
+++ b/drivers/mtd/nand/raw/jz4780_nand.c
diff --git a/drivers/mtd/nand/lpc32xx_mlc.c b/drivers/mtd/nand/raw/lpc32xx_mlc.c
index e357948a7505..e357948a7505 100644
--- a/drivers/mtd/nand/lpc32xx_mlc.c
+++ b/drivers/mtd/nand/raw/lpc32xx_mlc.c
diff --git a/drivers/mtd/nand/lpc32xx_slc.c b/drivers/mtd/nand/raw/lpc32xx_slc.c
index 5f7cc6da0a7f..5f7cc6da0a7f 100644
--- a/drivers/mtd/nand/lpc32xx_slc.c
+++ b/drivers/mtd/nand/raw/lpc32xx_slc.c
diff --git a/drivers/mtd/nand/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c
index 2196f2a233d6..10e953218948 100644
--- a/drivers/mtd/nand/marvell_nand.c
+++ b/drivers/mtd/nand/raw/marvell_nand.c
@@ -307,7 +307,8 @@ struct marvell_nfc_caps {
* @controller: Base controller structure
* @dev: Parent device (used to print error messages)
* @regs: NAND controller registers
- * @ecc_clk: ECC block clock, two times the NAND controller clock
+ * @core_clk: Core clock
+ * @reg_clk: Regiters clock
* @complete: Completion object to wait for NAND controller events
* @assigned_cs: Bitmask describing already assigned CS lines
* @chips: List containing all the NAND chips attached to
@@ -320,7 +321,8 @@ struct marvell_nfc {
struct nand_hw_control controller;
struct device *dev;
void __iomem *regs;
- struct clk *ecc_clk;
+ struct clk *core_clk;
+ struct clk *reg_clk;
struct completion complete;
unsigned long assigned_cs;
struct list_head chips;
@@ -379,6 +381,8 @@ struct marvell_nfc_timings {
* return the number of clock periods.
*/
#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
+#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
+ period_ns))
/**
* NAND driver structure filled during the parsing of the ->exec_op() subop
@@ -2189,7 +2193,7 @@ static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
struct nand_chip *chip = mtd_to_nand(mtd);
struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
- unsigned int period_ns = 1000000000 / clk_get_rate(nfc->ecc_clk) * 2;
+ unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
const struct nand_sdr_timings *sdr;
struct marvell_nfc_timings nfc_tmg;
int read_delay;
@@ -2236,8 +2240,20 @@ static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
period_ns);
- /* Use WAIT_MODE (wait for RB line) instead of only relying on delays */
- nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
+ /*
+ * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
+ * NFCv1: No WAIT_MODE, tR must be maximal.
+ */
+ if (nfc->caps->is_nfcv2) {
+ nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
+ } else {
+ nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
+ period_ns);
+ if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
+ nfc_tmg.tR = nfc_tmg.tCH - 3;
+ else
+ nfc_tmg.tR = 0;
+ }
if (chipnr < 0)
return 0;
@@ -2249,18 +2265,24 @@ static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
NDTR0_TWP(nfc_tmg.tWP) |
NDTR0_TWH(nfc_tmg.tWH) |
NDTR0_TCS(nfc_tmg.tCS) |
- NDTR0_TCH(nfc_tmg.tCH) |
- NDTR0_RD_CNT_DEL(read_delay) |
- NDTR0_SELCNTR |
- NDTR0_TADL(nfc_tmg.tADL);
+ NDTR0_TCH(nfc_tmg.tCH);
marvell_nand->ndtr1 =
NDTR1_TAR(nfc_tmg.tAR) |
NDTR1_TWHR(nfc_tmg.tWHR) |
- NDTR1_TRHW(nfc_tmg.tRHW) |
- NDTR1_WAIT_MODE |
NDTR1_TR(nfc_tmg.tR);
+ if (nfc->caps->is_nfcv2) {
+ marvell_nand->ndtr0 |=
+ NDTR0_RD_CNT_DEL(read_delay) |
+ NDTR0_SELCNTR |
+ NDTR0_TADL(nfc_tmg.tADL);
+
+ marvell_nand->ndtr1 |=
+ NDTR1_TRHW(nfc_tmg.tRHW) |
+ NDTR1_WAIT_MODE;
+ }
+
return 0;
}
@@ -2395,8 +2417,7 @@ static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
chip->exec_op = marvell_nfc_exec_op;
chip->select_chip = marvell_nfc_select_chip;
- if (nfc->caps->is_nfcv2 &&
- !of_property_read_bool(np, "marvell,nand-keep-config"))
+ if (!of_property_read_bool(np, "marvell,nand-keep-config"))
chip->setup_data_interface = marvell_nfc_setup_data_interface;
mtd = nand_to_mtd(chip);
@@ -2520,8 +2541,7 @@ static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
if (pdata)
/* Legacy bindings support only one chip */
- ret = mtd_device_register(mtd, pdata->parts[0],
- pdata->nr_parts[0]);
+ ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
else
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
@@ -2739,20 +2759,37 @@ static int marvell_nfc_probe(struct platform_device *pdev)
return irq;
}
- nfc->ecc_clk = devm_clk_get(&pdev->dev, NULL);
- if (IS_ERR(nfc->ecc_clk))
- return PTR_ERR(nfc->ecc_clk);
+ nfc->core_clk = devm_clk_get(&pdev->dev, "core");
- ret = clk_prepare_enable(nfc->ecc_clk);
+ /* Managed the legacy case (when the first clock was not named) */
+ if (nfc->core_clk == ERR_PTR(-ENOENT))
+ nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
+
+ if (IS_ERR(nfc->core_clk))
+ return PTR_ERR(nfc->core_clk);
+
+ ret = clk_prepare_enable(nfc->core_clk);
if (ret)
return ret;
+ nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
+ if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
+ if (!IS_ERR(nfc->reg_clk)) {
+ ret = clk_prepare_enable(nfc->reg_clk);
+ if (ret)
+ goto unprepare_core_clk;
+ } else {
+ ret = PTR_ERR(nfc->reg_clk);
+ goto unprepare_core_clk;
+ }
+ }
+
marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
ret = devm_request_irq(dev, irq, marvell_nfc_isr,
0, "marvell-nfc", nfc);
if (ret)
- goto unprepare_clk;
+ goto unprepare_reg_clk;
/* Get NAND controller capabilities */
if (pdev->id_entry)
@@ -2763,24 +2800,26 @@ static int marvell_nfc_probe(struct platform_device *pdev)
if (!nfc->caps) {
dev_err(dev, "Could not retrieve NFC caps\n");
ret = -EINVAL;
- goto unprepare_clk;
+ goto unprepare_reg_clk;
}
/* Init the controller and then probe the chips */
ret = marvell_nfc_init(nfc);
if (ret)
- goto unprepare_clk;
+ goto unprepare_reg_clk;
platform_set_drvdata(pdev, nfc);
ret = marvell_nand_chips_init(dev, nfc);
if (ret)
- goto unprepare_clk;
+ goto unprepare_reg_clk;
return 0;
-unprepare_clk:
- clk_disable_unprepare(nfc->ecc_clk);
+unprepare_reg_clk:
+ clk_disable_unprepare(nfc->reg_clk);
+unprepare_core_clk:
+ clk_disable_unprepare(nfc->core_clk);
return ret;
}
@@ -2796,7 +2835,8 @@ static int marvell_nfc_remove(struct platform_device *pdev)
dma_release_channel(nfc->dma_chan);
}
- clk_disable_unprepare(nfc->ecc_clk);
+ clk_disable_unprepare(nfc->reg_clk);
+ clk_disable_unprepare(nfc->core_clk);
return 0;
}
diff --git a/drivers/mtd/nand/mpc5121_nfc.c b/drivers/mtd/nand/raw/mpc5121_nfc.c
index b6b97cc9fba6..6d1740d54e0d 100644
--- a/drivers/mtd/nand/mpc5121_nfc.c
+++ b/drivers/mtd/nand/raw/mpc5121_nfc.c
@@ -6,9 +6,8 @@
* by OSADL membership fees in 2009; for details see www.osadl.org.
*
* Based on original driver from Freescale Semiconductor
- * written by John Rigby <jrigby@freescale.com> on basis
- * of drivers/mtd/nand/mxc_nand.c. Reworked and extended
- * Piotr Ziecik <kosmo@semihalf.com>.
+ * written by John Rigby <jrigby@freescale.com> on basis of mxc_nand.c.
+ * Reworked and extended by Piotr Ziecik <kosmo@semihalf.com>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
@@ -708,8 +707,8 @@ static int mpc5121_nfc_probe(struct platform_device *op)
chip->read_buf = mpc5121_nfc_read_buf;
chip->write_buf = mpc5121_nfc_write_buf;
chip->select_chip = mpc5121_nfc_select_chip;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
chip->bbt_options = NAND_BBT_USE_FLASH;
chip->ecc.mode = NAND_ECC_SOFT;
chip->ecc.algo = NAND_ECC_HAMMING;
diff --git a/drivers/mtd/nand/mtk_ecc.c b/drivers/mtd/nand/raw/mtk_ecc.c
index 40d86a861a70..40d86a861a70 100644
--- a/drivers/mtd/nand/mtk_ecc.c
+++ b/drivers/mtd/nand/raw/mtk_ecc.c
diff --git a/drivers/mtd/nand/mtk_ecc.h b/drivers/mtd/nand/raw/mtk_ecc.h
index a455df080952..a455df080952 100644
--- a/drivers/mtd/nand/mtk_ecc.h
+++ b/drivers/mtd/nand/raw/mtk_ecc.h
diff --git a/drivers/mtd/nand/mtk_nand.c b/drivers/mtd/nand/raw/mtk_nand.c
index 6977da3a26aa..6977da3a26aa 100644
--- a/drivers/mtd/nand/mtk_nand.c
+++ b/drivers/mtd/nand/raw/mtk_nand.c
diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c
index f3be0b2a8869..45786e707b7b 100644
--- a/drivers/mtd/nand/mxc_nand.c
+++ b/drivers/mtd/nand/raw/mxc_nand.c
@@ -140,6 +140,8 @@ struct mxc_nand_host;
struct mxc_nand_devtype_data {
void (*preset)(struct mtd_info *);
+ int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
+ int page);
void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
void (*send_page)(struct mtd_info *, unsigned int);
@@ -150,10 +152,9 @@ struct mxc_nand_devtype_data {
u32 (*get_ecc_status)(struct mxc_nand_host *);
const struct mtd_ooblayout_ops *ooblayout;
void (*select_chip)(struct mtd_info *mtd, int chip);
- int (*correct_data)(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc);
int (*setup_data_interface)(struct mtd_info *mtd, int csline,
const struct nand_data_interface *conf);
+ void (*enable_hwecc)(struct nand_chip *chip, bool enable);
/*
* On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
@@ -252,6 +253,109 @@ static void memcpy16_toio(void __iomem *trg, const void *src, int size)
__raw_writew(*s++, t++);
}
+/*
+ * The controller splits a page into data chunks of 512 bytes + partial oob.
+ * There are writesize / 512 such chunks, the size of the partial oob parts is
+ * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
+ * contains additionally the byte lost by rounding (if any).
+ * This function handles the needed shuffling between host->data_buf (which
+ * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
+ * spare) and the NFC buffer.
+ */
+static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
+{
+ struct nand_chip *this = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(this);
+ u16 i, oob_chunk_size;
+ u16 num_chunks = mtd->writesize / 512;
+
+ u8 *d = buf;
+ u8 __iomem *s = host->spare0;
+ u16 sparebuf_size = host->devtype_data->spare_len;
+
+ /* size of oob chunk for all but possibly the last one */
+ oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
+
+ if (bfrom) {
+ for (i = 0; i < num_chunks - 1; i++)
+ memcpy16_fromio(d + i * oob_chunk_size,
+ s + i * sparebuf_size,
+ oob_chunk_size);
+
+ /* the last chunk */
+ memcpy16_fromio(d + i * oob_chunk_size,
+ s + i * sparebuf_size,
+ host->used_oobsize - i * oob_chunk_size);
+ } else {
+ for (i = 0; i < num_chunks - 1; i++)
+ memcpy16_toio(&s[i * sparebuf_size],
+ &d[i * oob_chunk_size],
+ oob_chunk_size);
+
+ /* the last chunk */
+ memcpy16_toio(&s[i * sparebuf_size],
+ &d[i * oob_chunk_size],
+ host->used_oobsize - i * oob_chunk_size);
+ }
+}
+
+/*
+ * MXC NANDFC can only perform full page+spare or spare-only read/write. When
+ * the upper layers perform a read/write buf operation, the saved column address
+ * is used to index into the full page. So usually this function is called with
+ * column == 0 (unless no column cycle is needed indicated by column == -1)
+ */
+static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+ /* Write out column address, if necessary */
+ if (column != -1) {
+ host->devtype_data->send_addr(host, column & 0xff,
+ page_addr == -1);
+ if (mtd->writesize > 512)
+ /* another col addr cycle for 2k page */
+ host->devtype_data->send_addr(host,
+ (column >> 8) & 0xff,
+ false);
+ }
+
+ /* Write out page address, if necessary */
+ if (page_addr != -1) {
+ /* paddr_0 - p_addr_7 */
+ host->devtype_data->send_addr(host, (page_addr & 0xff), false);
+
+ if (mtd->writesize > 512) {
+ if (mtd->size >= 0x10000000) {
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff,
+ false);
+ host->devtype_data->send_addr(host,
+ (page_addr >> 16) & 0xff,
+ true);
+ } else
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff, true);
+ } else {
+ if (nand_chip->options & NAND_ROW_ADDR_3) {
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff,
+ false);
+ host->devtype_data->send_addr(host,
+ (page_addr >> 16) & 0xff,
+ true);
+ } else
+ /* paddr_8 - paddr_15 */
+ host->devtype_data->send_addr(host,
+ (page_addr >> 8) & 0xff, true);
+ }
+ }
+}
+
static int check_int_v3(struct mxc_nand_host *host)
{
uint32_t tmp;
@@ -575,6 +679,42 @@ static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
return ret;
}
+static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ uint16_t config1;
+
+ if (chip->ecc.mode != NAND_ECC_HW)
+ return;
+
+ config1 = readw(NFC_V1_V2_CONFIG1);
+
+ if (enable)
+ config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
+ else
+ config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
+
+ writew(config1, NFC_V1_V2_CONFIG1);
+}
+
+static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ uint32_t config2;
+
+ if (chip->ecc.mode != NAND_ECC_HW)
+ return;
+
+ config2 = readl(NFC_V3_CONFIG2);
+
+ if (enable)
+ config2 |= NFC_V3_CONFIG2_ECC_EN;
+ else
+ config2 &= ~NFC_V3_CONFIG2_ECC_EN;
+
+ writel(config2, NFC_V3_CONFIG2);
+}
+
/* This functions is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
@@ -585,45 +725,90 @@ static int mxc_nand_dev_ready(struct mtd_info *mtd)
return 1;
}
-static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
+ bool ecc, int page)
{
- /*
- * If HW ECC is enabled, we turn it on during init. There is
- * no need to enable again here.
- */
-}
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ unsigned int bitflips_corrected = 0;
+ int no_subpages;
+ int i;
-static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ host->devtype_data->enable_hwecc(chip, ecc);
- /*
- * 1-Bit errors are automatically corrected in HW. No need for
- * additional correction. 2-Bit errors cannot be corrected by
- * HW ECC, so we need to return failure
- */
- uint16_t ecc_status = get_ecc_status_v1(host);
+ host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
+ mxc_do_addr_cycle(mtd, 0, page);
+
+ if (mtd->writesize > 512)
+ host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
+
+ no_subpages = mtd->writesize >> 9;
+
+ for (i = 0; i < no_subpages; i++) {
+ uint16_t ecc_stats;
+
+ /* NANDFC buffer 0 is used for page read/write */
+ writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
+
+ writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, true);
+
+ ecc_stats = get_ecc_status_v1(host);
+
+ ecc_stats >>= 2;
- if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
- dev_dbg(host->dev, "HWECC uncorrectable 2-bit ECC error\n");
- return -EBADMSG;
+ if (buf && ecc) {
+ switch (ecc_stats & 0x3) {
+ case 0:
+ default:
+ break;
+ case 1:
+ mtd->ecc_stats.corrected++;
+ bitflips_corrected = 1;
+ break;
+ case 2:
+ mtd->ecc_stats.failed++;
+ break;
+ }
+ }
}
- return 0;
+ if (buf)
+ memcpy32_fromio(buf, host->main_area0, mtd->writesize);
+ if (oob)
+ copy_spare(mtd, true, oob);
+
+ return bitflips_corrected;
}
-static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
+static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
+ void *oob, bool ecc, int page)
{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ unsigned int max_bitflips = 0;
u32 ecc_stat, err;
- int no_subpages = 1;
- int ret = 0;
+ int no_subpages;
u8 ecc_bit_mask, err_limit;
+ host->devtype_data->enable_hwecc(chip, ecc);
+
+ host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
+ mxc_do_addr_cycle(mtd, 0, page);
+
+ if (mtd->writesize > 512)
+ host->devtype_data->send_cmd(host,
+ NAND_CMD_READSTART, true);
+
+ host->devtype_data->send_page(mtd, NFC_OUTPUT);
+
+ if (buf)
+ memcpy32_fromio(buf, host->main_area0, mtd->writesize);
+ if (oob)
+ copy_spare(mtd, true, oob);
+
ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
@@ -634,25 +819,99 @@ static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
do {
err = ecc_stat & ecc_bit_mask;
if (err > err_limit) {
- dev_dbg(host->dev, "UnCorrectable RS-ECC Error\n");
- return -EBADMSG;
+ mtd->ecc_stats.failed++;
} else {
- ret += err;
+ mtd->ecc_stats.corrected += err;
+ max_bitflips = max_t(unsigned int, max_bitflips, err);
}
+
ecc_stat >>= 4;
} while (--no_subpages);
- dev_dbg(host->dev, "%d Symbol Correctable RS-ECC Error\n", ret);
+ return max_bitflips;
+}
- return ret;
+static int mxc_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ void *oob_buf;
+
+ if (oob_required)
+ oob_buf = chip->oob_poi;
+ else
+ oob_buf = NULL;
+
+ return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
+}
+
+static int mxc_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+ void *oob_buf;
+
+ if (oob_required)
+ oob_buf = chip->oob_poi;
+ else
+ oob_buf = NULL;
+
+ return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
+}
+
+static int mxc_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+ return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
+ page);
}
-static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
- u_char *ecc_code)
+static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
+ bool ecc, int page)
{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+ host->devtype_data->enable_hwecc(chip, ecc);
+
+ host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
+ mxc_do_addr_cycle(mtd, 0, page);
+
+ memcpy32_toio(host->main_area0, buf, mtd->writesize);
+ copy_spare(mtd, false, chip->oob_poi);
+
+ host->devtype_data->send_page(mtd, NFC_INPUT);
+ host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
+ mxc_do_addr_cycle(mtd, 0, page);
+
return 0;
}
+static int mxc_nand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required,
+ int page)
+{
+ return mxc_nand_write_page(chip, buf, true, page);
+}
+
+static int mxc_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required, int page)
+{
+ return mxc_nand_write_page(chip, buf, false, page);
+}
+
+static int mxc_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+ memset(host->data_buf, 0xff, mtd->writesize);
+
+ return mxc_nand_write_page(chip, host->data_buf, false, page);
+}
+
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
@@ -772,109 +1031,6 @@ static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
}
-/*
- * The controller splits a page into data chunks of 512 bytes + partial oob.
- * There are writesize / 512 such chunks, the size of the partial oob parts is
- * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
- * contains additionally the byte lost by rounding (if any).
- * This function handles the needed shuffling between host->data_buf (which
- * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
- * spare) and the NFC buffer.
- */
-static void copy_spare(struct mtd_info *mtd, bool bfrom)
-{
- struct nand_chip *this = mtd_to_nand(mtd);
- struct mxc_nand_host *host = nand_get_controller_data(this);
- u16 i, oob_chunk_size;
- u16 num_chunks = mtd->writesize / 512;
-
- u8 *d = host->data_buf + mtd->writesize;
- u8 __iomem *s = host->spare0;
- u16 sparebuf_size = host->devtype_data->spare_len;
-
- /* size of oob chunk for all but possibly the last one */
- oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
-
- if (bfrom) {
- for (i = 0; i < num_chunks - 1; i++)
- memcpy16_fromio(d + i * oob_chunk_size,
- s + i * sparebuf_size,
- oob_chunk_size);
-
- /* the last chunk */
- memcpy16_fromio(d + i * oob_chunk_size,
- s + i * sparebuf_size,
- host->used_oobsize - i * oob_chunk_size);
- } else {
- for (i = 0; i < num_chunks - 1; i++)
- memcpy16_toio(&s[i * sparebuf_size],
- &d[i * oob_chunk_size],
- oob_chunk_size);
-
- /* the last chunk */
- memcpy16_toio(&s[i * sparebuf_size],
- &d[i * oob_chunk_size],
- host->used_oobsize - i * oob_chunk_size);
- }
-}
-
-/*
- * MXC NANDFC can only perform full page+spare or spare-only read/write. When
- * the upper layers perform a read/write buf operation, the saved column address
- * is used to index into the full page. So usually this function is called with
- * column == 0 (unless no column cycle is needed indicated by column == -1)
- */
-static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
-{
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
-
- /* Write out column address, if necessary */
- if (column != -1) {
- host->devtype_data->send_addr(host, column & 0xff,
- page_addr == -1);
- if (mtd->writesize > 512)
- /* another col addr cycle for 2k page */
- host->devtype_data->send_addr(host,
- (column >> 8) & 0xff,
- false);
- }
-
- /* Write out page address, if necessary */
- if (page_addr != -1) {
- /* paddr_0 - p_addr_7 */
- host->devtype_data->send_addr(host, (page_addr & 0xff), false);
-
- if (mtd->writesize > 512) {
- if (mtd->size >= 0x10000000) {
- /* paddr_8 - paddr_15 */
- host->devtype_data->send_addr(host,
- (page_addr >> 8) & 0xff,
- false);
- host->devtype_data->send_addr(host,
- (page_addr >> 16) & 0xff,
- true);
- } else
- /* paddr_8 - paddr_15 */
- host->devtype_data->send_addr(host,
- (page_addr >> 8) & 0xff, true);
- } else {
- if (nand_chip->options & NAND_ROW_ADDR_3) {
- /* paddr_8 - paddr_15 */
- host->devtype_data->send_addr(host,
- (page_addr >> 8) & 0xff,
- false);
- host->devtype_data->send_addr(host,
- (page_addr >> 16) & 0xff,
- true);
- } else
- /* paddr_8 - paddr_15 */
- host->devtype_data->send_addr(host,
- (page_addr >> 8) & 0xff, true);
- }
- }
-}
-
#define MXC_V1_ECCBYTES 5
static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
@@ -1235,57 +1391,6 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
mxc_do_addr_cycle(mtd, column, page_addr);
break;
- case NAND_CMD_READ0:
- case NAND_CMD_READOOB:
- if (command == NAND_CMD_READ0)
- host->buf_start = column;
- else
- host->buf_start = column + mtd->writesize;
-
- command = NAND_CMD_READ0; /* only READ0 is valid */
-
- host->devtype_data->send_cmd(host, command, false);
- WARN_ONCE(column < 0,
- "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
- command, column, page_addr);
- mxc_do_addr_cycle(mtd, 0, page_addr);
-
- if (mtd->writesize > 512)
- host->devtype_data->send_cmd(host,
- NAND_CMD_READSTART, true);
-
- host->devtype_data->send_page(mtd, NFC_OUTPUT);
-
- memcpy32_fromio(host->data_buf, host->main_area0,
- mtd->writesize);
- copy_spare(mtd, true);
- break;
-
- case NAND_CMD_SEQIN:
- if (column >= mtd->writesize)
- /* call ourself to read a page */
- mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
-
- host->buf_start = column;
-
- host->devtype_data->send_cmd(host, command, false);
- WARN_ONCE(column < -1,
- "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
- command, column, page_addr);
- mxc_do_addr_cycle(mtd, 0, page_addr);
- break;
-
- case NAND_CMD_PAGEPROG:
- memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
- copy_spare(mtd, false);
- host->devtype_data->send_page(mtd, NFC_INPUT);
- host->devtype_data->send_cmd(host, command, true);
- WARN_ONCE(column != -1 || page_addr != -1,
- "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
- command, column, page_addr);
- mxc_do_addr_cycle(mtd, column, page_addr);
- break;
-
case NAND_CMD_READID:
host->devtype_data->send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
@@ -1316,19 +1421,13 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
}
}
-static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
- struct nand_chip *chip, int addr,
- u8 *subfeature_param)
+static int mxc_nand_set_features(struct mtd_info *mtd, struct nand_chip *chip,
+ int addr, u8 *subfeature_param)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int i;
- if (!chip->onfi_version ||
- !(le16_to_cpu(chip->onfi_params.opt_cmd)
- & ONFI_OPT_CMD_SET_GET_FEATURES))
- return -EINVAL;
-
host->buf_start = 0;
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
@@ -1342,19 +1441,13 @@ static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
return 0;
}
-static int mxc_nand_onfi_get_features(struct mtd_info *mtd,
- struct nand_chip *chip, int addr,
- u8 *subfeature_param)
+static int mxc_nand_get_features(struct mtd_info *mtd, struct nand_chip *chip,
+ int addr, u8 *subfeature_param)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int i;
- if (!chip->onfi_version ||
- !(le16_to_cpu(chip->onfi_params.opt_cmd)
- & ONFI_OPT_CMD_SET_GET_FEATURES))
- return -EINVAL;
-
host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
mxc_do_addr_cycle(mtd, addr, -1);
host->devtype_data->send_page(mtd, NFC_OUTPUT);
@@ -1397,6 +1490,7 @@ static struct nand_bbt_descr bbt_mirror_descr = {
/* v1 + irqpending_quirk: i.MX21 */
static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
.preset = preset_v1,
+ .read_page = mxc_nand_read_page_v1,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v1,
@@ -1407,7 +1501,7 @@ static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
.get_ecc_status = get_ecc_status_v1,
.ooblayout = &mxc_v1_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
- .correct_data = mxc_nand_correct_data_v1,
+ .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
.irqpending_quirk = 1,
.needs_ip = 0,
.regs_offset = 0xe00,
@@ -1420,6 +1514,7 @@ static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
.preset = preset_v1,
+ .read_page = mxc_nand_read_page_v1,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v1,
@@ -1430,7 +1525,7 @@ static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
.get_ecc_status = get_ecc_status_v1,
.ooblayout = &mxc_v1_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
- .correct_data = mxc_nand_correct_data_v1,
+ .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
.irqpending_quirk = 0,
.needs_ip = 0,
.regs_offset = 0xe00,
@@ -1444,6 +1539,7 @@ static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
/* v21: i.MX25, i.MX35 */
static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
.preset = preset_v2,
+ .read_page = mxc_nand_read_page_v2_v3,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v2,
@@ -1454,8 +1550,8 @@ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
.get_ecc_status = get_ecc_status_v2,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v2,
- .correct_data = mxc_nand_correct_data_v2_v3,
.setup_data_interface = mxc_nand_v2_setup_data_interface,
+ .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
.irqpending_quirk = 0,
.needs_ip = 0,
.regs_offset = 0x1e00,
@@ -1469,6 +1565,7 @@ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
/* v3.2a: i.MX51 */
static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
.preset = preset_v3,
+ .read_page = mxc_nand_read_page_v2_v3,
.send_cmd = send_cmd_v3,
.send_addr = send_addr_v3,
.send_page = send_page_v3,
@@ -1479,7 +1576,7 @@ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
.get_ecc_status = get_ecc_status_v3,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
- .correct_data = mxc_nand_correct_data_v2_v3,
+ .enable_hwecc = mxc_nand_enable_hwecc_v3,
.irqpending_quirk = 0,
.needs_ip = 1,
.regs_offset = 0,
@@ -1494,6 +1591,7 @@ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
/* v3.2b: i.MX53 */
static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
.preset = preset_v3,
+ .read_page = mxc_nand_read_page_v2_v3,
.send_cmd = send_cmd_v3,
.send_addr = send_addr_v3,
.send_page = send_page_v3,
@@ -1504,7 +1602,7 @@ static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
.get_ecc_status = get_ecc_status_v3,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
- .correct_data = mxc_nand_correct_data_v2_v3,
+ .enable_hwecc = mxc_nand_enable_hwecc_v3,
.irqpending_quirk = 0,
.needs_ip = 1,
.regs_offset = 0,
@@ -1642,8 +1740,8 @@ static int mxcnd_probe(struct platform_device *pdev)
this->read_word = mxc_nand_read_word;
this->write_buf = mxc_nand_write_buf;
this->read_buf = mxc_nand_read_buf;
- this->onfi_set_features = mxc_nand_onfi_set_features;
- this->onfi_get_features = mxc_nand_onfi_get_features;
+ this->set_features = mxc_nand_set_features;
+ this->get_features = mxc_nand_get_features;
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk))
@@ -1751,9 +1849,12 @@ static int mxcnd_probe(struct platform_device *pdev)
switch (this->ecc.mode) {
case NAND_ECC_HW:
- this->ecc.calculate = mxc_nand_calculate_ecc;
- this->ecc.hwctl = mxc_nand_enable_hwecc;
- this->ecc.correct = host->devtype_data->correct_data;
+ this->ecc.read_page = mxc_nand_read_page;
+ this->ecc.read_page_raw = mxc_nand_read_page_raw;
+ this->ecc.read_oob = mxc_nand_read_oob;
+ this->ecc.write_page = mxc_nand_write_page_ecc;
+ this->ecc.write_page_raw = mxc_nand_write_page_raw;
+ this->ecc.write_oob = mxc_nand_write_oob;
break;
case NAND_ECC_SOFT:
@@ -1810,15 +1911,18 @@ static int mxcnd_probe(struct platform_device *pdev)
goto escan;
/* Register the partitions */
- mtd_device_parse_register(mtd, part_probes,
- NULL,
- host->pdata.parts,
- host->pdata.nr_parts);
+ err = mtd_device_parse_register(mtd, part_probes, NULL,
+ host->pdata.parts,
+ host->pdata.nr_parts);
+ if (err)
+ goto cleanup_nand;
platform_set_drvdata(pdev, host);
return 0;
+cleanup_nand:
+ nand_cleanup(this);
escan:
if (host->clk_act)
clk_disable_unprepare(host->clk);
diff --git a/drivers/mtd/nand/nand_amd.c b/drivers/mtd/nand/raw/nand_amd.c
index 22f060f38123..22f060f38123 100644
--- a/drivers/mtd/nand/nand_amd.c
+++ b/drivers/mtd/nand/raw/nand_amd.c
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
index 87b72bf626ae..72f3a89da513 100644
--- a/drivers/mtd/nand/nand_base.c
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -349,7 +349,7 @@ static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
* 8-bits of the data bus. During address transfers, the host shall
* set the upper 8-bits of the data bus to 00h.
*
- * One user of the write_byte callback is nand_onfi_set_features. The
+ * One user of the write_byte callback is nand_set_features. The
* four parameters are specified to be written to I/O[7:0], but this is
* neither an address nor a command transfer. Let's assume a 0 on the
* upper I/O lines is OK.
@@ -1159,6 +1159,60 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
return status;
}
+static bool nand_supports_get_features(struct nand_chip *chip, int addr)
+{
+ return (chip->parameters.supports_set_get_features &&
+ test_bit(addr, chip->parameters.get_feature_list));
+}
+
+static bool nand_supports_set_features(struct nand_chip *chip, int addr)
+{
+ return (chip->parameters.supports_set_get_features &&
+ test_bit(addr, chip->parameters.set_feature_list));
+}
+
+/**
+ * nand_get_features - wrapper to perform a GET_FEATURE
+ * @chip: NAND chip info structure
+ * @addr: feature address
+ * @subfeature_param: the subfeature parameters, a four bytes array
+ *
+ * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
+ * operation cannot be handled.
+ */
+int nand_get_features(struct nand_chip *chip, int addr,
+ u8 *subfeature_param)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ if (!nand_supports_get_features(chip, addr))
+ return -ENOTSUPP;
+
+ return chip->get_features(mtd, chip, addr, subfeature_param);
+}
+EXPORT_SYMBOL_GPL(nand_get_features);
+
+/**
+ * nand_set_features - wrapper to perform a SET_FEATURE
+ * @chip: NAND chip info structure
+ * @addr: feature address
+ * @subfeature_param: the subfeature parameters, a four bytes array
+ *
+ * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
+ * operation cannot be handled.
+ */
+int nand_set_features(struct nand_chip *chip, int addr,
+ u8 *subfeature_param)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ if (!nand_supports_set_features(chip, addr))
+ return -ENOTSUPP;
+
+ return chip->set_features(mtd, chip, addr, subfeature_param);
+}
+EXPORT_SYMBOL_GPL(nand_set_features);
+
/**
* nand_reset_data_interface - Reset data interface and timings
* @chip: The NAND chip
@@ -1214,31 +1268,59 @@ static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
{
struct mtd_info *mtd = nand_to_mtd(chip);
+ u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
+ chip->onfi_timing_mode_default,
+ };
int ret;
if (!chip->setup_data_interface)
return 0;
- /*
- * Ensure the timing mode has been changed on the chip side
- * before changing timings on the controller side.
- */
- if (chip->onfi_version &&
- (le16_to_cpu(chip->onfi_params.opt_cmd) &
- ONFI_OPT_CMD_SET_GET_FEATURES)) {
- u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
- chip->onfi_timing_mode_default,
- };
-
- ret = chip->onfi_set_features(mtd, chip,
- ONFI_FEATURE_ADDR_TIMING_MODE,
- tmode_param);
+ /* Change the mode on the chip side (if supported by the NAND chip) */
+ if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
+ chip->select_chip(mtd, chipnr);
+ ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
+ tmode_param);
+ chip->select_chip(mtd, -1);
if (ret)
- goto err;
+ return ret;
}
+ /* Change the mode on the controller side */
ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
-err:
+ if (ret)
+ return ret;
+
+ /* Check the mode has been accepted by the chip, if supported */
+ if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
+ return 0;
+
+ memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
+ chip->select_chip(mtd, chipnr);
+ ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
+ tmode_param);
+ chip->select_chip(mtd, -1);
+ if (ret)
+ goto err_reset_chip;
+
+ if (tmode_param[0] != chip->onfi_timing_mode_default) {
+ pr_warn("timing mode %d not acknowledged by the NAND chip\n",
+ chip->onfi_timing_mode_default);
+ goto err_reset_chip;
+ }
+
+ return 0;
+
+err_reset_chip:
+ /*
+ * Fallback to mode 0 if the chip explicitly did not ack the chosen
+ * timing mode.
+ */
+ nand_reset_data_interface(chip, chipnr);
+ chip->select_chip(mtd, chipnr);
+ nand_reset_op(chip);
+ chip->select_chip(mtd, -1);
+
return ret;
}
@@ -2738,10 +2820,18 @@ int nand_reset(struct nand_chip *chip, int chipnr)
if (ret)
return ret;
- chip->select_chip(mtd, chipnr);
+ /*
+ * A nand_reset_data_interface() put both the NAND chip and the NAND
+ * controller in timings mode 0. If the default mode for this chip is
+ * also 0, no need to proceed to the change again. Plus, at probe time,
+ * nand_setup_data_interface() uses ->set/get_features() which would
+ * fail anyway as the parameter page is not available yet.
+ */
+ if (!chip->onfi_timing_mode_default)
+ return 0;
+
chip->data_interface = saved_data_intf;
ret = nand_setup_data_interface(chip, chipnr);
- chip->select_chip(mtd, -1);
if (ret)
return ret;
@@ -4760,44 +4850,35 @@ static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
}
/**
- * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
+ * nand_default_set_features- [REPLACEABLE] set NAND chip features
* @mtd: MTD device structure
* @chip: nand chip info structure
* @addr: feature address.
* @subfeature_param: the subfeature parameters, a four bytes array.
*/
-static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
- int addr, uint8_t *subfeature_param)
+static int nand_default_set_features(struct mtd_info *mtd,
+ struct nand_chip *chip, int addr,
+ uint8_t *subfeature_param)
{
- if (!chip->onfi_version ||
- !(le16_to_cpu(chip->onfi_params.opt_cmd)
- & ONFI_OPT_CMD_SET_GET_FEATURES))
- return -EINVAL;
-
return nand_set_features_op(chip, addr, subfeature_param);
}
/**
- * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
+ * nand_default_get_features- [REPLACEABLE] get NAND chip features
* @mtd: MTD device structure
* @chip: nand chip info structure
* @addr: feature address.
* @subfeature_param: the subfeature parameters, a four bytes array.
*/
-static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
- int addr, uint8_t *subfeature_param)
+static int nand_default_get_features(struct mtd_info *mtd,
+ struct nand_chip *chip, int addr,
+ uint8_t *subfeature_param)
{
- if (!chip->onfi_version ||
- !(le16_to_cpu(chip->onfi_params.opt_cmd)
- & ONFI_OPT_CMD_SET_GET_FEATURES))
- return -EINVAL;
-
return nand_get_features_op(chip, addr, subfeature_param);
}
/**
- * nand_onfi_get_set_features_notsupp - set/get features stub returning
- * -ENOTSUPP
+ * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
* @mtd: MTD device structure
* @chip: nand chip info structure
* @addr: feature address.
@@ -4806,13 +4887,12 @@ static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
* Should be used by NAND controller drivers that do not support the SET/GET
* FEATURES operations.
*/
-int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
- struct nand_chip *chip, int addr,
- u8 *subfeature_param)
+int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
+ int addr, u8 *subfeature_param)
{
return -ENOTSUPP;
}
-EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp);
+EXPORT_SYMBOL(nand_get_set_features_notsupp);
/**
* nand_suspend - [MTD Interface] Suspend the NAND flash
@@ -4869,10 +4949,10 @@ static void nand_set_defaults(struct nand_chip *chip)
chip->select_chip = nand_select_chip;
/* set for ONFI nand */
- if (!chip->onfi_set_features)
- chip->onfi_set_features = nand_onfi_set_features;
- if (!chip->onfi_get_features)
- chip->onfi_get_features = nand_onfi_get_features;
+ if (!chip->set_features)
+ chip->set_features = nand_default_set_features;
+ if (!chip->get_features)
+ chip->get_features = nand_default_get_features;
/* If called twice, pointers that depend on busw may need to be reset */
if (!chip->read_byte || chip->read_byte == nand_read_byte)
@@ -5012,7 +5092,7 @@ ext_out:
static int nand_flash_detect_onfi(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
- struct nand_onfi_params *p = &chip->onfi_params;
+ struct nand_onfi_params *p;
char id[4];
int i, ret, val;
@@ -5021,14 +5101,23 @@ static int nand_flash_detect_onfi(struct nand_chip *chip)
if (ret || strncmp(id, "ONFI", 4))
return 0;
+ /* ONFI chip: allocate a buffer to hold its parameter page */
+ p = kzalloc(sizeof(*p), GFP_KERNEL);
+ if (!p)
+ return -ENOMEM;
+
ret = nand_read_param_page_op(chip, 0, NULL, 0);
- if (ret)
- return 0;
+ if (ret) {
+ ret = 0;
+ goto free_onfi_param_page;
+ }
for (i = 0; i < 3; i++) {
ret = nand_read_data_op(chip, p, sizeof(*p), true);
- if (ret)
- return 0;
+ if (ret) {
+ ret = 0;
+ goto free_onfi_param_page;
+ }
if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
le16_to_cpu(p->crc)) {
@@ -5038,31 +5127,33 @@ static int nand_flash_detect_onfi(struct nand_chip *chip)
if (i == 3) {
pr_err("Could not find valid ONFI parameter page; aborting\n");
- return 0;
+ goto free_onfi_param_page;
}
/* Check version */
val = le16_to_cpu(p->revision);
if (val & (1 << 5))
- chip->onfi_version = 23;
+ chip->parameters.onfi.version = 23;
else if (val & (1 << 4))
- chip->onfi_version = 22;
+ chip->parameters.onfi.version = 22;
else if (val & (1 << 3))
- chip->onfi_version = 21;
+ chip->parameters.onfi.version = 21;
else if (val & (1 << 2))
- chip->onfi_version = 20;
+ chip->parameters.onfi.version = 20;
else if (val & (1 << 1))
- chip->onfi_version = 10;
+ chip->parameters.onfi.version = 10;
- if (!chip->onfi_version) {
+ if (!chip->parameters.onfi.version) {
pr_info("unsupported ONFI version: %d\n", val);
- return 0;
+ goto free_onfi_param_page;
+ } else {
+ ret = 1;
}
sanitize_string(p->manufacturer, sizeof(p->manufacturer));
sanitize_string(p->model, sizeof(p->model));
- if (!mtd->name)
- mtd->name = p->model;
+ strncpy(chip->parameters.model, p->model,
+ sizeof(chip->parameters.model) - 1);
mtd->writesize = le32_to_cpu(p->byte_per_page);
@@ -5084,14 +5175,14 @@ static int nand_flash_detect_onfi(struct nand_chip *chip)
chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
- if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
+ if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS)
chip->options |= NAND_BUSWIDTH_16;
if (p->ecc_bits != 0xff) {
chip->ecc_strength_ds = p->ecc_bits;
chip->ecc_step_ds = 512;
- } else if (chip->onfi_version >= 21 &&
- (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
+ } else if (chip->parameters.onfi.version >= 21 &&
+ (le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
/*
* The nand_flash_detect_ext_param_page() uses the
@@ -5109,7 +5200,28 @@ static int nand_flash_detect_onfi(struct nand_chip *chip)
pr_warn("Could not retrieve ONFI ECC requirements\n");
}
- return 1;
+ /* Save some parameters from the parameter page for future use */
+ if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) {
+ chip->parameters.supports_set_get_features = true;
+ bitmap_set(chip->parameters.get_feature_list,
+ ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+ bitmap_set(chip->parameters.set_feature_list,
+ ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+ }
+ chip->parameters.onfi.tPROG = le16_to_cpu(p->t_prog);
+ chip->parameters.onfi.tBERS = le16_to_cpu(p->t_bers);
+ chip->parameters.onfi.tR = le16_to_cpu(p->t_r);
+ chip->parameters.onfi.tCCS = le16_to_cpu(p->t_ccs);
+ chip->parameters.onfi.async_timing_mode =
+ le16_to_cpu(p->async_timing_mode);
+ chip->parameters.onfi.vendor_revision =
+ le16_to_cpu(p->vendor_revision);
+ memcpy(chip->parameters.onfi.vendor, p->vendor,
+ sizeof(p->vendor));
+
+free_onfi_param_page:
+ kfree(p);
+ return ret;
}
/*
@@ -5118,8 +5230,9 @@ static int nand_flash_detect_onfi(struct nand_chip *chip)
static int nand_flash_detect_jedec(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
- struct nand_jedec_params *p = &chip->jedec_params;
+ struct nand_jedec_params *p;
struct jedec_ecc_info *ecc;
+ int jedec_version = 0;
char id[5];
int i, val, ret;
@@ -5128,14 +5241,23 @@ static int nand_flash_detect_jedec(struct nand_chip *chip)
if (ret || strncmp(id, "JEDEC", sizeof(id)))
return 0;
+ /* JEDEC chip: allocate a buffer to hold its parameter page */
+ p = kzalloc(sizeof(*p), GFP_KERNEL);
+ if (!p)
+ return -ENOMEM;
+
ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
- if (ret)
- return 0;
+ if (ret) {
+ ret = 0;
+ goto free_jedec_param_page;
+ }
for (i = 0; i < 3; i++) {
ret = nand_read_data_op(chip, p, sizeof(*p), true);
- if (ret)
- return 0;
+ if (ret) {
+ ret = 0;
+ goto free_jedec_param_page;
+ }
if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
le16_to_cpu(p->crc))
@@ -5144,25 +5266,25 @@ static int nand_flash_detect_jedec(struct nand_chip *chip)
if (i == 3) {
pr_err("Could not find valid JEDEC parameter page; aborting\n");
- return 0;
+ goto free_jedec_param_page;
}
/* Check version */
val = le16_to_cpu(p->revision);
if (val & (1 << 2))
- chip->jedec_version = 10;
+ jedec_version = 10;
else if (val & (1 << 1))
- chip->jedec_version = 1; /* vendor specific version */
+ jedec_version = 1; /* vendor specific version */
- if (!chip->jedec_version) {
+ if (!jedec_version) {
pr_info("unsupported JEDEC version: %d\n", val);
- return 0;
+ goto free_jedec_param_page;
}
sanitize_string(p->manufacturer, sizeof(p->manufacturer));
sanitize_string(p->model, sizeof(p->model));
- if (!mtd->name)
- mtd->name = p->model;
+ strncpy(chip->parameters.model, p->model,
+ sizeof(chip->parameters.model) - 1);
mtd->writesize = le32_to_cpu(p->byte_per_page);
@@ -5177,7 +5299,7 @@ static int nand_flash_detect_jedec(struct nand_chip *chip)
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
chip->bits_per_cell = p->bits_per_cell;
- if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
+ if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS)
chip->options |= NAND_BUSWIDTH_16;
/* ECC info */
@@ -5190,7 +5312,9 @@ static int nand_flash_detect_jedec(struct nand_chip *chip)
pr_warn("Invalid codeword size\n");
}
- return 1;
+free_jedec_param_page:
+ kfree(p);
+ return ret;
}
/*
@@ -5349,8 +5473,8 @@ static bool find_full_id_nand(struct nand_chip *chip,
chip->onfi_timing_mode_default =
type->onfi_timing_mode_default;
- if (!mtd->name)
- mtd->name = type->name;
+ strncpy(chip->parameters.model, type->name,
+ sizeof(chip->parameters.model) - 1);
return true;
}
@@ -5489,22 +5613,28 @@ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
}
}
- chip->onfi_version = 0;
+ chip->parameters.onfi.version = 0;
if (!type->name || !type->pagesize) {
/* Check if the chip is ONFI compliant */
- if (nand_flash_detect_onfi(chip))
+ ret = nand_flash_detect_onfi(chip);
+ if (ret < 0)
+ return ret;
+ else if (ret)
goto ident_done;
/* Check if the chip is JEDEC compliant */
- if (nand_flash_detect_jedec(chip))
+ ret = nand_flash_detect_jedec(chip);
+ if (ret < 0)
+ return ret;
+ else if (ret)
goto ident_done;
}
if (!type->name)
return -ENODEV;
- if (!mtd->name)
- mtd->name = type->name;
+ strncpy(chip->parameters.model, type->name,
+ sizeof(chip->parameters.model) - 1);
chip->chipsize = (uint64_t)type->chipsize << 20;
@@ -5517,6 +5647,8 @@ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
chip->options |= type->options;
ident_done:
+ if (!mtd->name)
+ mtd->name = chip->parameters.model;
if (chip->options & NAND_BUSWIDTH_AUTO) {
WARN_ON(busw & NAND_BUSWIDTH_16);
@@ -5563,17 +5695,8 @@ ident_done:
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
maf_id, dev_id);
-
- if (chip->onfi_version)
- pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
- chip->onfi_params.model);
- else if (chip->jedec_version)
- pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
- chip->jedec_params.model);
- else
- pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
- type->name);
-
+ pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
+ chip->parameters.model);
pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
@@ -6465,10 +6588,7 @@ int nand_scan_tail(struct mtd_info *mtd)
/* Enter fastest possible mode on all dies. */
for (i = 0; i < chip->numchips; i++) {
- chip->select_chip(mtd, i);
ret = nand_setup_data_interface(chip, i);
- chip->select_chip(mtd, -1);
-
if (ret)
goto err_nand_manuf_cleanup;
}
diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/raw/nand_bbt.c
index d9f4ceff2568..d9f4ceff2568 100644
--- a/drivers/mtd/nand/nand_bbt.c
+++ b/drivers/mtd/nand/raw/nand_bbt.c
diff --git a/drivers/mtd/nand/nand_bch.c b/drivers/mtd/nand/raw/nand_bch.c
index 505441c9373b..7f11b68f6db1 100644
--- a/drivers/mtd/nand/nand_bch.c
+++ b/drivers/mtd/nand/raw/nand_bch.c
@@ -95,7 +95,7 @@ int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf,
errloc[i]);
}
} else if (count < 0) {
- printk(KERN_ERR "ecc unrecoverable error\n");
+ pr_err("ecc unrecoverable error\n");
count = -EBADMSG;
}
return count;
@@ -134,7 +134,7 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
}
if (!eccsize || !eccbytes) {
- printk(KERN_WARNING "ecc parameters not supplied\n");
+ pr_warn("ecc parameters not supplied\n");
goto fail;
}
@@ -151,8 +151,8 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
/* verify that eccbytes has the expected value */
if (nbc->bch->ecc_bytes != eccbytes) {
- printk(KERN_WARNING "invalid eccbytes %u, should be %u\n",
- eccbytes, nbc->bch->ecc_bytes);
+ pr_warn("invalid eccbytes %u, should be %u\n",
+ eccbytes, nbc->bch->ecc_bytes);
goto fail;
}
@@ -166,7 +166,7 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
/* sanity checks */
if (8*(eccsize+eccbytes) >= (1 << m)) {
- printk(KERN_WARNING "eccsize %u is too large\n", eccsize);
+ pr_warn("eccsize %u is too large\n", eccsize);
goto fail;
}
@@ -181,7 +181,7 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
nand->ecc.steps = eccsteps;
nand->ecc.total = eccsteps * eccbytes;
if (mtd_ooblayout_count_eccbytes(mtd) != (eccsteps*eccbytes)) {
- printk(KERN_WARNING "invalid ecc layout\n");
+ pr_warn("invalid ecc layout\n");
goto fail;
}
diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/raw/nand_ecc.c
index 7613a0388044..8e132edbc5ce 100644
--- a/drivers/mtd/nand/nand_ecc.c
+++ b/drivers/mtd/nand/raw/nand_ecc.c
@@ -2,8 +2,6 @@
* This file contains an ECC algorithm that detects and corrects 1 bit
* errors in a 256 byte block of data.
*
- * drivers/mtd/nand/nand_ecc.c
- *
* Copyright © 2008 Koninklijke Philips Electronics NV.
* Author: Frans Meulenbroeks
*
@@ -30,15 +28,6 @@
*
*/
-/*
- * The STANDALONE macro is useful when running the code outside the kernel
- * e.g. when running the code in a testbed or a benchmark program.
- * When STANDALONE is used, the module related macros are commented out
- * as well as the linux include files.
- * Instead a private definition of mtd_info is given to satisfy the compiler
- * (the code does not use mtd_info, so the code does not care)
- */
-#ifndef STANDALONE
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/module.h>
@@ -46,17 +35,6 @@
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/byteorder.h>
-#else
-#include <stdint.h>
-struct mtd_info;
-#define EXPORT_SYMBOL(x) /* x */
-
-#define MODULE_LICENSE(x) /* x */
-#define MODULE_AUTHOR(x) /* x */
-#define MODULE_DESCRIPTION(x) /* x */
-
-#define pr_err printf
-#endif
/*
* invparity is a 256 byte table that contains the odd parity
diff --git a/drivers/mtd/nand/nand_hynix.c b/drivers/mtd/nand/raw/nand_hynix.c
index d542908a0ebb..d542908a0ebb 100644
--- a/drivers/mtd/nand/nand_hynix.c
+++ b/drivers/mtd/nand/raw/nand_hynix.c
diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/raw/nand_ids.c
index 5423c3bb388e..5423c3bb388e 100644
--- a/drivers/mtd/nand/nand_ids.c
+++ b/drivers/mtd/nand/raw/nand_ids.c
diff --git a/drivers/mtd/nand/nand_macronix.c b/drivers/mtd/nand/raw/nand_macronix.c
index d290ff2a6d2f..7ed1f87e742a 100644
--- a/drivers/mtd/nand/nand_macronix.c
+++ b/drivers/mtd/nand/raw/nand_macronix.c
@@ -22,6 +22,19 @@ static int macronix_nand_init(struct nand_chip *chip)
if (nand_is_slc(chip))
chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+ /*
+ * MX30LF2G18AC chip does not support using SET/GET_FEATURES to change
+ * the timings unlike what is declared in the parameter page. Unflag
+ * this feature to avoid unnecessary downturns.
+ */
+ if (chip->parameters.supports_set_get_features &&
+ !strcmp("MX30LF2G18AC", chip->parameters.model)) {
+ bitmap_clear(chip->parameters.get_feature_list,
+ ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+ bitmap_clear(chip->parameters.set_feature_list,
+ ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+ }
+
return 0;
}
diff --git a/drivers/mtd/nand/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c
index 02e109ae73f1..0af45b134c0c 100644
--- a/drivers/mtd/nand/nand_micron.c
+++ b/drivers/mtd/nand/raw/nand_micron.c
@@ -48,8 +48,7 @@ static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
struct nand_chip *chip = mtd_to_nand(mtd);
u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
- return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
- feature);
+ return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
}
/*
@@ -57,17 +56,18 @@ static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
*/
static int micron_nand_onfi_init(struct nand_chip *chip)
{
- struct nand_onfi_params *p = &chip->onfi_params;
- struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
+ struct nand_parameters *p = &chip->parameters;
+ struct nand_onfi_vendor_micron *micron = (void *)p->onfi.vendor;
- if (!chip->onfi_version)
- return 0;
-
- if (le16_to_cpu(p->vendor_revision) < 1)
- return 0;
+ if (chip->parameters.onfi.version && p->onfi.vendor_revision) {
+ chip->read_retries = micron->read_retry_options;
+ chip->setup_read_retry = micron_nand_setup_read_retry;
+ }
- chip->read_retries = micron->read_retry_options;
- chip->setup_read_retry = micron_nand_setup_read_retry;
+ if (p->supports_set_get_features) {
+ set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
+ set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
+ }
return 0;
}
@@ -108,8 +108,7 @@ static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
if (enable)
feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
- return chip->onfi_set_features(nand_to_mtd(chip), chip,
- ONFI_FEATURE_ON_DIE_ECC, feature);
+ return nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
}
static int
@@ -209,7 +208,7 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
int ret;
- if (chip->onfi_version == 0)
+ if (!chip->parameters.onfi.version)
return MICRON_ON_DIE_UNSUPPORTED;
if (chip->bits_per_cell != 1)
@@ -219,8 +218,10 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
if (ret)
return MICRON_ON_DIE_UNSUPPORTED;
- chip->onfi_get_features(nand_to_mtd(chip), chip,
- ONFI_FEATURE_ON_DIE_ECC, feature);
+ ret = nand_get_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
+ if (ret < 0)
+ return ret;
+
if ((feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) == 0)
return MICRON_ON_DIE_UNSUPPORTED;
@@ -228,8 +229,10 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
if (ret)
return MICRON_ON_DIE_UNSUPPORTED;
- chip->onfi_get_features(nand_to_mtd(chip), chip,
- ONFI_FEATURE_ON_DIE_ECC, feature);
+ ret = nand_get_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
+ if (ret < 0)
+ return ret;
+
if (feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN)
return MICRON_ON_DIE_MANDATORY;
@@ -237,7 +240,7 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
* Some Micron NANDs have an on-die ECC of 4/512, some other
* 8/512. We only support the former.
*/
- if (chip->onfi_params.ecc_bits != 4)
+ if (chip->ecc_strength_ds != 4)
return MICRON_ON_DIE_UNSUPPORTED;
return MICRON_ON_DIE_SUPPORTED;
diff --git a/drivers/mtd/nand/nand_samsung.c b/drivers/mtd/nand/raw/nand_samsung.c
index ef022f62f74c..ef022f62f74c 100644
--- a/drivers/mtd/nand/nand_samsung.c
+++ b/drivers/mtd/nand/raw/nand_samsung.c
diff --git a/drivers/mtd/nand/nand_timings.c b/drivers/mtd/nand/raw/nand_timings.c
index 9400d039ddbd..7c4e4a371bbc 100644
--- a/drivers/mtd/nand/nand_timings.c
+++ b/drivers/mtd/nand/raw/nand_timings.c
@@ -306,17 +306,17 @@ int onfi_fill_data_interface(struct nand_chip *chip,
* tR, tPROG, tCCS, ...
* These information are part of the ONFI parameter page.
*/
- if (chip->onfi_version) {
- struct nand_onfi_params *params = &chip->onfi_params;
+ if (chip->parameters.onfi.version) {
+ struct nand_parameters *params = &chip->parameters;
struct nand_sdr_timings *timings = &iface->timings.sdr;
/* microseconds -> picoseconds */
- timings->tPROG_max = 1000000ULL * le16_to_cpu(params->t_prog);
- timings->tBERS_max = 1000000ULL * le16_to_cpu(params->t_bers);
- timings->tR_max = 1000000ULL * le16_to_cpu(params->t_r);
+ timings->tPROG_max = 1000000ULL * params->onfi.tPROG;
+ timings->tBERS_max = 1000000ULL * params->onfi.tBERS;
+ timings->tR_max = 1000000ULL * params->onfi.tR;
/* nanoseconds -> picoseconds */
- timings->tCCS_min = 1000UL * le16_to_cpu(params->t_ccs);
+ timings->tCCS_min = 1000UL * params->onfi.tCCS;
}
return 0;
diff --git a/drivers/mtd/nand/nand_toshiba.c b/drivers/mtd/nand/raw/nand_toshiba.c
index 57df857074e6..ab43f027cd23 100644
--- a/drivers/mtd/nand/nand_toshiba.c
+++ b/drivers/mtd/nand/raw/nand_toshiba.c
@@ -35,6 +35,32 @@ static void toshiba_nand_decode_id(struct nand_chip *chip)
(chip->id.data[5] & 0x7) == 0x6 /* 24nm */ &&
!(chip->id.data[4] & 0x80) /* !BENAND */)
mtd->oobsize = 32 * mtd->writesize >> 9;
+
+ /*
+ * Extract ECC requirements from 6th id byte.
+ * For Toshiba SLC, ecc requrements are as follows:
+ * - 43nm: 1 bit ECC for each 512Byte is required.
+ * - 32nm: 4 bit ECC for each 512Byte is required.
+ * - 24nm: 8 bit ECC for each 512Byte is required.
+ */
+ if (chip->id.len >= 6 && nand_is_slc(chip)) {
+ chip->ecc_step_ds = 512;
+ switch (chip->id.data[5] & 0x7) {
+ case 0x4:
+ chip->ecc_strength_ds = 1;
+ break;
+ case 0x5:
+ chip->ecc_strength_ds = 4;
+ break;
+ case 0x6:
+ chip->ecc_strength_ds = 8;
+ break;
+ default:
+ WARN(1, "Could not get ECC info");
+ chip->ecc_step_ds = 0;
+ break;
+ }
+ }
}
static int toshiba_nand_init(struct nand_chip *chip)
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/raw/nandsim.c
index 44322a363ba5..e027c6f9d327 100644
--- a/drivers/mtd/nand/nandsim.c
+++ b/drivers/mtd/nand/raw/nandsim.c
@@ -23,6 +23,8 @@
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
*/
+#define pr_fmt(fmt) "[nandsim]" fmt
+
#include <linux/init.h>
#include <linux/types.h>
#include <linux/module.h>
@@ -179,20 +181,17 @@ MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
/* The largest possible page size */
#define NS_LARGEST_PAGE_SIZE 4096
-/* The prefix for simulator output */
-#define NS_OUTPUT_PREFIX "[nandsim]"
-
/* Simulator's output macros (logging, debugging, warning, error) */
#define NS_LOG(args...) \
- do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
+ do { if (log) pr_debug(" log: " args); } while(0)
#define NS_DBG(args...) \
- do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
+ do { if (dbg) pr_debug(" debug: " args); } while(0)
#define NS_WARN(args...) \
- do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
+ do { pr_warn(" warning: " args); } while(0)
#define NS_ERR(args...) \
- do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
+ do { pr_err(" error: " args); } while(0)
#define NS_INFO(args...) \
- do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
+ do { pr_info(" " args); } while(0)
/* Busy-wait delay macros (microseconds, milliseconds) */
#define NS_UDELAY(us) \
diff --git a/drivers/mtd/nand/ndfc.c b/drivers/mtd/nand/raw/ndfc.c
index d8a806894937..d8a806894937 100644
--- a/drivers/mtd/nand/ndfc.c
+++ b/drivers/mtd/nand/raw/ndfc.c
diff --git a/drivers/mtd/nand/nuc900_nand.c b/drivers/mtd/nand/raw/nuc900_nand.c
index af5b32c9a791..af5b32c9a791 100644
--- a/drivers/mtd/nand/nuc900_nand.c
+++ b/drivers/mtd/nand/raw/nuc900_nand.c
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/raw/omap2.c
index 8cdf7d3d8fa7..e50c64adc3c8 100644
--- a/drivers/mtd/nand/omap2.c
+++ b/drivers/mtd/nand/raw/omap2.c
@@ -2263,12 +2263,15 @@ scan_tail:
err = mtd_device_register(mtd, NULL, 0);
if (err)
- goto return_error;
+ goto cleanup_nand;
platform_set_drvdata(pdev, mtd);
return 0;
+cleanup_nand:
+ nand_cleanup(nand_chip);
+
return_error:
if (!IS_ERR_OR_NULL(info->dma))
dma_release_channel(info->dma);
diff --git a/drivers/mtd/nand/omap_elm.c b/drivers/mtd/nand/raw/omap_elm.c
index a3f32f939cc1..a3f32f939cc1 100644
--- a/drivers/mtd/nand/omap_elm.c
+++ b/drivers/mtd/nand/raw/omap_elm.c
diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/raw/orion_nand.c
index 5a5aa1f07d07..7825fd3ce66b 100644
--- a/drivers/mtd/nand/orion_nand.c
+++ b/drivers/mtd/nand/raw/orion_nand.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/orion_nand.c
- *
* NAND support for Marvell Orion SoC platforms
*
* Tzachi Perelstein <tzachi@marvell.com>
diff --git a/drivers/mtd/nand/oxnas_nand.c b/drivers/mtd/nand/raw/oxnas_nand.c
index d649d5944826..d649d5944826 100644
--- a/drivers/mtd/nand/oxnas_nand.c
+++ b/drivers/mtd/nand/raw/oxnas_nand.c
diff --git a/drivers/mtd/nand/pasemi_nand.c b/drivers/mtd/nand/raw/pasemi_nand.c
index a47a7e4bd25a..a47a7e4bd25a 100644
--- a/drivers/mtd/nand/pasemi_nand.c
+++ b/drivers/mtd/nand/raw/pasemi_nand.c
diff --git a/drivers/mtd/nand/plat_nand.c b/drivers/mtd/nand/raw/plat_nand.c
index 925a1323604d..925a1323604d 100644
--- a/drivers/mtd/nand/plat_nand.c
+++ b/drivers/mtd/nand/raw/plat_nand.c
diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c
index 563b759ffca6..b554fb6e609c 100644
--- a/drivers/mtd/nand/qcom_nandc.c
+++ b/drivers/mtd/nand/raw/qcom_nandc.c
@@ -2651,8 +2651,8 @@ static int qcom_nand_host_init(struct qcom_nand_controller *nandc,
chip->read_byte = qcom_nandc_read_byte;
chip->read_buf = qcom_nandc_read_buf;
chip->write_buf = qcom_nandc_write_buf;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ chip->set_features = nand_get_set_features_notsupp;
+ chip->get_features = nand_get_set_features_notsupp;
/*
* the bad block marker is readable only when we read the last codeword
diff --git a/drivers/mtd/nand/r852.c b/drivers/mtd/nand/raw/r852.c
index 595635b9e9de..dcdeb0660e5e 100644
--- a/drivers/mtd/nand/r852.c
+++ b/drivers/mtd/nand/raw/r852.c
@@ -7,6 +7,9 @@
* published by the Free Software Foundation.
*/
+#define DRV_NAME "r852"
+#define pr_fmt(fmt) DRV_NAME ": " fmt
+
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/jiffies.h>
@@ -932,7 +935,7 @@ static int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
&dev->card_detect_work, 0);
- printk(KERN_NOTICE DRV_NAME ": driver loaded successfully\n");
+ pr_notice("driver loaded successfully\n");
return 0;
error10:
diff --git a/drivers/mtd/nand/r852.h b/drivers/mtd/nand/raw/r852.h
index 8713c57f6207..1eed2fc2fa42 100644
--- a/drivers/mtd/nand/r852.h
+++ b/drivers/mtd/nand/raw/r852.h
@@ -144,17 +144,14 @@ struct r852_device {
uint8_t ctlreg; /* cached contents of control reg */
};
-#define DRV_NAME "r852"
-
-
#define dbg(format, ...) \
if (debug) \
- printk(KERN_DEBUG DRV_NAME ": " format "\n", ## __VA_ARGS__)
+ pr_debug(format "\n", ## __VA_ARGS__)
#define dbg_verbose(format, ...) \
if (debug > 1) \
- printk(KERN_DEBUG DRV_NAME ": " format "\n", ## __VA_ARGS__)
+ pr_debug(format "\n", ## __VA_ARGS__)
#define message(format, ...) \
- printk(KERN_INFO DRV_NAME ": " format "\n", ## __VA_ARGS__)
+ pr_info(format "\n", ## __VA_ARGS__)
diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/raw/s3c2410.c
index 4c383eeec6f6..1bc0458063d8 100644
--- a/drivers/mtd/nand/s3c2410.c
+++ b/drivers/mtd/nand/raw/s3c2410.c
@@ -1,5 +1,4 @@
-/* linux/drivers/mtd/nand/s3c2410.c
- *
+/*
* Copyright © 2004-2008 Simtec Electronics
* http://armlinux.simtec.co.uk/
* Ben Dooks <ben@simtec.co.uk>
@@ -125,13 +124,11 @@ struct s3c2410_nand_info;
* @chip: The NAND chip information.
* @set: The platform information supplied for this set of NAND chips.
* @info: Link back to the hardware information.
- * @scan_res: The result from calling nand_scan_ident().
*/
struct s3c2410_nand_mtd {
struct nand_chip chip;
struct s3c2410_nand_set *set;
struct s3c2410_nand_info *info;
- int scan_res;
};
enum s3c_cpu_type {
@@ -1164,17 +1161,19 @@ static int s3c24xx_nand_probe(struct platform_device *pdev)
mtd->dev.parent = &pdev->dev;
s3c2410_nand_init_chip(info, nmtd, sets);
- nmtd->scan_res = nand_scan_ident(mtd,
- (sets) ? sets->nr_chips : 1,
- NULL);
+ err = nand_scan_ident(mtd, (sets) ? sets->nr_chips : 1, NULL);
+ if (err)
+ goto exit_error;
- if (nmtd->scan_res == 0) {
- err = s3c2410_nand_update_chip(info, nmtd);
- if (err < 0)
- goto exit_error;
- nand_scan_tail(mtd);
- s3c2410_nand_add_partition(info, nmtd, sets);
- }
+ err = s3c2410_nand_update_chip(info, nmtd);
+ if (err < 0)
+ goto exit_error;
+
+ err = nand_scan_tail(mtd);
+ if (err)
+ goto exit_error;
+
+ s3c2410_nand_add_partition(info, nmtd, sets);
if (sets != NULL)
sets++;
diff --git a/drivers/mtd/nand/sh_flctl.c b/drivers/mtd/nand/raw/sh_flctl.c
index c4e7755448e6..c7abceffcc40 100644
--- a/drivers/mtd/nand/sh_flctl.c
+++ b/drivers/mtd/nand/raw/sh_flctl.c
@@ -877,7 +877,7 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
else if (!flctl->seqin_column)
execmd_write_page_sector(mtd);
else
- printk(KERN_ERR "Invalid address !?\n");
+ pr_err("Invalid address !?\n");
break;
}
set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
@@ -1180,8 +1180,8 @@ static int flctl_probe(struct platform_device *pdev)
nand->read_buf = flctl_read_buf;
nand->select_chip = flctl_select_chip;
nand->cmdfunc = flctl_cmdfunc;
- nand->onfi_set_features = nand_onfi_get_set_features_notsupp;
- nand->onfi_get_features = nand_onfi_get_set_features_notsupp;
+ nand->set_features = nand_get_set_features_notsupp;
+ nand->get_features = nand_get_set_features_notsupp;
if (pdata->flcmncr_val & SEL_16BIT)
nand->options |= NAND_BUSWIDTH_16;
@@ -1214,9 +1214,13 @@ static int flctl_probe(struct platform_device *pdev)
goto err_chip;
ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
+ if (ret)
+ goto cleanup_nand;
return 0;
+cleanup_nand:
+ nand_cleanup(nand);
err_chip:
flctl_release_dma(flctl);
pm_runtime_disable(&pdev->dev);
diff --git a/drivers/mtd/nand/sharpsl.c b/drivers/mtd/nand/raw/sharpsl.c
index f59c455d9f51..e93df02c825e 100644
--- a/drivers/mtd/nand/sharpsl.c
+++ b/drivers/mtd/nand/raw/sharpsl.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/sharpsl.c
- *
* Copyright (C) 2004 Richard Purdie
* Copyright (C) 2008 Dmitry Baryshkov
*
diff --git a/drivers/mtd/nand/sm_common.c b/drivers/mtd/nand/raw/sm_common.c
index c378705c6e2b..7f5044a79f01 100644
--- a/drivers/mtd/nand/sm_common.c
+++ b/drivers/mtd/nand/raw/sm_common.c
@@ -119,9 +119,8 @@ static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs)
ret = mtd_write_oob(mtd, ofs, &ops);
if (ret < 0 || ops.oobretlen != SM_OOB_SIZE) {
- printk(KERN_NOTICE
- "sm_common: can't mark sector at %i as bad\n",
- (int)ofs);
+ pr_notice("sm_common: can't mark sector at %i as bad\n",
+ (int)ofs);
return -EIO;
}
diff --git a/drivers/mtd/nand/sm_common.h b/drivers/mtd/nand/raw/sm_common.h
index 1581671b05ae..1581671b05ae 100644
--- a/drivers/mtd/nand/sm_common.h
+++ b/drivers/mtd/nand/raw/sm_common.h
diff --git a/drivers/mtd/nand/socrates_nand.c b/drivers/mtd/nand/raw/socrates_nand.c
index 575997d0ef8a..9824a9923583 100644
--- a/drivers/mtd/nand/socrates_nand.c
+++ b/drivers/mtd/nand/raw/socrates_nand.c
@@ -1,6 +1,4 @@
/*
- * drivers/mtd/nand/socrates_nand.c
- *
* Copyright © 2008 Ilya Yanok, Emcraft Systems
*
*
diff --git a/drivers/mtd/nand/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c
index f5a55c63935c..aad42812a353 100644
--- a/drivers/mtd/nand/sunxi_nand.c
+++ b/drivers/mtd/nand/raw/sunxi_nand.c
@@ -1475,92 +1475,18 @@ pio_fallback:
return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page);
}
-static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
- struct nand_chip *chip,
- uint8_t *buf, int oob_required,
- int page)
-{
- struct nand_ecc_ctrl *ecc = &chip->ecc;
- unsigned int max_bitflips = 0;
- int ret, i, cur_off = 0;
- bool raw_mode = false;
-
- nand_read_page_op(chip, page, 0, NULL, 0);
-
- sunxi_nfc_hw_ecc_enable(mtd);
-
- for (i = 0; i < ecc->steps; i++) {
- int data_off = i * (ecc->size + ecc->bytes + 4);
- int oob_off = data_off + ecc->size;
- u8 *data = buf + (i * ecc->size);
- u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
-
- ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
- oob_off, &cur_off,
- &max_bitflips, !i,
- oob_required,
- page);
- if (ret < 0)
- return ret;
- else if (ret)
- raw_mode = true;
- }
-
- if (oob_required)
- sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
- !raw_mode, page);
-
- sunxi_nfc_hw_ecc_disable(mtd);
-
- return max_bitflips;
-}
-
-static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
- struct nand_chip *chip,
- const uint8_t *buf,
- int oob_required, int page)
-{
- struct nand_ecc_ctrl *ecc = &chip->ecc;
- int ret, i, cur_off = 0;
-
- nand_prog_page_begin_op(chip, page, 0, NULL, 0);
-
- sunxi_nfc_hw_ecc_enable(mtd);
-
- for (i = 0; i < ecc->steps; i++) {
- int data_off = i * (ecc->size + ecc->bytes + 4);
- int oob_off = data_off + ecc->size;
- const u8 *data = buf + (i * ecc->size);
- const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
-
- ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
- oob, oob_off, &cur_off,
- false, page);
- if (ret)
- return ret;
- }
-
- if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
- sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
- &cur_off, page);
-
- sunxi_nfc_hw_ecc_disable(mtd);
-
- return nand_prog_page_end_op(chip);
-}
-
-static int sunxi_nfc_hw_common_ecc_read_oob(struct mtd_info *mtd,
- struct nand_chip *chip,
- int page)
+static int sunxi_nfc_hw_ecc_read_oob(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ int page)
{
chip->pagebuf = -1;
return chip->ecc.read_page(mtd, chip, chip->data_buf, 1, page);
}
-static int sunxi_nfc_hw_common_ecc_write_oob(struct mtd_info *mtd,
- struct nand_chip *chip,
- int page)
+static int sunxi_nfc_hw_ecc_write_oob(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ int page)
{
int ret;
@@ -1801,9 +1727,14 @@ static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = {
.free = sunxi_nand_ooblayout_free,
};
-static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
- struct nand_ecc_ctrl *ecc,
- struct device_node *np)
+static void sunxi_nand_hw_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
+{
+ kfree(ecc->priv);
+}
+
+static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
+ struct nand_ecc_ctrl *ecc,
+ struct device_node *np)
{
static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
struct nand_chip *nand = mtd_to_nand(mtd);
@@ -1889,37 +1820,11 @@ static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
goto err;
}
- ecc->read_oob = sunxi_nfc_hw_common_ecc_read_oob;
- ecc->write_oob = sunxi_nfc_hw_common_ecc_write_oob;
+ ecc->read_oob = sunxi_nfc_hw_ecc_read_oob;
+ ecc->write_oob = sunxi_nfc_hw_ecc_write_oob;
mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops);
ecc->priv = data;
- return 0;
-
-err:
- kfree(data);
-
- return ret;
-}
-
-static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
-{
- kfree(ecc->priv);
-}
-
-static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
- struct nand_ecc_ctrl *ecc,
- struct device_node *np)
-{
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
- struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
- int ret;
-
- ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
- if (ret)
- return ret;
-
if (nfc->dmac) {
ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma;
ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma;
@@ -1937,33 +1842,18 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
ecc->write_oob_raw = nand_write_oob_std;
return 0;
-}
-
-static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
- struct nand_ecc_ctrl *ecc,
- struct device_node *np)
-{
- int ret;
-
- ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
- if (ret)
- return ret;
- ecc->prepad = 4;
- ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
- ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
- ecc->read_oob_raw = nand_read_oob_syndrome;
- ecc->write_oob_raw = nand_write_oob_syndrome;
+err:
+ kfree(data);
- return 0;
+ return ret;
}
static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
{
switch (ecc->mode) {
case NAND_ECC_HW:
- case NAND_ECC_HW_SYNDROME:
- sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
+ sunxi_nand_hw_ecc_ctrl_cleanup(ecc);
break;
case NAND_ECC_NONE:
default:
@@ -1991,11 +1881,6 @@ static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
if (ret)
return ret;
break;
- case NAND_ECC_HW_SYNDROME:
- ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
- if (ret)
- return ret;
- break;
case NAND_ECC_NONE:
case NAND_ECC_SOFT:
break;
diff --git a/drivers/mtd/nand/tango_nand.c b/drivers/mtd/nand/raw/tango_nand.c
index c5bee00b7f5e..f54518ffb36a 100644
--- a/drivers/mtd/nand/tango_nand.c
+++ b/drivers/mtd/nand/raw/tango_nand.c
@@ -591,8 +591,10 @@ static int chip_init(struct device *dev, struct device_node *np)
tchip->bb_cfg = BB_CFG(mtd->writesize, BBM_SIZE);
err = mtd_device_register(mtd, NULL, 0);
- if (err)
+ if (err) {
+ nand_cleanup(chip);
return err;
+ }
nfc->chips[cs] = tchip;
diff --git a/drivers/mtd/nand/tmio_nand.c b/drivers/mtd/nand/raw/tmio_nand.c
index dcaa924502de..dcaa924502de 100644
--- a/drivers/mtd/nand/tmio_nand.c
+++ b/drivers/mtd/nand/raw/tmio_nand.c
diff --git a/drivers/mtd/nand/txx9ndfmc.c b/drivers/mtd/nand/raw/txx9ndfmc.c
index b567d212fe7d..b567d212fe7d 100644
--- a/drivers/mtd/nand/txx9ndfmc.c
+++ b/drivers/mtd/nand/raw/txx9ndfmc.c
diff --git a/drivers/mtd/nand/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c
index 80d31a58e558..7872a9ed3df8 100644
--- a/drivers/mtd/nand/vf610_nfc.c
+++ b/drivers/mtd/nand/raw/vf610_nfc.c
@@ -36,6 +36,7 @@
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
+#include <linux/swab.h>
#define DRV_NAME "vf610_nfc"
@@ -59,20 +60,21 @@
#define OOB_64 0x0040
#define OOB_MAX 0x0100
-/*
- * NFC_CMD2[CODE] values. See section:
- * - 31.4.7 Flash Command Code Description, Vybrid manual
- * - 23.8.6 Flash Command Sequencer, MPC5125 manual
- *
- * Briefly these are bitmasks of controller cycles.
- */
-#define READ_PAGE_CMD_CODE 0x7EE0
-#define READ_ONFI_PARAM_CMD_CODE 0x4860
-#define PROGRAM_PAGE_CMD_CODE 0x7FC0
-#define ERASE_CMD_CODE 0x4EC0
-#define READ_ID_CMD_CODE 0x4804
-#define RESET_CMD_CODE 0x4040
-#define STATUS_READ_CMD_CODE 0x4068
+/* NFC_CMD2[CODE] controller cycle bit masks */
+#define COMMAND_CMD_BYTE1 BIT(14)
+#define COMMAND_CAR_BYTE1 BIT(13)
+#define COMMAND_CAR_BYTE2 BIT(12)
+#define COMMAND_RAR_BYTE1 BIT(11)
+#define COMMAND_RAR_BYTE2 BIT(10)
+#define COMMAND_RAR_BYTE3 BIT(9)
+#define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1)
+#define COMMAND_WRITE_DATA BIT(8)
+#define COMMAND_CMD_BYTE2 BIT(7)
+#define COMMAND_RB_HANDSHAKE BIT(6)
+#define COMMAND_READ_DATA BIT(5)
+#define COMMAND_CMD_BYTE3 BIT(4)
+#define COMMAND_READ_STATUS BIT(3)
+#define COMMAND_READ_ID BIT(2)
/* NFC ECC mode define */
#define ECC_BYPASS 0
@@ -97,10 +99,13 @@
/* NFC_COL_ADDR Field */
#define COL_ADDR_MASK 0x0000FFFF
#define COL_ADDR_SHIFT 0
+#define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
/* NFC_ROW_ADDR Field */
#define ROW_ADDR_MASK 0x00FFFFFF
#define ROW_ADDR_SHIFT 0
+#define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
+
#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
@@ -142,13 +147,6 @@
#define ECC_STATUS_MASK 0x80
#define ECC_STATUS_ERR_COUNT 0x3F
-enum vf610_nfc_alt_buf {
- ALT_BUF_DATA = 0,
- ALT_BUF_ID = 1,
- ALT_BUF_STAT = 2,
- ALT_BUF_ONFI = 3,
-};
-
enum vf610_nfc_variant {
NFC_VFC610 = 1,
};
@@ -158,13 +156,15 @@ struct vf610_nfc {
struct device *dev;
void __iomem *regs;
struct completion cmd_done;
- uint buf_offset;
- int write_sz;
/* Status and ID are in alternate locations. */
- enum vf610_nfc_alt_buf alt_buf;
enum vf610_nfc_variant variant;
struct clk *clk;
- bool use_hw_ecc;
+ /*
+ * Indicate that user data is accessed (full page/oob). This is
+ * useful to indicate the driver whether to swap byte endianness.
+ * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
+ */
+ bool data_access;
u32 ecc_mode;
};
@@ -173,6 +173,11 @@ static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
}
+static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
+{
+ return container_of(chip, struct vf610_nfc, chip);
+}
+
static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
{
return readl(nfc->regs + reg);
@@ -200,18 +205,84 @@ static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
}
-static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src,
- size_t n)
+static inline bool vf610_nfc_kernel_is_little_endian(void)
{
- /*
- * Use this accessor for the internal SRAM buffers. On the ARM
- * Freescale Vybrid SoC it's known that the driver can treat
- * the SRAM buffer as if it's memory. Other platform might need
- * to treat the buffers differently.
- *
- * For the time being, use memcpy
- */
- memcpy(dst, src, n);
+#ifdef __LITTLE_ENDIAN
+ return true;
+#else
+ return false;
+#endif
+}
+
+/**
+ * Read accessor for internal SRAM buffer
+ * @dst: destination address in regular memory
+ * @src: source address in SRAM buffer
+ * @len: bytes to copy
+ * @fix_endian: Fix endianness if required
+ *
+ * Use this accessor for the internal SRAM buffers. On the ARM
+ * Freescale Vybrid SoC it's known that the driver can treat
+ * the SRAM buffer as if it's memory. Other platform might need
+ * to treat the buffers differently.
+ *
+ * The controller stores bytes from the NAND chip internally in big
+ * endianness. On little endian platforms such as Vybrid this leads
+ * to reversed byte order.
+ * For performance reason (and earlier probably due to unawareness)
+ * the driver avoids correcting endianness where it has control over
+ * write and read side (e.g. page wise data access).
+ */
+static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
+ size_t len, bool fix_endian)
+{
+ if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
+ unsigned int i;
+
+ for (i = 0; i < len; i += 4) {
+ u32 val = swab32(__raw_readl(src + i));
+
+ memcpy(dst + i, &val, min(sizeof(val), len - i));
+ }
+ } else {
+ memcpy_fromio(dst, src, len);
+ }
+}
+
+/**
+ * Write accessor for internal SRAM buffer
+ * @dst: destination address in SRAM buffer
+ * @src: source address in regular memory
+ * @len: bytes to copy
+ * @fix_endian: Fix endianness if required
+ *
+ * Use this accessor for the internal SRAM buffers. On the ARM
+ * Freescale Vybrid SoC it's known that the driver can treat
+ * the SRAM buffer as if it's memory. Other platform might need
+ * to treat the buffers differently.
+ *
+ * The controller stores bytes from the NAND chip internally in big
+ * endianness. On little endian platforms such as Vybrid this leads
+ * to reversed byte order.
+ * For performance reason (and earlier probably due to unawareness)
+ * the driver avoids correcting endianness where it has control over
+ * write and read side (e.g. page wise data access).
+ */
+static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
+ size_t len, bool fix_endian)
+{
+ if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
+ unsigned int i;
+
+ for (i = 0; i < len; i += 4) {
+ u32 val;
+
+ memcpy(&val, src + i, min(sizeof(val), len - i));
+ __raw_writel(swab32(val), dst + i);
+ }
+ } else {
+ memcpy_toio(dst, src, len);
+ }
}
/* Clear flags for upcoming command */
@@ -243,250 +314,185 @@ static void vf610_nfc_done(struct vf610_nfc *nfc)
vf610_nfc_clear_status(nfc);
}
-static u8 vf610_nfc_get_id(struct vf610_nfc *nfc, int col)
+static irqreturn_t vf610_nfc_irq(int irq, void *data)
{
- u32 flash_id;
+ struct mtd_info *mtd = data;
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- if (col < 4) {
- flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS1);
- flash_id >>= (3 - col) * 8;
- } else {
- flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS2);
- flash_id >>= 24;
- }
+ vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
+ complete(&nfc->cmd_done);
- return flash_id & 0xff;
+ return IRQ_HANDLED;
}
-static u8 vf610_nfc_get_status(struct vf610_nfc *nfc)
+static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
{
- return vf610_nfc_read(nfc, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
+ vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
+ CONFIG_ECC_MODE_MASK,
+ CONFIG_ECC_MODE_SHIFT, ecc_mode);
}
-static void vf610_nfc_send_command(struct vf610_nfc *nfc, u32 cmd_byte1,
- u32 cmd_code)
+static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
{
- u32 tmp;
-
- vf610_nfc_clear_status(nfc);
-
- tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD2);
- tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
- tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
- tmp |= cmd_code << CMD_CODE_SHIFT;
- vf610_nfc_write(nfc, NFC_FLASH_CMD2, tmp);
+ vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
}
-static void vf610_nfc_send_commands(struct vf610_nfc *nfc, u32 cmd_byte1,
- u32 cmd_byte2, u32 cmd_code)
+static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
+ u32 cmd1, u32 cmd2, u32 trfr_sz)
{
- u32 tmp;
+ vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
+ COL_ADDR_SHIFT, col);
+
+ vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
+ ROW_ADDR_SHIFT, row);
+
+ vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
+ vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
+ vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
- vf610_nfc_send_command(nfc, cmd_byte1, cmd_code);
+ dev_dbg(nfc->dev,
+ "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
+ col, row, cmd1, cmd2, trfr_sz);
- tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD1);
- tmp &= ~CMD_BYTE2_MASK;
- tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
- vf610_nfc_write(nfc, NFC_FLASH_CMD1, tmp);
+ vf610_nfc_done(nfc);
}
-static irqreturn_t vf610_nfc_irq(int irq, void *data)
+static inline const struct nand_op_instr *
+vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
{
- struct mtd_info *mtd = data;
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ if (*op_id + 1 >= subop->ninstrs)
+ return NULL;
- vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
- complete(&nfc->cmd_done);
+ (*op_id)++;
- return IRQ_HANDLED;
+ return &subop->instrs[*op_id];
}
-static void vf610_nfc_addr_cycle(struct vf610_nfc *nfc, int column, int page)
+static int vf610_nfc_cmd(struct nand_chip *chip,
+ const struct nand_subop *subop)
{
- if (column != -1) {
- if (nfc->chip.options & NAND_BUSWIDTH_16)
- column = column / 2;
- vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
- COL_ADDR_SHIFT, column);
+ const struct nand_op_instr *instr;
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ int op_id = -1, trfr_sz = 0, offset;
+ u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+ bool force8bit = false;
+
+ /*
+ * Some ops are optional, but the hardware requires the operations
+ * to be in this exact order.
+ * The op parser enforces the order and makes sure that there isn't
+ * a read and write element in a single operation.
+ */
+ instr = vf610_get_next_instr(subop, &op_id);
+ if (!instr)
+ return -EINVAL;
+
+ if (instr && instr->type == NAND_OP_CMD_INSTR) {
+ cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
+ code |= COMMAND_CMD_BYTE1;
+
+ instr = vf610_get_next_instr(subop, &op_id);
}
- if (page != -1)
- vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
- ROW_ADDR_SHIFT, page);
-}
-static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
-{
- vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
- CONFIG_ECC_MODE_MASK,
- CONFIG_ECC_MODE_SHIFT, ecc_mode);
-}
+ if (instr && instr->type == NAND_OP_ADDR_INSTR) {
+ int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+ int i = nand_subop_get_addr_start_off(subop, op_id);
-static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
-{
- vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
-}
+ for (; i < naddrs; i++) {
+ u8 val = instr->ctx.addr.addrs[i];
-static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
- int column, int page)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
+ if (i < 2)
+ col |= COL_ADDR(i, val);
+ else
+ row |= ROW_ADDR(i - 2, val);
+ }
+ code |= COMMAND_NADDR_BYTES(naddrs);
- nfc->buf_offset = max(column, 0);
- nfc->alt_buf = ALT_BUF_DATA;
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
- switch (command) {
- case NAND_CMD_SEQIN:
- /* Use valid column/page from preread... */
- vf610_nfc_addr_cycle(nfc, column, page);
- nfc->buf_offset = 0;
+ if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
+ trfr_sz = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+ force8bit = instr->ctx.data.force_8bit;
/*
- * SEQIN => data => PAGEPROG sequence is done by the controller
- * hence we do not need to issue the command here...
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_wr_to_sram
*/
- return;
- case NAND_CMD_PAGEPROG:
- trfr_sz += nfc->write_sz;
- vf610_nfc_transfer_size(nfc, trfr_sz);
- vf610_nfc_send_commands(nfc, NAND_CMD_SEQIN,
- command, PROGRAM_PAGE_CMD_CODE);
- if (nfc->use_hw_ecc)
- vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
- else
- vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
- break;
-
- case NAND_CMD_RESET:
- vf610_nfc_transfer_size(nfc, 0);
- vf610_nfc_send_command(nfc, command, RESET_CMD_CODE);
- break;
-
- case NAND_CMD_READOOB:
- trfr_sz += mtd->oobsize;
- column = mtd->writesize;
- vf610_nfc_transfer_size(nfc, trfr_sz);
- vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
- NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
- vf610_nfc_addr_cycle(nfc, column, page);
- vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
- break;
-
- case NAND_CMD_READ0:
- trfr_sz += mtd->writesize + mtd->oobsize;
- vf610_nfc_transfer_size(nfc, trfr_sz);
- vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
- NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
- vf610_nfc_addr_cycle(nfc, column, page);
- vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
- break;
-
- case NAND_CMD_PARAM:
- nfc->alt_buf = ALT_BUF_ONFI;
- trfr_sz = 3 * sizeof(struct nand_onfi_params);
- vf610_nfc_transfer_size(nfc, trfr_sz);
- vf610_nfc_send_command(nfc, command, READ_ONFI_PARAM_CMD_CODE);
- vf610_nfc_addr_cycle(nfc, -1, column);
- vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
- break;
-
- case NAND_CMD_ERASE1:
- vf610_nfc_transfer_size(nfc, 0);
- vf610_nfc_send_commands(nfc, command,
- NAND_CMD_ERASE2, ERASE_CMD_CODE);
- vf610_nfc_addr_cycle(nfc, column, page);
- break;
-
- case NAND_CMD_READID:
- nfc->alt_buf = ALT_BUF_ID;
- nfc->buf_offset = 0;
- vf610_nfc_transfer_size(nfc, 0);
- vf610_nfc_send_command(nfc, command, READ_ID_CMD_CODE);
- vf610_nfc_addr_cycle(nfc, -1, column);
- break;
-
- case NAND_CMD_STATUS:
- nfc->alt_buf = ALT_BUF_STAT;
- vf610_nfc_transfer_size(nfc, 0);
- vf610_nfc_send_command(nfc, command, STATUS_READ_CMD_CODE);
- break;
- default:
- return;
+ vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
+ instr->ctx.data.buf.out + offset,
+ trfr_sz, !nfc->data_access);
+ code |= COMMAND_WRITE_DATA;
+
+ instr = vf610_get_next_instr(subop, &op_id);
}
- vf610_nfc_done(nfc);
+ if (instr && instr->type == NAND_OP_CMD_INSTR) {
+ cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
+ code |= COMMAND_CMD_BYTE2;
- nfc->use_hw_ecc = false;
- nfc->write_sz = 0;
-}
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
-static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- uint c = nfc->buf_offset;
+ if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
+ code |= COMMAND_RB_HANDSHAKE;
- /* Alternate buffers are only supported through read_byte */
- WARN_ON(nfc->alt_buf);
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
- vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
+ if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
+ trfr_sz = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+ force8bit = instr->ctx.data.force_8bit;
- nfc->buf_offset += len;
-}
+ code |= COMMAND_READ_DATA;
+ }
-static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
- int len)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- uint c = nfc->buf_offset;
- uint l;
+ if (force8bit && (chip->options & NAND_BUSWIDTH_16))
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
- l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
- vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
+ cmd2 |= code << CMD_CODE_SHIFT;
- nfc->write_sz += l;
- nfc->buf_offset += l;
-}
+ vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
-static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
-{
- struct vf610_nfc *nfc = mtd_to_nfc(mtd);
- u8 tmp;
- uint c = nfc->buf_offset;
-
- switch (nfc->alt_buf) {
- case ALT_BUF_ID:
- tmp = vf610_nfc_get_id(nfc, c);
- break;
- case ALT_BUF_STAT:
- tmp = vf610_nfc_get_status(nfc);
- break;
-#ifdef __LITTLE_ENDIAN
- case ALT_BUF_ONFI:
- /* Reverse byte since the controller uses big endianness */
- c = nfc->buf_offset ^ 0x3;
- /* fall-through */
-#endif
- default:
- tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
- break;
+ if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_rd_from_sram
+ */
+ vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
+ nfc->regs + NFC_MAIN_AREA(0) + offset,
+ trfr_sz, !nfc->data_access);
}
- nfc->buf_offset++;
- return tmp;
-}
-static u16 vf610_nfc_read_word(struct mtd_info *mtd)
-{
- u16 tmp;
+ if (force8bit && (chip->options & NAND_BUSWIDTH_16))
+ vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
- vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
- return tmp;
+ return 0;
}
-/* If not provided, upper layers apply a fixed delay. */
-static int vf610_nfc_dev_ready(struct mtd_info *mtd)
+static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
+ );
+
+static int vf610_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
{
- /* NFC handles R/B internally; always ready. */
- return 1;
+ return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
+ check_only);
}
/*
@@ -511,21 +517,6 @@ static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
}
-/* Count the number of 0's in buff up to max_bits */
-static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
-{
- uint32_t *buff32 = (uint32_t *)buff;
- int k, written_bits = 0;
-
- for (k = 0; k < (size / 4); k++) {
- written_bits += hweight32(~buff32[k]);
- if (unlikely(written_bits > max_bits))
- break;
- }
-
- return written_bits;
-}
-
static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
uint8_t *oob, int page)
{
@@ -541,9 +532,9 @@ static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
if (!(ecc_status & ECC_STATUS_MASK))
return ecc_count;
- /* Read OOB without ECC unit enabled */
- vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
- vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
+ nfc->data_access = true;
+ nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
+ nfc->data_access = false;
/*
* On an erased page, bit count (including OOB) should be zero or
@@ -554,15 +545,51 @@ static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
flips_threshold);
}
+static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
+ u32 *row)
+{
+ *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
+ *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
+
+ if (chip->options & NAND_ROW_ADDR_3) {
+ *row |= ROW_ADDR(2, page >> 16);
+ *code |= COMMAND_RAR_BYTE3;
+ }
+}
+
static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
- int eccsize = chip->ecc.size;
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int trfr_sz = mtd->writesize + mtd->oobsize;
+ u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
int stat;
- nand_read_page_op(chip, page, 0, buf, eccsize);
+ cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
+ code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
+
+ vf610_nfc_fill_row(chip, page, &code, &row);
+
+ cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
+ code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
+
+ cmd2 |= code << CMD_CODE_SHIFT;
+
+ vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
+ vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
+ vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_rd_from_sram
+ */
+ vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
+ mtd->writesize, false);
if (oob_required)
- vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+ vf610_nfc_rd_from_sram(chip->oob_poi,
+ nfc->regs + NFC_MAIN_AREA(0) +
+ mtd->writesize,
+ mtd->oobsize, false);
stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
@@ -579,14 +606,103 @@ static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int trfr_sz = mtd->writesize + mtd->oobsize;
+ u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+ u8 status;
+ int ret;
- nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
- if (oob_required)
- vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+ cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
+ code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
+
+ vf610_nfc_fill_row(chip, page, &code, &row);
+
+ cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
+ code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
+
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_wr_to_sram
+ */
+ vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
+ mtd->writesize, false);
+
+ code |= COMMAND_RB_HANDSHAKE;
+ cmd2 |= code << CMD_CODE_SHIFT;
+
+ vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
+ vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
+ vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+ ret = nand_status_op(chip, &status);
+ if (ret)
+ return ret;
+
+ if (status & NAND_STATUS_FAIL)
+ return -EIO;
+
+ return 0;
+}
+
+static int vf610_nfc_read_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_read_page_raw(mtd, chip, buf, oob_required, page);
+ nfc->data_access = false;
+
+ return ret;
+}
+
+static int vf610_nfc_write_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, const u8 *buf,
+ int oob_required, int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+ if (!ret && oob_required)
+ ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
+ false);
+ nfc->data_access = false;
- /* Always write whole page including OOB due to HW ECC */
- nfc->use_hw_ecc = true;
- nfc->write_sz = mtd->writesize + mtd->oobsize;
+ if (ret)
+ return ret;
+
+ return nand_prog_page_end_op(chip);
+}
+
+static int vf610_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_read_oob_std(mtd, chip, page);
+ nfc->data_access = false;
+
+ return ret;
+}
+
+static int vf610_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
+ chip->oob_poi, mtd->oobsize);
+ nfc->data_access = false;
+
+ if (ret)
+ return ret;
return nand_prog_page_end_op(chip);
}
@@ -605,6 +721,7 @@ static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
+ vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
/* Disable virtual pages, only one elementary transfer unit */
vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
@@ -682,7 +799,7 @@ static int vf610_nfc_probe(struct platform_device *pdev)
dev_err(nfc->dev,
"Only one NAND chip supported!\n");
err = -EINVAL;
- goto error;
+ goto err_disable_clk;
}
nand_set_flash_node(chip, child);
@@ -692,18 +809,11 @@ static int vf610_nfc_probe(struct platform_device *pdev)
if (!nand_get_flash_node(chip)) {
dev_err(nfc->dev, "NAND chip sub-node missing!\n");
err = -ENODEV;
- goto err_clk;
+ goto err_disable_clk;
}
- chip->dev_ready = vf610_nfc_dev_ready;
- chip->cmdfunc = vf610_nfc_command;
- chip->read_byte = vf610_nfc_read_byte;
- chip->read_word = vf610_nfc_read_word;
- chip->read_buf = vf610_nfc_read_buf;
- chip->write_buf = vf610_nfc_write_buf;
+ chip->exec_op = vf610_nfc_exec_op;
chip->select_chip = vf610_nfc_select_chip;
- chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
- chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
chip->options |= NAND_NO_SUBPAGE_WRITE;
@@ -712,7 +822,7 @@ static int vf610_nfc_probe(struct platform_device *pdev)
err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
if (err) {
dev_err(nfc->dev, "Error requesting IRQ!\n");
- goto error;
+ goto err_disable_clk;
}
vf610_nfc_preinit_controller(nfc);
@@ -720,7 +830,7 @@ static int vf610_nfc_probe(struct platform_device *pdev)
/* first scan to find the device and get the page size */
err = nand_scan_ident(mtd, 1, NULL);
if (err)
- goto error;
+ goto err_disable_clk;
vf610_nfc_init_controller(nfc);
@@ -732,20 +842,20 @@ static int vf610_nfc_probe(struct platform_device *pdev)
if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
dev_err(nfc->dev, "Unsupported flash page size\n");
err = -ENXIO;
- goto error;
+ goto err_disable_clk;
}
if (chip->ecc.mode == NAND_ECC_HW) {
if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
dev_err(nfc->dev, "Unsupported flash with hwecc\n");
err = -ENXIO;
- goto error;
+ goto err_disable_clk;
}
if (chip->ecc.size != mtd->writesize) {
dev_err(nfc->dev, "Step size needs to be page size\n");
err = -ENXIO;
- goto error;
+ goto err_disable_clk;
}
/* Only 64 byte ECC layouts known */
@@ -765,11 +875,15 @@ static int vf610_nfc_probe(struct platform_device *pdev)
} else {
dev_err(nfc->dev, "Unsupported ECC strength\n");
err = -ENXIO;
- goto error;
+ goto err_disable_clk;
}
chip->ecc.read_page = vf610_nfc_read_page;
chip->ecc.write_page = vf610_nfc_write_page;
+ chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
+ chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
+ chip->ecc.read_oob = vf610_nfc_read_oob;
+ chip->ecc.write_oob = vf610_nfc_write_oob;
chip->ecc.size = PAGE_2K;
}
@@ -777,16 +891,19 @@ static int vf610_nfc_probe(struct platform_device *pdev)
/* second phase scan */
err = nand_scan_tail(mtd);
if (err)
- goto error;
+ goto err_disable_clk;
platform_set_drvdata(pdev, mtd);
/* Register device in MTD */
- return mtd_device_register(mtd, NULL, 0);
+ err = mtd_device_register(mtd, NULL, 0);
+ if (err)
+ goto err_cleanup_nand;
+ return 0;
-error:
- of_node_put(nand_get_flash_node(chip));
-err_clk:
+err_cleanup_nand:
+ nand_cleanup(chip);
+err_disable_clk:
clk_disable_unprepare(nfc->clk);
return err;
}
diff --git a/drivers/mtd/nand/xway_nand.c b/drivers/mtd/nand/raw/xway_nand.c
index 9926b4e3d69d..9926b4e3d69d 100644
--- a/drivers/mtd/nand/xway_nand.c
+++ b/drivers/mtd/nand/raw/xway_nand.c