summaryrefslogtreecommitdiff
path: root/block/bfq-wf2q.c
diff options
context:
space:
mode:
authorPaolo Valente <paolo.valente@linaro.org>2017-04-19 17:48:24 +0300
committerJens Axboe <axboe@fb.com>2017-04-19 17:48:24 +0300
commitea25da48086d3bbebf3a2eeff387ea00ed96f5c4 (patch)
tree1e7858910a647ae1a174ad019304bc3ffc2b5926 /block/bfq-wf2q.c
parent6fa3e8d34204d532268ddb4dc5d2a904197c972d (diff)
downloadlinux-ea25da48086d3bbebf3a2eeff387ea00ed96f5c4.tar.xz
block, bfq: split bfq-iosched.c into multiple source files
The BFQ I/O scheduler features an optimal fair-queuing (proportional-share) scheduling algorithm, enriched with several mechanisms to boost throughput and reduce latency for interactive and real-time applications. This makes BFQ a large and complex piece of code. This commit addresses this issue by splitting BFQ into three main, independent components, and by moving each component into a separate source file: 1. Main algorithm: handles the interaction with the kernel, and decides which requests to dispatch; it uses the following two further components to achieve its goals. 2. Scheduling engine (Hierarchical B-WF2Q+ scheduling algorithm): computes the schedule, using weights and budgets provided by the above component. 3. cgroups support: handles group operations (creation, destruction, move, ...). Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@fb.com>
Diffstat (limited to 'block/bfq-wf2q.c')
-rw-r--r--block/bfq-wf2q.c1616
1 files changed, 1616 insertions, 0 deletions
diff --git a/block/bfq-wf2q.c b/block/bfq-wf2q.c
new file mode 100644
index 000000000000..b4fc3e4260b7
--- /dev/null
+++ b/block/bfq-wf2q.c
@@ -0,0 +1,1616 @@
+/*
+ * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
+ * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
+ * scheduler schedules generic entities. The latter can represent
+ * either single bfq queues (associated with processes) or groups of
+ * bfq queues (associated with cgroups).
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of the
+ * License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ */
+#include "bfq-iosched.h"
+
+/**
+ * bfq_gt - compare two timestamps.
+ * @a: first ts.
+ * @b: second ts.
+ *
+ * Return @a > @b, dealing with wrapping correctly.
+ */
+static int bfq_gt(u64 a, u64 b)
+{
+ return (s64)(a - b) > 0;
+}
+
+static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
+{
+ struct rb_node *node = tree->rb_node;
+
+ return rb_entry(node, struct bfq_entity, rb_node);
+}
+
+static unsigned int bfq_class_idx(struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+
+ return bfqq ? bfqq->ioprio_class - 1 :
+ BFQ_DEFAULT_GRP_CLASS - 1;
+}
+
+static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd);
+
+static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
+
+/**
+ * bfq_update_next_in_service - update sd->next_in_service
+ * @sd: sched_data for which to perform the update.
+ * @new_entity: if not NULL, pointer to the entity whose activation,
+ * requeueing or repositionig triggered the invocation of
+ * this function.
+ *
+ * This function is called to update sd->next_in_service, which, in
+ * its turn, may change as a consequence of the insertion or
+ * extraction of an entity into/from one of the active trees of
+ * sd. These insertions/extractions occur as a consequence of
+ * activations/deactivations of entities, with some activations being
+ * 'true' activations, and other activations being requeueings (i.e.,
+ * implementing the second, requeueing phase of the mechanism used to
+ * reposition an entity in its active tree; see comments on
+ * __bfq_activate_entity and __bfq_requeue_entity for details). In
+ * both the last two activation sub-cases, new_entity points to the
+ * just activated or requeued entity.
+ *
+ * Returns true if sd->next_in_service changes in such a way that
+ * entity->parent may become the next_in_service for its parent
+ * entity.
+ */
+static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
+ struct bfq_entity *new_entity)
+{
+ struct bfq_entity *next_in_service = sd->next_in_service;
+ bool parent_sched_may_change = false;
+
+ /*
+ * If this update is triggered by the activation, requeueing
+ * or repositiong of an entity that does not coincide with
+ * sd->next_in_service, then a full lookup in the active tree
+ * can be avoided. In fact, it is enough to check whether the
+ * just-modified entity has a higher priority than
+ * sd->next_in_service, or, even if it has the same priority
+ * as sd->next_in_service, is eligible and has a lower virtual
+ * finish time than sd->next_in_service. If this compound
+ * condition holds, then the new entity becomes the new
+ * next_in_service. Otherwise no change is needed.
+ */
+ if (new_entity && new_entity != sd->next_in_service) {
+ /*
+ * Flag used to decide whether to replace
+ * sd->next_in_service with new_entity. Tentatively
+ * set to true, and left as true if
+ * sd->next_in_service is NULL.
+ */
+ bool replace_next = true;
+
+ /*
+ * If there is already a next_in_service candidate
+ * entity, then compare class priorities or timestamps
+ * to decide whether to replace sd->service_tree with
+ * new_entity.
+ */
+ if (next_in_service) {
+ unsigned int new_entity_class_idx =
+ bfq_class_idx(new_entity);
+ struct bfq_service_tree *st =
+ sd->service_tree + new_entity_class_idx;
+
+ /*
+ * For efficiency, evaluate the most likely
+ * sub-condition first.
+ */
+ replace_next =
+ (new_entity_class_idx ==
+ bfq_class_idx(next_in_service)
+ &&
+ !bfq_gt(new_entity->start, st->vtime)
+ &&
+ bfq_gt(next_in_service->finish,
+ new_entity->finish))
+ ||
+ new_entity_class_idx <
+ bfq_class_idx(next_in_service);
+ }
+
+ if (replace_next)
+ next_in_service = new_entity;
+ } else /* invoked because of a deactivation: lookup needed */
+ next_in_service = bfq_lookup_next_entity(sd);
+
+ if (next_in_service) {
+ parent_sched_may_change = !sd->next_in_service ||
+ bfq_update_parent_budget(next_in_service);
+ }
+
+ sd->next_in_service = next_in_service;
+
+ if (!next_in_service)
+ return parent_sched_may_change;
+
+ return parent_sched_may_change;
+}
+
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+
+struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
+{
+ struct bfq_entity *group_entity = bfqq->entity.parent;
+
+ if (!group_entity)
+ group_entity = &bfqq->bfqd->root_group->entity;
+
+ return container_of(group_entity, struct bfq_group, entity);
+}
+
+/*
+ * Returns true if this budget changes may let next_in_service->parent
+ * become the next_in_service entity for its parent entity.
+ */
+static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
+{
+ struct bfq_entity *bfqg_entity;
+ struct bfq_group *bfqg;
+ struct bfq_sched_data *group_sd;
+ bool ret = false;
+
+ group_sd = next_in_service->sched_data;
+
+ bfqg = container_of(group_sd, struct bfq_group, sched_data);
+ /*
+ * bfq_group's my_entity field is not NULL only if the group
+ * is not the root group. We must not touch the root entity
+ * as it must never become an in-service entity.
+ */
+ bfqg_entity = bfqg->my_entity;
+ if (bfqg_entity) {
+ if (bfqg_entity->budget > next_in_service->budget)
+ ret = true;
+ bfqg_entity->budget = next_in_service->budget;
+ }
+
+ return ret;
+}
+
+/*
+ * This function tells whether entity stops being a candidate for next
+ * service, according to the following logic.
+ *
+ * This function is invoked for an entity that is about to be set in
+ * service. If such an entity is a queue, then the entity is no longer
+ * a candidate for next service (i.e, a candidate entity to serve
+ * after the in-service entity is expired). The function then returns
+ * true.
+ *
+ * In contrast, the entity could stil be a candidate for next service
+ * if it is not a queue, and has more than one child. In fact, even if
+ * one of its children is about to be set in service, other children
+ * may still be the next to serve. As a consequence, a non-queue
+ * entity is not a candidate for next-service only if it has only one
+ * child. And only if this condition holds, then the function returns
+ * true for a non-queue entity.
+ */
+static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
+{
+ struct bfq_group *bfqg;
+
+ if (bfq_entity_to_bfqq(entity))
+ return true;
+
+ bfqg = container_of(entity, struct bfq_group, entity);
+
+ if (bfqg->active_entities == 1)
+ return true;
+
+ return false;
+}
+
+#else /* CONFIG_BFQ_GROUP_IOSCHED */
+
+struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
+{
+ return bfqq->bfqd->root_group;
+}
+
+static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
+{
+ return false;
+}
+
+static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
+{
+ return true;
+}
+
+#endif /* CONFIG_BFQ_GROUP_IOSCHED */
+
+/*
+ * Shift for timestamp calculations. This actually limits the maximum
+ * service allowed in one timestamp delta (small shift values increase it),
+ * the maximum total weight that can be used for the queues in the system
+ * (big shift values increase it), and the period of virtual time
+ * wraparounds.
+ */
+#define WFQ_SERVICE_SHIFT 22
+
+struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = NULL;
+
+ if (!entity->my_sched_data)
+ bfqq = container_of(entity, struct bfq_queue, entity);
+
+ return bfqq;
+}
+
+
+/**
+ * bfq_delta - map service into the virtual time domain.
+ * @service: amount of service.
+ * @weight: scale factor (weight of an entity or weight sum).
+ */
+static u64 bfq_delta(unsigned long service, unsigned long weight)
+{
+ u64 d = (u64)service << WFQ_SERVICE_SHIFT;
+
+ do_div(d, weight);
+ return d;
+}
+
+/**
+ * bfq_calc_finish - assign the finish time to an entity.
+ * @entity: the entity to act upon.
+ * @service: the service to be charged to the entity.
+ */
+static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+
+ entity->finish = entity->start +
+ bfq_delta(service, entity->weight);
+
+ if (bfqq) {
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
+ "calc_finish: serv %lu, w %d",
+ service, entity->weight);
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
+ "calc_finish: start %llu, finish %llu, delta %llu",
+ entity->start, entity->finish,
+ bfq_delta(service, entity->weight));
+ }
+}
+
+/**
+ * bfq_entity_of - get an entity from a node.
+ * @node: the node field of the entity.
+ *
+ * Convert a node pointer to the relative entity. This is used only
+ * to simplify the logic of some functions and not as the generic
+ * conversion mechanism because, e.g., in the tree walking functions,
+ * the check for a %NULL value would be redundant.
+ */
+struct bfq_entity *bfq_entity_of(struct rb_node *node)
+{
+ struct bfq_entity *entity = NULL;
+
+ if (node)
+ entity = rb_entry(node, struct bfq_entity, rb_node);
+
+ return entity;
+}
+
+/**
+ * bfq_extract - remove an entity from a tree.
+ * @root: the tree root.
+ * @entity: the entity to remove.
+ */
+static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
+{
+ entity->tree = NULL;
+ rb_erase(&entity->rb_node, root);
+}
+
+/**
+ * bfq_idle_extract - extract an entity from the idle tree.
+ * @st: the service tree of the owning @entity.
+ * @entity: the entity being removed.
+ */
+static void bfq_idle_extract(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ struct rb_node *next;
+
+ if (entity == st->first_idle) {
+ next = rb_next(&entity->rb_node);
+ st->first_idle = bfq_entity_of(next);
+ }
+
+ if (entity == st->last_idle) {
+ next = rb_prev(&entity->rb_node);
+ st->last_idle = bfq_entity_of(next);
+ }
+
+ bfq_extract(&st->idle, entity);
+
+ if (bfqq)
+ list_del(&bfqq->bfqq_list);
+}
+
+/**
+ * bfq_insert - generic tree insertion.
+ * @root: tree root.
+ * @entity: entity to insert.
+ *
+ * This is used for the idle and the active tree, since they are both
+ * ordered by finish time.
+ */
+static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
+{
+ struct bfq_entity *entry;
+ struct rb_node **node = &root->rb_node;
+ struct rb_node *parent = NULL;
+
+ while (*node) {
+ parent = *node;
+ entry = rb_entry(parent, struct bfq_entity, rb_node);
+
+ if (bfq_gt(entry->finish, entity->finish))
+ node = &parent->rb_left;
+ else
+ node = &parent->rb_right;
+ }
+
+ rb_link_node(&entity->rb_node, parent, node);
+ rb_insert_color(&entity->rb_node, root);
+
+ entity->tree = root;
+}
+
+/**
+ * bfq_update_min - update the min_start field of a entity.
+ * @entity: the entity to update.
+ * @node: one of its children.
+ *
+ * This function is called when @entity may store an invalid value for
+ * min_start due to updates to the active tree. The function assumes
+ * that the subtree rooted at @node (which may be its left or its right
+ * child) has a valid min_start value.
+ */
+static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
+{
+ struct bfq_entity *child;
+
+ if (node) {
+ child = rb_entry(node, struct bfq_entity, rb_node);
+ if (bfq_gt(entity->min_start, child->min_start))
+ entity->min_start = child->min_start;
+ }
+}
+
+/**
+ * bfq_update_active_node - recalculate min_start.
+ * @node: the node to update.
+ *
+ * @node may have changed position or one of its children may have moved,
+ * this function updates its min_start value. The left and right subtrees
+ * are assumed to hold a correct min_start value.
+ */
+static void bfq_update_active_node(struct rb_node *node)
+{
+ struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
+
+ entity->min_start = entity->start;
+ bfq_update_min(entity, node->rb_right);
+ bfq_update_min(entity, node->rb_left);
+}
+
+/**
+ * bfq_update_active_tree - update min_start for the whole active tree.
+ * @node: the starting node.
+ *
+ * @node must be the deepest modified node after an update. This function
+ * updates its min_start using the values held by its children, assuming
+ * that they did not change, and then updates all the nodes that may have
+ * changed in the path to the root. The only nodes that may have changed
+ * are the ones in the path or their siblings.
+ */
+static void bfq_update_active_tree(struct rb_node *node)
+{
+ struct rb_node *parent;
+
+up:
+ bfq_update_active_node(node);
+
+ parent = rb_parent(node);
+ if (!parent)
+ return;
+
+ if (node == parent->rb_left && parent->rb_right)
+ bfq_update_active_node(parent->rb_right);
+ else if (parent->rb_left)
+ bfq_update_active_node(parent->rb_left);
+
+ node = parent;
+ goto up;
+}
+
+/**
+ * bfq_active_insert - insert an entity in the active tree of its
+ * group/device.
+ * @st: the service tree of the entity.
+ * @entity: the entity being inserted.
+ *
+ * The active tree is ordered by finish time, but an extra key is kept
+ * per each node, containing the minimum value for the start times of
+ * its children (and the node itself), so it's possible to search for
+ * the eligible node with the lowest finish time in logarithmic time.
+ */
+static void bfq_active_insert(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ struct rb_node *node = &entity->rb_node;
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ struct bfq_sched_data *sd = NULL;
+ struct bfq_group *bfqg = NULL;
+ struct bfq_data *bfqd = NULL;
+#endif
+
+ bfq_insert(&st->active, entity);
+
+ if (node->rb_left)
+ node = node->rb_left;
+ else if (node->rb_right)
+ node = node->rb_right;
+
+ bfq_update_active_tree(node);
+
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ sd = entity->sched_data;
+ bfqg = container_of(sd, struct bfq_group, sched_data);
+ bfqd = (struct bfq_data *)bfqg->bfqd;
+#endif
+ if (bfqq)
+ list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ else /* bfq_group */
+ bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree);
+
+ if (bfqg != bfqd->root_group)
+ bfqg->active_entities++;
+#endif
+}
+
+/**
+ * bfq_ioprio_to_weight - calc a weight from an ioprio.
+ * @ioprio: the ioprio value to convert.
+ */
+unsigned short bfq_ioprio_to_weight(int ioprio)
+{
+ return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
+}
+
+/**
+ * bfq_weight_to_ioprio - calc an ioprio from a weight.
+ * @weight: the weight value to convert.
+ *
+ * To preserve as much as possible the old only-ioprio user interface,
+ * 0 is used as an escape ioprio value for weights (numerically) equal or
+ * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
+ */
+static unsigned short bfq_weight_to_ioprio(int weight)
+{
+ return max_t(int, 0,
+ IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight);
+}
+
+static void bfq_get_entity(struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+
+ if (bfqq) {
+ bfqq->ref++;
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
+ bfqq, bfqq->ref);
+ }
+}
+
+/**
+ * bfq_find_deepest - find the deepest node that an extraction can modify.
+ * @node: the node being removed.
+ *
+ * Do the first step of an extraction in an rb tree, looking for the
+ * node that will replace @node, and returning the deepest node that
+ * the following modifications to the tree can touch. If @node is the
+ * last node in the tree return %NULL.
+ */
+static struct rb_node *bfq_find_deepest(struct rb_node *node)
+{
+ struct rb_node *deepest;
+
+ if (!node->rb_right && !node->rb_left)
+ deepest = rb_parent(node);
+ else if (!node->rb_right)
+ deepest = node->rb_left;
+ else if (!node->rb_left)
+ deepest = node->rb_right;
+ else {
+ deepest = rb_next(node);
+ if (deepest->rb_right)
+ deepest = deepest->rb_right;
+ else if (rb_parent(deepest) != node)
+ deepest = rb_parent(deepest);
+ }
+
+ return deepest;
+}
+
+/**
+ * bfq_active_extract - remove an entity from the active tree.
+ * @st: the service_tree containing the tree.
+ * @entity: the entity being removed.
+ */
+static void bfq_active_extract(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ struct rb_node *node;
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ struct bfq_sched_data *sd = NULL;
+ struct bfq_group *bfqg = NULL;
+ struct bfq_data *bfqd = NULL;
+#endif
+
+ node = bfq_find_deepest(&entity->rb_node);
+ bfq_extract(&st->active, entity);
+
+ if (node)
+ bfq_update_active_tree(node);
+
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ sd = entity->sched_data;
+ bfqg = container_of(sd, struct bfq_group, sched_data);
+ bfqd = (struct bfq_data *)bfqg->bfqd;
+#endif
+ if (bfqq)
+ list_del(&bfqq->bfqq_list);
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ else /* bfq_group */
+ bfq_weights_tree_remove(bfqd, entity,
+ &bfqd->group_weights_tree);
+
+ if (bfqg != bfqd->root_group)
+ bfqg->active_entities--;
+#endif
+}
+
+/**
+ * bfq_idle_insert - insert an entity into the idle tree.
+ * @st: the service tree containing the tree.
+ * @entity: the entity to insert.
+ */
+static void bfq_idle_insert(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ struct bfq_entity *first_idle = st->first_idle;
+ struct bfq_entity *last_idle = st->last_idle;
+
+ if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
+ st->first_idle = entity;
+ if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
+ st->last_idle = entity;
+
+ bfq_insert(&st->idle, entity);
+
+ if (bfqq)
+ list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
+}
+
+/**
+ * bfq_forget_entity - do not consider entity any longer for scheduling
+ * @st: the service tree.
+ * @entity: the entity being removed.
+ * @is_in_service: true if entity is currently the in-service entity.
+ *
+ * Forget everything about @entity. In addition, if entity represents
+ * a queue, and the latter is not in service, then release the service
+ * reference to the queue (the one taken through bfq_get_entity). In
+ * fact, in this case, there is really no more service reference to
+ * the queue, as the latter is also outside any service tree. If,
+ * instead, the queue is in service, then __bfq_bfqd_reset_in_service
+ * will take care of putting the reference when the queue finally
+ * stops being served.
+ */
+static void bfq_forget_entity(struct bfq_service_tree *st,
+ struct bfq_entity *entity,
+ bool is_in_service)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+
+ entity->on_st = false;
+ st->wsum -= entity->weight;
+ if (bfqq && !is_in_service)
+ bfq_put_queue(bfqq);
+}
+
+/**
+ * bfq_put_idle_entity - release the idle tree ref of an entity.
+ * @st: service tree for the entity.
+ * @entity: the entity being released.
+ */
+void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
+{
+ bfq_idle_extract(st, entity);
+ bfq_forget_entity(st, entity,
+ entity == entity->sched_data->in_service_entity);
+}
+
+/**
+ * bfq_forget_idle - update the idle tree if necessary.
+ * @st: the service tree to act upon.
+ *
+ * To preserve the global O(log N) complexity we only remove one entry here;
+ * as the idle tree will not grow indefinitely this can be done safely.
+ */
+static void bfq_forget_idle(struct bfq_service_tree *st)
+{
+ struct bfq_entity *first_idle = st->first_idle;
+ struct bfq_entity *last_idle = st->last_idle;
+
+ if (RB_EMPTY_ROOT(&st->active) && last_idle &&
+ !bfq_gt(last_idle->finish, st->vtime)) {
+ /*
+ * Forget the whole idle tree, increasing the vtime past
+ * the last finish time of idle entities.
+ */
+ st->vtime = last_idle->finish;
+ }
+
+ if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
+ bfq_put_idle_entity(st, first_idle);
+}
+
+struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
+{
+ struct bfq_sched_data *sched_data = entity->sched_data;
+ unsigned int idx = bfq_class_idx(entity);
+
+ return sched_data->service_tree + idx;
+}
+
+
+struct bfq_service_tree *
+__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
+ struct bfq_entity *entity)
+{
+ struct bfq_service_tree *new_st = old_st;
+
+ if (entity->prio_changed) {
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ unsigned int prev_weight, new_weight;
+ struct bfq_data *bfqd = NULL;
+ struct rb_root *root;
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ struct bfq_sched_data *sd;
+ struct bfq_group *bfqg;
+#endif
+
+ if (bfqq)
+ bfqd = bfqq->bfqd;
+#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ else {
+ sd = entity->my_sched_data;
+ bfqg = container_of(sd, struct bfq_group, sched_data);
+ bfqd = (struct bfq_data *)bfqg->bfqd;
+ }
+#endif
+
+ old_st->wsum -= entity->weight;
+
+ if (entity->new_weight != entity->orig_weight) {
+ if (entity->new_weight < BFQ_MIN_WEIGHT ||
+ entity->new_weight > BFQ_MAX_WEIGHT) {
+ pr_crit("update_weight_prio: new_weight %d\n",
+ entity->new_weight);
+ if (entity->new_weight < BFQ_MIN_WEIGHT)
+ entity->new_weight = BFQ_MIN_WEIGHT;
+ else
+ entity->new_weight = BFQ_MAX_WEIGHT;
+ }
+ entity->orig_weight = entity->new_weight;
+ if (bfqq)
+ bfqq->ioprio =
+ bfq_weight_to_ioprio(entity->orig_weight);
+ }
+
+ if (bfqq)
+ bfqq->ioprio_class = bfqq->new_ioprio_class;
+ entity->prio_changed = 0;
+
+ /*
+ * NOTE: here we may be changing the weight too early,
+ * this will cause unfairness. The correct approach
+ * would have required additional complexity to defer
+ * weight changes to the proper time instants (i.e.,
+ * when entity->finish <= old_st->vtime).
+ */
+ new_st = bfq_entity_service_tree(entity);
+
+ prev_weight = entity->weight;
+ new_weight = entity->orig_weight *
+ (bfqq ? bfqq->wr_coeff : 1);
+ /*
+ * If the weight of the entity changes, remove the entity
+ * from its old weight counter (if there is a counter
+ * associated with the entity), and add it to the counter
+ * associated with its new weight.
+ */
+ if (prev_weight != new_weight) {
+ root = bfqq ? &bfqd->queue_weights_tree :
+ &bfqd->group_weights_tree;
+ bfq_weights_tree_remove(bfqd, entity, root);
+ }
+ entity->weight = new_weight;
+ /*
+ * Add the entity to its weights tree only if it is
+ * not associated with a weight-raised queue.
+ */
+ if (prev_weight != new_weight &&
+ (bfqq ? bfqq->wr_coeff == 1 : 1))
+ /* If we get here, root has been initialized. */
+ bfq_weights_tree_add(bfqd, entity, root);
+
+ new_st->wsum += entity->weight;
+
+ if (new_st != old_st)
+ entity->start = new_st->vtime;
+ }
+
+ return new_st;
+}
+
+/**
+ * bfq_bfqq_served - update the scheduler status after selection for
+ * service.
+ * @bfqq: the queue being served.
+ * @served: bytes to transfer.
+ *
+ * NOTE: this can be optimized, as the timestamps of upper level entities
+ * are synchronized every time a new bfqq is selected for service. By now,
+ * we keep it to better check consistency.
+ */
+void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+ struct bfq_service_tree *st;
+
+ for_each_entity(entity) {
+ st = bfq_entity_service_tree(entity);
+
+ entity->service += served;
+
+ st->vtime += bfq_delta(served, st->wsum);
+ bfq_forget_idle(st);
+ }
+ bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
+}
+
+/**
+ * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
+ * of the time interval during which bfqq has been in
+ * service.
+ * @bfqd: the device
+ * @bfqq: the queue that needs a service update.
+ * @time_ms: the amount of time during which the queue has received service
+ *
+ * If a queue does not consume its budget fast enough, then providing
+ * the queue with service fairness may impair throughput, more or less
+ * severely. For this reason, queues that consume their budget slowly
+ * are provided with time fairness instead of service fairness. This
+ * goal is achieved through the BFQ scheduling engine, even if such an
+ * engine works in the service, and not in the time domain. The trick
+ * is charging these queues with an inflated amount of service, equal
+ * to the amount of service that they would have received during their
+ * service slot if they had been fast, i.e., if their requests had
+ * been dispatched at a rate equal to the estimated peak rate.
+ *
+ * It is worth noting that time fairness can cause important
+ * distortions in terms of bandwidth distribution, on devices with
+ * internal queueing. The reason is that I/O requests dispatched
+ * during the service slot of a queue may be served after that service
+ * slot is finished, and may have a total processing time loosely
+ * correlated with the duration of the service slot. This is
+ * especially true for short service slots.
+ */
+void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ unsigned long time_ms)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+ int tot_serv_to_charge = entity->service;
+ unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout);
+
+ if (time_ms > 0 && time_ms < timeout_ms)
+ tot_serv_to_charge =
+ (bfqd->bfq_max_budget * time_ms) / timeout_ms;
+
+ if (tot_serv_to_charge < entity->service)
+ tot_serv_to_charge = entity->service;
+
+ /* Increase budget to avoid inconsistencies */
+ if (tot_serv_to_charge > entity->budget)
+ entity->budget = tot_serv_to_charge;
+
+ bfq_bfqq_served(bfqq,
+ max_t(int, 0, tot_serv_to_charge - entity->service));
+}
+
+static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
+ struct bfq_service_tree *st,
+ bool backshifted)
+{
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+
+ st = __bfq_entity_update_weight_prio(st, entity);
+ bfq_calc_finish(entity, entity->budget);
+
+ /*
+ * If some queues enjoy backshifting for a while, then their
+ * (virtual) finish timestamps may happen to become lower and
+ * lower than the system virtual time. In particular, if
+ * these queues often happen to be idle for short time
+ * periods, and during such time periods other queues with
+ * higher timestamps happen to be busy, then the backshifted
+ * timestamps of the former queues can become much lower than
+ * the system virtual time. In fact, to serve the queues with
+ * higher timestamps while the ones with lower timestamps are
+ * idle, the system virtual time may be pushed-up to much
+ * higher values than the finish timestamps of the idle
+ * queues. As a consequence, the finish timestamps of all new
+ * or newly activated queues may end up being much larger than
+ * those of lucky queues with backshifted timestamps. The
+ * latter queues may then monopolize the device for a lot of
+ * time. This would simply break service guarantees.
+ *
+ * To reduce this problem, push up a little bit the
+ * backshifted timestamps of the queue associated with this
+ * entity (only a queue can happen to have the backshifted
+ * flag set): just enough to let the finish timestamp of the
+ * queue be equal to the current value of the system virtual
+ * time. This may introduce a little unfairness among queues
+ * with backshifted timestamps, but it does not break
+ * worst-case fairness guarantees.
+ *
+ * As a special case, if bfqq is weight-raised, push up
+ * timestamps much less, to keep very low the probability that
+ * this push up causes the backshifted finish timestamps of
+ * weight-raised queues to become higher than the backshifted
+ * finish timestamps of non weight-raised queues.
+ */
+ if (backshifted && bfq_gt(st->vtime, entity->finish)) {
+ unsigned long delta = st->vtime - entity->finish;
+
+ if (bfqq)
+ delta /= bfqq->wr_coeff;
+
+ entity->start += delta;
+ entity->finish += delta;
+ }
+
+ bfq_active_insert(st, entity);
+}
+
+/**
+ * __bfq_activate_entity - handle activation of entity.
+ * @entity: the entity being activated.
+ * @non_blocking_wait_rq: true if entity was waiting for a request
+ *
+ * Called for a 'true' activation, i.e., if entity is not active and
+ * one of its children receives a new request.
+ *
+ * Basically, this function updates the timestamps of entity and
+ * inserts entity into its active tree, ater possible extracting it
+ * from its idle tree.
+ */
+static void __bfq_activate_entity(struct bfq_entity *entity,
+ bool non_blocking_wait_rq)
+{
+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
+ bool backshifted = false;
+ unsigned long long min_vstart;
+
+ /* See comments on bfq_fqq_update_budg_for_activation */
+ if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
+ backshifted = true;
+ min_vstart = entity->finish;
+ } else
+ min_vstart = st->vtime;
+
+ if (entity->tree == &st->idle) {
+ /*
+ * Must be on the idle tree, bfq_idle_extract() will
+ * check for that.
+ */
+ bfq_idle_extract(st, entity);
+ entity->start = bfq_gt(min_vstart, entity->finish) ?
+ min_vstart : entity->finish;
+ } else {
+ /*
+ * The finish time of the entity may be invalid, and
+ * it is in the past for sure, otherwise the queue
+ * would have been on the idle tree.
+ */
+ entity->start = min_vstart;
+ st->wsum += entity->weight;
+ /*
+ * entity is about to be inserted into a service tree,
+ * and then set in service: get a reference to make
+ * sure entity does not disappear until it is no
+ * longer in service or scheduled for service.
+ */
+ bfq_get_entity(entity);
+
+ entity->on_st = true;
+ }
+
+ bfq_update_fin_time_enqueue(entity, st, backshifted);
+}
+
+/**
+ * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
+ * @entity: the entity being requeued or repositioned.
+ *
+ * Requeueing is needed if this entity stops being served, which
+ * happens if a leaf descendant entity has expired. On the other hand,
+ * repositioning is needed if the next_inservice_entity for the child
+ * entity has changed. See the comments inside the function for
+ * details.
+ *
+ * Basically, this function: 1) removes entity from its active tree if
+ * present there, 2) updates the timestamps of entity and 3) inserts
+ * entity back into its active tree (in the new, right position for
+ * the new values of the timestamps).
+ */
+static void __bfq_requeue_entity(struct bfq_entity *entity)
+{
+ struct bfq_sched_data *sd = entity->sched_data;
+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
+
+ if (entity == sd->in_service_entity) {
+ /*
+ * We are requeueing the current in-service entity,
+ * which may have to be done for one of the following
+ * reasons:
+ * - entity represents the in-service queue, and the
+ * in-service queue is being requeued after an
+ * expiration;
+ * - entity represents a group, and its budget has
+ * changed because one of its child entities has
+ * just been either activated or requeued for some
+ * reason; the timestamps of the entity need then to
+ * be updated, and the entity needs to be enqueued
+ * or repositioned accordingly.
+ *
+ * In particular, before requeueing, the start time of
+ * the entity must be moved forward to account for the
+ * service that the entity has received while in
+ * service. This is done by the next instructions. The
+ * finish time will then be updated according to this
+ * new value of the start time, and to the budget of
+ * the entity.
+ */
+ bfq_calc_finish(entity, entity->service);
+ entity->start = entity->finish;
+ /*
+ * In addition, if the entity had more than one child
+ * when set in service, then was not extracted from
+ * the active tree. This implies that the position of
+ * the entity in the active tree may need to be
+ * changed now, because we have just updated the start
+ * time of the entity, and we will update its finish
+ * time in a moment (the requeueing is then, more
+ * precisely, a repositioning in this case). To
+ * implement this repositioning, we: 1) dequeue the
+ * entity here, 2) update the finish time and
+ * requeue the entity according to the new
+ * timestamps below.
+ */
+ if (entity->tree)
+ bfq_active_extract(st, entity);
+ } else { /* The entity is already active, and not in service */
+ /*
+ * In this case, this function gets called only if the
+ * next_in_service entity below this entity has
+ * changed, and this change has caused the budget of
+ * this entity to change, which, finally implies that
+ * the finish time of this entity must be
+ * updated. Such an update may cause the scheduling,
+ * i.e., the position in the active tree, of this
+ * entity to change. We handle this change by: 1)
+ * dequeueing the entity here, 2) updating the finish
+ * time and requeueing the entity according to the new
+ * timestamps below. This is the same approach as the
+ * non-extracted-entity sub-case above.
+ */
+ bfq_active_extract(st, entity);
+ }
+
+ bfq_update_fin_time_enqueue(entity, st, false);
+}
+
+static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
+ struct bfq_sched_data *sd,
+ bool non_blocking_wait_rq)
+{
+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
+
+ if (sd->in_service_entity == entity || entity->tree == &st->active)
+ /*
+ * in service or already queued on the active tree,
+ * requeue or reposition
+ */
+ __bfq_requeue_entity(entity);
+ else
+ /*
+ * Not in service and not queued on its active tree:
+ * the activity is idle and this is a true activation.
+ */
+ __bfq_activate_entity(entity, non_blocking_wait_rq);
+}
+
+
+/**
+ * bfq_activate_entity - activate or requeue an entity representing a bfq_queue,
+ * and activate, requeue or reposition all ancestors
+ * for which such an update becomes necessary.
+ * @entity: the entity to activate.
+ * @non_blocking_wait_rq: true if this entity was waiting for a request
+ * @requeue: true if this is a requeue, which implies that bfqq is
+ * being expired; thus ALL its ancestors stop being served and must
+ * therefore be requeued
+ */
+static void bfq_activate_requeue_entity(struct bfq_entity *entity,
+ bool non_blocking_wait_rq,
+ bool requeue)
+{
+ struct bfq_sched_data *sd;
+
+ for_each_entity(entity) {
+ sd = entity->sched_data;
+ __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
+
+ if (!bfq_update_next_in_service(sd, entity) && !requeue)
+ break;
+ }
+}
+
+/**
+ * __bfq_deactivate_entity - deactivate an entity from its service tree.
+ * @entity: the entity to deactivate.
+ * @ins_into_idle_tree: if false, the entity will not be put into the
+ * idle tree.
+ *
+ * Deactivates an entity, independently from its previous state. Must
+ * be invoked only if entity is on a service tree. Extracts the entity
+ * from that tree, and if necessary and allowed, puts it on the idle
+ * tree.
+ */
+bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
+{
+ struct bfq_sched_data *sd = entity->sched_data;
+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
+ int is_in_service = entity == sd->in_service_entity;
+
+ if (!entity->on_st) /* entity never activated, or already inactive */
+ return false;
+
+ if (is_in_service)
+ bfq_calc_finish(entity, entity->service);
+
+ if (entity->tree == &st->active)
+ bfq_active_extract(st, entity);
+ else if (!is_in_service && entity->tree == &st->idle)
+ bfq_idle_extract(st, entity);
+
+ if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
+ bfq_forget_entity(st, entity, is_in_service);
+ else
+ bfq_idle_insert(st, entity);
+
+ return true;
+}
+
+/**
+ * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
+ * @entity: the entity to deactivate.
+ * @ins_into_idle_tree: true if the entity can be put on the idle tree
+ */
+static void bfq_deactivate_entity(struct bfq_entity *entity,
+ bool ins_into_idle_tree,
+ bool expiration)
+{
+ struct bfq_sched_data *sd;
+ struct bfq_entity *parent = NULL;
+
+ for_each_entity_safe(entity, parent) {
+ sd = entity->sched_data;
+
+ if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
+ /*
+ * entity is not in any tree any more, so
+ * this deactivation is a no-op, and there is
+ * nothing to change for upper-level entities
+ * (in case of expiration, this can never
+ * happen).
+ */
+ return;
+ }
+
+ if (sd->next_in_service == entity)
+ /*
+ * entity was the next_in_service entity,
+ * then, since entity has just been
+ * deactivated, a new one must be found.
+ */
+ bfq_update_next_in_service(sd, NULL);
+
+ if (sd->next_in_service)
+ /*
+ * The parent entity is still backlogged,
+ * because next_in_service is not NULL. So, no
+ * further upwards deactivation must be
+ * performed. Yet, next_in_service has
+ * changed. Then the schedule does need to be
+ * updated upwards.
+ */
+ break;
+
+ /*
+ * If we get here, then the parent is no more
+ * backlogged and we need to propagate the
+ * deactivation upwards. Thus let the loop go on.
+ */
+
+ /*
+ * Also let parent be queued into the idle tree on
+ * deactivation, to preserve service guarantees, and
+ * assuming that who invoked this function does not
+ * need parent entities too to be removed completely.
+ */
+ ins_into_idle_tree = true;
+ }
+
+ /*
+ * If the deactivation loop is fully executed, then there are
+ * no more entities to touch and next loop is not executed at
+ * all. Otherwise, requeue remaining entities if they are
+ * about to stop receiving service, or reposition them if this
+ * is not the case.
+ */
+ entity = parent;
+ for_each_entity(entity) {
+ /*
+ * Invoke __bfq_requeue_entity on entity, even if
+ * already active, to requeue/reposition it in the
+ * active tree (because sd->next_in_service has
+ * changed)
+ */
+ __bfq_requeue_entity(entity);
+
+ sd = entity->sched_data;
+ if (!bfq_update_next_in_service(sd, entity) &&
+ !expiration)
+ /*
+ * next_in_service unchanged or not causing
+ * any change in entity->parent->sd, and no
+ * requeueing needed for expiration: stop
+ * here.
+ */
+ break;
+ }
+}
+
+/**
+ * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
+ * if needed, to have at least one entity eligible.
+ * @st: the service tree to act upon.
+ *
+ * Assumes that st is not empty.
+ */
+static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
+{
+ struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
+
+ if (bfq_gt(root_entity->min_start, st->vtime))
+ return root_entity->min_start;
+
+ return st->vtime;
+}
+
+static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
+{
+ if (new_value > st->vtime) {
+ st->vtime = new_value;
+ bfq_forget_idle(st);
+ }
+}
+
+/**
+ * bfq_first_active_entity - find the eligible entity with
+ * the smallest finish time
+ * @st: the service tree to select from.
+ * @vtime: the system virtual to use as a reference for eligibility
+ *
+ * This function searches the first schedulable entity, starting from the
+ * root of the tree and going on the left every time on this side there is
+ * a subtree with at least one eligible (start >= vtime) entity. The path on
+ * the right is followed only if a) the left subtree contains no eligible
+ * entities and b) no eligible entity has been found yet.
+ */
+static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
+ u64 vtime)
+{
+ struct bfq_entity *entry, *first = NULL;
+ struct rb_node *node = st->active.rb_node;
+
+ while (node) {
+ entry = rb_entry(node, struct bfq_entity, rb_node);
+left:
+ if (!bfq_gt(entry->start, vtime))
+ first = entry;
+
+ if (node->rb_left) {
+ entry = rb_entry(node->rb_left,
+ struct bfq_entity, rb_node);
+ if (!bfq_gt(entry->min_start, vtime)) {
+ node = node->rb_left;
+ goto left;
+ }
+ }
+ if (first)
+ break;
+ node = node->rb_right;
+ }
+
+ return first;
+}
+
+/**
+ * __bfq_lookup_next_entity - return the first eligible entity in @st.
+ * @st: the service tree.
+ *
+ * If there is no in-service entity for the sched_data st belongs to,
+ * then return the entity that will be set in service if:
+ * 1) the parent entity this st belongs to is set in service;
+ * 2) no entity belonging to such parent entity undergoes a state change
+ * that would influence the timestamps of the entity (e.g., becomes idle,
+ * becomes backlogged, changes its budget, ...).
+ *
+ * In this first case, update the virtual time in @st too (see the
+ * comments on this update inside the function).
+ *
+ * In constrast, if there is an in-service entity, then return the
+ * entity that would be set in service if not only the above
+ * conditions, but also the next one held true: the currently
+ * in-service entity, on expiration,
+ * 1) gets a finish time equal to the current one, or
+ * 2) is not eligible any more, or
+ * 3) is idle.
+ */
+static struct bfq_entity *
+__bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
+{
+ struct bfq_entity *entity;
+ u64 new_vtime;
+
+ if (RB_EMPTY_ROOT(&st->active))
+ return NULL;
+
+ /*
+ * Get the value of the system virtual time for which at
+ * least one entity is eligible.
+ */
+ new_vtime = bfq_calc_vtime_jump(st);
+
+ /*
+ * If there is no in-service entity for the sched_data this
+ * active tree belongs to, then push the system virtual time
+ * up to the value that guarantees that at least one entity is
+ * eligible. If, instead, there is an in-service entity, then
+ * do not make any such update, because there is already an
+ * eligible entity, namely the in-service one (even if the
+ * entity is not on st, because it was extracted when set in
+ * service).
+ */
+ if (!in_service)
+ bfq_update_vtime(st, new_vtime);
+
+ entity = bfq_first_active_entity(st, new_vtime);
+
+ return entity;
+}
+
+/**
+ * bfq_lookup_next_entity - return the first eligible entity in @sd.
+ * @sd: the sched_data.
+ *
+ * This function is invoked when there has been a change in the trees
+ * for sd, and we need know what is the new next entity after this
+ * change.
+ */
+static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd)
+{
+ struct bfq_service_tree *st = sd->service_tree;
+ struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
+ struct bfq_entity *entity = NULL;
+ int class_idx = 0;
+
+ /*
+ * Choose from idle class, if needed to guarantee a minimum
+ * bandwidth to this class (and if there is some active entity
+ * in idle class). This should also mitigate
+ * priority-inversion problems in case a low priority task is
+ * holding file system resources.
+ */
+ if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
+ BFQ_CL_IDLE_TIMEOUT)) {
+ if (!RB_EMPTY_ROOT(&idle_class_st->active))
+ class_idx = BFQ_IOPRIO_CLASSES - 1;
+ /* About to be served if backlogged, or not yet backlogged */
+ sd->bfq_class_idle_last_service = jiffies;
+ }
+
+ /*
+ * Find the next entity to serve for the highest-priority
+ * class, unless the idle class needs to be served.
+ */
+ for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
+ entity = __bfq_lookup_next_entity(st + class_idx,
+ sd->in_service_entity);
+
+ if (entity)
+ break;
+ }
+
+ if (!entity)
+ return NULL;
+
+ return entity;
+}
+
+bool next_queue_may_preempt(struct bfq_data *bfqd)
+{
+ struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
+
+ return sd->next_in_service != sd->in_service_entity;
+}
+
+/*
+ * Get next queue for service.
+ */
+struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
+{
+ struct bfq_entity *entity = NULL;
+ struct bfq_sched_data *sd;
+ struct bfq_queue *bfqq;
+
+ if (bfqd->busy_queues == 0)
+ return NULL;
+
+ /*
+ * Traverse the path from the root to the leaf entity to
+ * serve. Set in service all the entities visited along the
+ * way.
+ */
+ sd = &bfqd->root_group->sched_data;
+ for (; sd ; sd = entity->my_sched_data) {
+ /*
+ * WARNING. We are about to set the in-service entity
+ * to sd->next_in_service, i.e., to the (cached) value
+ * returned by bfq_lookup_next_entity(sd) the last
+ * time it was invoked, i.e., the last time when the
+ * service order in sd changed as a consequence of the
+ * activation or deactivation of an entity. In this
+ * respect, if we execute bfq_lookup_next_entity(sd)
+ * in this very moment, it may, although with low
+ * probability, yield a different entity than that
+ * pointed to by sd->next_in_service. This rare event
+ * happens in case there was no CLASS_IDLE entity to
+ * serve for sd when bfq_lookup_next_entity(sd) was
+ * invoked for the last time, while there is now one
+ * such entity.
+ *
+ * If the above event happens, then the scheduling of
+ * such entity in CLASS_IDLE is postponed until the
+ * service of the sd->next_in_service entity
+ * finishes. In fact, when the latter is expired,
+ * bfq_lookup_next_entity(sd) gets called again,
+ * exactly to update sd->next_in_service.
+ */
+
+ /* Make next_in_service entity become in_service_entity */
+ entity = sd->next_in_service;
+ sd->in_service_entity = entity;
+
+ /*
+ * Reset the accumulator of the amount of service that
+ * the entity is about to receive.
+ */
+ entity->service = 0;
+
+ /*
+ * If entity is no longer a candidate for next
+ * service, then we extract it from its active tree,
+ * for the following reason. To further boost the
+ * throughput in some special case, BFQ needs to know
+ * which is the next candidate entity to serve, while
+ * there is already an entity in service. In this
+ * respect, to make it easy to compute/update the next
+ * candidate entity to serve after the current
+ * candidate has been set in service, there is a case
+ * where it is necessary to extract the current
+ * candidate from its service tree. Such a case is
+ * when the entity just set in service cannot be also
+ * a candidate for next service. Details about when
+ * this conditions holds are reported in the comments
+ * on the function bfq_no_longer_next_in_service()
+ * invoked below.
+ */
+ if (bfq_no_longer_next_in_service(entity))
+ bfq_active_extract(bfq_entity_service_tree(entity),
+ entity);
+
+ /*
+ * For the same reason why we may have just extracted
+ * entity from its active tree, we may need to update
+ * next_in_service for the sched_data of entity too,
+ * regardless of whether entity has been extracted.
+ * In fact, even if entity has not been extracted, a
+ * descendant entity may get extracted. Such an event
+ * would cause a change in next_in_service for the
+ * level of the descendant entity, and thus possibly
+ * back to upper levels.
+ *
+ * We cannot perform the resulting needed update
+ * before the end of this loop, because, to know which
+ * is the correct next-to-serve candidate entity for
+ * each level, we need first to find the leaf entity
+ * to set in service. In fact, only after we know
+ * which is the next-to-serve leaf entity, we can
+ * discover whether the parent entity of the leaf
+ * entity becomes the next-to-serve, and so on.
+ */
+
+ }
+
+ bfqq = bfq_entity_to_bfqq(entity);
+
+ /*
+ * We can finally update all next-to-serve entities along the
+ * path from the leaf entity just set in service to the root.
+ */
+ for_each_entity(entity) {
+ struct bfq_sched_data *sd = entity->sched_data;
+
+ if (!bfq_update_next_in_service(sd, NULL))
+ break;
+ }
+
+ return bfqq;
+}
+
+void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
+{
+ struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
+ struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
+ struct bfq_entity *entity = in_serv_entity;
+
+ bfq_clear_bfqq_wait_request(in_serv_bfqq);
+ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
+ bfqd->in_service_queue = NULL;
+
+ /*
+ * When this function is called, all in-service entities have
+ * been properly deactivated or requeued, so we can safely
+ * execute the final step: reset in_service_entity along the
+ * path from entity to the root.
+ */
+ for_each_entity(entity)
+ entity->sched_data->in_service_entity = NULL;
+
+ /*
+ * in_serv_entity is no longer in service, so, if it is in no
+ * service tree either, then release the service reference to
+ * the queue it represents (taken with bfq_get_entity).
+ */
+ if (!in_serv_entity->on_st)
+ bfq_put_queue(in_serv_bfqq);
+}
+
+void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ bool ins_into_idle_tree, bool expiration)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+
+ bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
+}
+
+void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+
+ bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
+ false);
+ bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
+}
+
+void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+{
+ struct bfq_entity *entity = &bfqq->entity;
+
+ bfq_activate_requeue_entity(entity, false,
+ bfqq == bfqd->in_service_queue);
+}
+
+/*
+ * Called when the bfqq no longer has requests pending, remove it from
+ * the service tree. As a special case, it can be invoked during an
+ * expiration.
+ */
+void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ bool expiration)
+{
+ bfq_log_bfqq(bfqd, bfqq, "del from busy");
+
+ bfq_clear_bfqq_busy(bfqq);
+
+ bfqd->busy_queues--;
+
+ if (!bfqq->dispatched)
+ bfq_weights_tree_remove(bfqd, &bfqq->entity,
+ &bfqd->queue_weights_tree);
+
+ if (bfqq->wr_coeff > 1)
+ bfqd->wr_busy_queues--;
+
+ bfqg_stats_update_dequeue(bfqq_group(bfqq));
+
+ bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
+}
+
+/*
+ * Called when an inactive queue receives a new request.
+ */
+void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+{
+ bfq_log_bfqq(bfqd, bfqq, "add to busy");
+
+ bfq_activate_bfqq(bfqd, bfqq);
+
+ bfq_mark_bfqq_busy(bfqq);
+ bfqd->busy_queues++;
+
+ if (!bfqq->dispatched)
+ if (bfqq->wr_coeff == 1)
+ bfq_weights_tree_add(bfqd, &bfqq->entity,
+ &bfqd->queue_weights_tree);
+
+ if (bfqq->wr_coeff > 1)
+ bfqd->wr_busy_queues++;
+}