summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorEmese Revfy <re.emese@gmail.com>2016-05-24 01:09:38 +0300
committerMichal Marek <mmarek@suse.com>2016-06-07 23:57:10 +0300
commit6b90bd4ba40b38dc13c2782469c1c77e4ed79915 (patch)
tree02d65b38b76e3543d33088ae9149010bae0290b0 /Documentation
parent24403874316a7180d367e51d7f7e25d5de1f78dd (diff)
downloadlinux-6b90bd4ba40b38dc13c2782469c1c77e4ed79915.tar.xz
GCC plugin infrastructure
This patch allows to build the whole kernel with GCC plugins. It was ported from grsecurity/PaX. The infrastructure supports building out-of-tree modules and building in a separate directory. Cross-compilation is supported too. Currently the x86, arm, arm64 and uml architectures enable plugins. The directory of the gcc plugins is scripts/gcc-plugins. You can use a file or a directory there. The plugins compile with these options: * -fno-rtti: gcc is compiled with this option so the plugins must use it too * -fno-exceptions: this is inherited from gcc too * -fasynchronous-unwind-tables: this is inherited from gcc too * -ggdb: it is useful for debugging a plugin (better backtrace on internal errors) * -Wno-narrowing: to suppress warnings from gcc headers (ipa-utils.h) * -Wno-unused-variable: to suppress warnings from gcc headers (gcc_version variable, plugin-version.h) The infrastructure introduces a new Makefile target called gcc-plugins. It supports all gcc versions from 4.5 to 6.0. The scripts/gcc-plugin.sh script chooses the proper host compiler (gcc-4.7 can be built by either gcc or g++). This script also checks the availability of the included headers in scripts/gcc-plugins/gcc-common.h. The gcc-common.h header contains frequently included headers for GCC plugins and it has a compatibility layer for the supported gcc versions. The gcc-generate-*-pass.h headers automatically generate the registration structures for GIMPLE, SIMPLE_IPA, IPA and RTL passes. Note that 'make clean' keeps the *.so files (only the distclean or mrproper targets clean all) because they are needed for out-of-tree modules. Based on work created by the PaX Team. Signed-off-by: Emese Revfy <re.emese@gmail.com> Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: Michal Marek <mmarek@suse.com>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/dontdiff1
-rw-r--r--Documentation/gcc-plugins.txt87
2 files changed, 88 insertions, 0 deletions
diff --git a/Documentation/dontdiff b/Documentation/dontdiff
index 8ea834f6b289..5385cba941d2 100644
--- a/Documentation/dontdiff
+++ b/Documentation/dontdiff
@@ -3,6 +3,7 @@
*.bc
*.bin
*.bz2
+*.c.[012]*.*
*.cis
*.cpio
*.csp
diff --git a/Documentation/gcc-plugins.txt b/Documentation/gcc-plugins.txt
new file mode 100644
index 000000000000..891c69464434
--- /dev/null
+++ b/Documentation/gcc-plugins.txt
@@ -0,0 +1,87 @@
+GCC plugin infrastructure
+=========================
+
+
+1. Introduction
+===============
+
+GCC plugins are loadable modules that provide extra features to the
+compiler [1]. They are useful for runtime instrumentation and static analysis.
+We can analyse, change and add further code during compilation via
+callbacks [2], GIMPLE [3], IPA [4] and RTL passes [5].
+
+The GCC plugin infrastructure of the kernel supports all gcc versions from
+4.5 to 6.0, building out-of-tree modules, cross-compilation and building in a
+separate directory.
+Plugin source files have to be compilable by both a C and a C++ compiler as well
+because gcc versions 4.5 and 4.6 are compiled by a C compiler,
+gcc-4.7 can be compiled by a C or a C++ compiler,
+and versions 4.8+ can only be compiled by a C++ compiler.
+
+Currently the GCC plugin infrastructure supports only the x86, arm and arm64
+architectures.
+
+This infrastructure was ported from grsecurity [6] and PaX [7].
+
+--
+[1] https://gcc.gnu.org/onlinedocs/gccint/Plugins.html
+[2] https://gcc.gnu.org/onlinedocs/gccint/Plugin-API.html#Plugin-API
+[3] https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
+[4] https://gcc.gnu.org/onlinedocs/gccint/IPA.html
+[5] https://gcc.gnu.org/onlinedocs/gccint/RTL.html
+[6] https://grsecurity.net/
+[7] https://pax.grsecurity.net/
+
+
+2. Files
+========
+
+$(src)/scripts/gcc-plugins
+ This is the directory of the GCC plugins.
+
+$(src)/scripts/gcc-plugins/gcc-common.h
+ This is a compatibility header for GCC plugins.
+ It should be always included instead of individual gcc headers.
+
+$(src)/scripts/gcc-plugin.sh
+ This script checks the availability of the included headers in
+ gcc-common.h and chooses the proper host compiler to build the plugins
+ (gcc-4.7 can be built by either gcc or g++).
+
+$(src)/scripts/gcc-plugins/gcc-generate-gimple-pass.h
+$(src)/scripts/gcc-plugins/gcc-generate-ipa-pass.h
+$(src)/scripts/gcc-plugins/gcc-generate-simple_ipa-pass.h
+$(src)/scripts/gcc-plugins/gcc-generate-rtl-pass.h
+ These headers automatically generate the registration structures for
+ GIMPLE, SIMPLE_IPA, IPA and RTL passes. They support all gcc versions
+ from 4.5 to 6.0.
+ They should be preferred to creating the structures by hand.
+
+
+3. Usage
+========
+
+You must install the gcc plugin headers for your gcc version,
+e.g., on Ubuntu for gcc-4.9:
+
+ apt-get install gcc-4.9-plugin-dev
+
+Enable a GCC plugin based feature in the kernel config:
+
+ CONFIG_GCC_PLUGIN_CYC_COMPLEXITY = y
+
+To compile only the plugin(s):
+
+ make gcc-plugins
+
+or just run the kernel make and compile the whole kernel with
+the cyclomatic complexity GCC plugin.
+
+
+4. How to add a new GCC plugin
+==============================
+
+The GCC plugins are in $(src)/scripts/gcc-plugins/. You can use a file or a directory
+here. It must be added to $(src)/scripts/gcc-plugins/Makefile,
+$(src)/scripts/Makefile.gcc-plugins and $(src)/arch/Kconfig.
+See the cyc_complexity_plugin.c (CONFIG_GCC_PLUGIN_CYC_COMPLEXITY) GCC plugin.