summaryrefslogtreecommitdiff
path: root/drivers/ram/rockchip/dmc-rk3368.c
blob: 92457a1fa427c80e2e919dfc099d44d1deb50611 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
// SPDX-License-Identifier: GPL-2.0
/*
 * (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH
 */

#include <common.h>
#include <clk.h>
#include <dm.h>
#include <hang.h>
#include <log.h>
#include <dt-bindings/memory/rk3368-dmc.h>
#include <dt-structs.h>
#include <ram.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/cru_rk3368.h>
#include <asm/arch-rockchip/grf_rk3368.h>
#include <asm/arch-rockchip/ddr_rk3368.h>
#include <asm/arch-rockchip/sdram.h>
#include <asm/arch-rockchip/sdram_rk3288.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>

struct dram_info {
	struct ram_info info;
	struct clk ddr_clk;
	struct rk3368_cru *cru;
	struct rk3368_grf *grf;
	struct rk3368_ddr_pctl *pctl;
	struct rk3368_ddrphy *phy;
	struct rk3368_pmu_grf *pmugrf;
	struct rk3368_msch *msch;
};

struct rk3368_sdram_params {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
	struct dtd_rockchip_rk3368_dmc of_plat;
#endif
	struct rk3288_sdram_pctl_timing pctl_timing;
	u32 trefi_mem_ddr3;
	struct rk3288_sdram_channel chan;
	struct regmap *map;
	u32 ddr_freq;
	u32 memory_schedule;
	u32 ddr_speed_bin;
	u32 tfaw_mult;
};

/* PTCL bits */
enum {
	/* PCTL_DFISTCFG0 */
	DFI_INIT_START = BIT(0),
	DFI_DATA_BYTE_DISABLE_EN = BIT(2),

	/* PCTL_DFISTCFG1 */
	DFI_DRAM_CLK_SR_EN = BIT(0),
	DFI_DRAM_CLK_DPD_EN = BIT(1),
	ODT_LEN_BL8_W_SHIFT = 16,

	/* PCTL_DFISTCFG2 */
	DFI_PARITY_INTR_EN = BIT(0),
	DFI_PARITY_EN = BIT(1),

	/* PCTL_DFILPCFG0 */
	TLP_RESP_TIME_SHIFT = 16,
	LP_SR_EN = BIT(8),
	LP_PD_EN = BIT(0),

	/* PCTL_DFIODTCFG */
	RANK0_ODT_WRITE_SEL = BIT(3),
	RANK1_ODT_WRITE_SEL = BIT(11),

	/* PCTL_SCFG */
	HW_LOW_POWER_EN = BIT(0),

	/* PCTL_MCMD */
	START_CMD = BIT(31),
	MCMD_RANK0 = BIT(20),
	MCMD_RANK1 = BIT(21),
	DESELECT_CMD = 0,
	PREA_CMD,
	REF_CMD,
	MRS_CMD,
	ZQCS_CMD,
	ZQCL_CMD,
	RSTL_CMD,
	MRR_CMD	= 8,
	DPDE_CMD,

	/* PCTL_POWCTL */
	POWER_UP_START = BIT(0),

	/* PCTL_POWSTAT */
	POWER_UP_DONE = BIT(0),

	/* PCTL_SCTL */
	INIT_STATE = 0,
	CFG_STATE,
	GO_STATE,
	SLEEP_STATE,
	WAKEUP_STATE,

	/* PCTL_STAT */
	LP_TRIG_SHIFT = 4,
	LP_TRIG_MASK = 7,
	PCTL_STAT_MSK = 7,
	INIT_MEM = 0,
	CONFIG,
	CONFIG_REQ,
	ACCESS,
	ACCESS_REQ,
	LOW_POWER,
	LOW_POWER_ENTRY_REQ,
	LOW_POWER_EXIT_REQ,

	/* PCTL_MCFG */
	DDR2_DDR3_BL_8 = BIT(0),
	DDR3_EN = BIT(5),
	TFAW_TRRD_MULT4 = (0 << 18),
	TFAW_TRRD_MULT5 = (1 << 18),
	TFAW_TRRD_MULT6 = (2 << 18),
};

#define DDR3_MR0_WR(n) \
	((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9))
#define DDR3_MR0_CL(n) \
	((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2))
#define DDR3_MR0_BL8 \
	(0 << 0)
#define DDR3_MR0_DLL_RESET \
	(1 << 8)
#define DDR3_MR1_RTT120OHM \
	((0 << 9) | (1 << 6) | (0 << 2))
#define DDR3_MR2_TWL(n) \
	(((n - 5) & 0x7) << 3)


#ifdef CONFIG_TPL_BUILD

static void ddr_set_noc_spr_err_stall(struct rk3368_grf *grf, bool enable)
{
	if (enable)
		rk_setreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
	else
		rk_clrreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
}

static void ddr_set_ddr3_mode(struct rk3368_grf *grf, bool ddr3_mode)
{
	if (ddr3_mode)
		rk_setreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
	else
		rk_clrreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
}

static void ddrphy_config(struct rk3368_ddrphy *phy,
			  u32 tcl, u32 tal, u32 tcwl)
{
	int i;

	/* Set to DDR3 mode */
	clrsetbits_le32(&phy->reg[1], 0x3, 0x0);

	/* DDRPHY_REGB: CL, AL */
	clrsetbits_le32(&phy->reg[0xb], 0xff, tcl << 4 | tal);
	/* DDRPHY_REGC: CWL */
	clrsetbits_le32(&phy->reg[0xc], 0x0f, tcwl);

	/* Update drive-strength */
	writel(0xcc, &phy->reg[0x11]);
	writel(0xaa, &phy->reg[0x16]);
	/*
	 * Update NRCOMP/PRCOMP for all 4 channels (for details of all
	 * affected registers refer to the documentation of DDRPHY_REG20
	 * and DDRPHY_REG21 in the RK3368 TRM.
	 */
	for (i = 0; i < 4; ++i) {
		writel(0xcc, &phy->reg[0x20 + i * 0x10]);
		writel(0x44, &phy->reg[0x21 + i * 0x10]);
	}

	/* Enable write-leveling calibration bypass */
	setbits_le32(&phy->reg[2], BIT(3));
}

static void copy_to_reg(u32 *dest, const u32 *src, u32 n)
{
	int i;

	for (i = 0; i < n / sizeof(u32); i++)
		writel(*src++, dest++);
}

static void send_command(struct rk3368_ddr_pctl *pctl, u32 rank, u32 cmd)
{
	u32 mcmd = START_CMD | cmd | rank;

	debug("%s: writing %x to MCMD\n", __func__, mcmd);
	writel(mcmd, &pctl->mcmd);
	while (readl(&pctl->mcmd) & START_CMD)
		/* spin */;
}

static void send_mrs(struct rk3368_ddr_pctl *pctl,
			    u32 rank, u32 mr_num, u32 mr_data)
{
	u32 mcmd = START_CMD | MRS_CMD | rank | (mr_num << 17) | (mr_data << 4);

	debug("%s: writing %x to MCMD\n", __func__, mcmd);
	writel(mcmd, &pctl->mcmd);
	while (readl(&pctl->mcmd) & START_CMD)
		/* spin */;
}

static int memory_init(struct rk3368_ddr_pctl *pctl,
		       struct rk3368_sdram_params *params)
{
	u32 mr[4];
	const ulong timeout_ms = 500;
	ulong tmp;

	/*
	 * Power up DRAM by DDR_PCTL_POWCTL[0] register of PCTL and
	 * wait power up DRAM finish with DDR_PCTL_POWSTAT[0] register
	 * of PCTL.
	 */
	writel(POWER_UP_START, &pctl->powctl);

	tmp = get_timer(0);
	do {
		if (get_timer(tmp) > timeout_ms) {
			pr_err("%s: POWER_UP_START did not complete in %ld ms\n",
			      __func__, timeout_ms);
			return -ETIME;
		}
	} while (!(readl(&pctl->powstat) & POWER_UP_DONE));

	/* Configure MR0 through MR3 */
	mr[0] = DDR3_MR0_WR(params->pctl_timing.twr) |
		DDR3_MR0_CL(params->pctl_timing.tcl) |
		DDR3_MR0_DLL_RESET;
	mr[1] = DDR3_MR1_RTT120OHM;
	mr[2] = DDR3_MR2_TWL(params->pctl_timing.tcwl);
	mr[3] = 0;

	/*
	 * Also see RK3368 Technical Reference Manual:
	 *   "16.6.2 Initialization (DDR3 Initialization Sequence)"
	 */
	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, DESELECT_CMD);
	udelay(1);
	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 2, mr[2]);
	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 3, mr[3]);
	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 1, mr[1]);
	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 0, mr[0]);
	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, ZQCL_CMD);

	return 0;
}

static void move_to_config_state(struct rk3368_ddr_pctl *pctl)
{
	/*
	 * Also see RK3368 Technical Reference Manual:
	 *   "16.6.1 State transition of PCTL (Moving to Config State)"
	 */
	u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;

	switch (state) {
	case LOW_POWER:
		writel(WAKEUP_STATE, &pctl->sctl);
		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
			/* spin */;

		/* fall-through */
	case ACCESS:
	case INIT_MEM:
		writel(CFG_STATE, &pctl->sctl);
		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
			/* spin */;
		break;

	case CONFIG:
		return;

	default:
		break;
	}
}

static void move_to_access_state(struct rk3368_ddr_pctl *pctl)
{
	/*
	 * Also see RK3368 Technical Reference Manual:
	 *   "16.6.1 State transition of PCTL (Moving to Access State)"
	 */
	u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;

	switch (state) {
	case LOW_POWER:
		if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) &
		     LP_TRIG_MASK) == 1)
			return;

		writel(WAKEUP_STATE, &pctl->sctl);
		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
			/* spin */;

		/* fall-through */
	case INIT_MEM:
		writel(CFG_STATE, &pctl->sctl);
		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
			/* spin */;

		/* fall-through */
	case CONFIG:
		writel(GO_STATE, &pctl->sctl);
		while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG)
			/* spin */;
		break;

	case ACCESS:
		return;

	default:
		break;
	}
}

static void ddrctl_reset(struct rk3368_cru *cru)
{
	const u32 ctl_reset = BIT(3) | BIT(2);
	const u32 phy_reset = BIT(1) | BIT(0);

	/*
	 * The PHY reset should be released before the PCTL reset.
	 *
	 * Note that the following sequence (including the number of
	 * us to delay between releasing the PHY and PCTL reset) has
	 * been adapted per feedback received from Rockchips, so do
	 * not try to optimise.
	 */
	rk_setreg(&cru->softrst_con[10], ctl_reset | phy_reset);
	udelay(1);
	rk_clrreg(&cru->softrst_con[10], phy_reset);
	udelay(5);
	rk_clrreg(&cru->softrst_con[10], ctl_reset);
}

static void ddrphy_reset(struct rk3368_ddrphy *ddrphy)
{
	/*
	 * The analog part of the PHY should be release at least 1000
	 * DRAM cycles before the digital part of the PHY (waiting for
	 * 5us will ensure this for a DRAM clock as low as 200MHz).
	 */
	clrbits_le32(&ddrphy->reg[0], BIT(3) | BIT(2));
	udelay(1);
	setbits_le32(&ddrphy->reg[0], BIT(2));
	udelay(5);
	setbits_le32(&ddrphy->reg[0], BIT(3));
}

static void ddrphy_config_delays(struct rk3368_ddrphy *ddrphy, u32 freq)
{
	u32 dqs_dll_delay;

	setbits_le32(&ddrphy->reg[0x13], BIT(4));
	clrbits_le32(&ddrphy->reg[0x14], BIT(3));

	setbits_le32(&ddrphy->reg[0x26], BIT(4));
	clrbits_le32(&ddrphy->reg[0x27], BIT(3));

	setbits_le32(&ddrphy->reg[0x36], BIT(4));
	clrbits_le32(&ddrphy->reg[0x37], BIT(3));

	setbits_le32(&ddrphy->reg[0x46], BIT(4));
	clrbits_le32(&ddrphy->reg[0x47], BIT(3));

	setbits_le32(&ddrphy->reg[0x56], BIT(4));
	clrbits_le32(&ddrphy->reg[0x57], BIT(3));

	if (freq <= 400000000)
		setbits_le32(&ddrphy->reg[0xa4], 0x1f);
	else
		clrbits_le32(&ddrphy->reg[0xa4], 0x1f);

	if (freq < 681000000)
		dqs_dll_delay = 3; /* 67.5 degree delay */
	else
		dqs_dll_delay = 2; /* 45 degree delay */

	writel(dqs_dll_delay, &ddrphy->reg[0x28]);
	writel(dqs_dll_delay, &ddrphy->reg[0x38]);
	writel(dqs_dll_delay, &ddrphy->reg[0x48]);
	writel(dqs_dll_delay, &ddrphy->reg[0x58]);
}

static int dfi_cfg(struct rk3368_ddr_pctl *pctl)
{
	const ulong timeout_ms = 200;
	ulong tmp;

	writel(DFI_DATA_BYTE_DISABLE_EN, &pctl->dfistcfg0);

	writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN,
	       &pctl->dfistcfg1);
	writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2);
	writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN,
	       &pctl->dfilpcfg0);

	writel(1, &pctl->dfitphyupdtype0);

	writel(0x1f, &pctl->dfitphyrdlat);
	writel(0, &pctl->dfitphywrdata);
	writel(0, &pctl->dfiupdcfg);  /* phyupd and ctrlupd disabled */

	setbits_le32(&pctl->dfistcfg0, DFI_INIT_START);

	tmp = get_timer(0);
	do {
		if (get_timer(tmp) > timeout_ms) {
			pr_err("%s: DFI init did not complete within %ld ms\n",
			      __func__, timeout_ms);
			return -ETIME;
		}
	} while ((readl(&pctl->dfiststat0) & 1) == 0);

	return 0;
}

static inline u32 ps_to_tCK(const u32 ps, const ulong freq)
{
	const ulong MHz = 1000000;
	return DIV_ROUND_UP(ps * freq, 1000000 * MHz);
}

static inline u32 ns_to_tCK(const u32 ns, const ulong freq)
{
	return ps_to_tCK(ns * 1000, freq);
}

static inline u32 tCK_to_ps(const ulong tCK, const ulong freq)
{
	const ulong MHz = 1000000;
	return DIV_ROUND_UP(tCK * 1000000 * MHz, freq);
}

static int pctl_calc_timings(struct rk3368_sdram_params *params,
			      ulong freq)
{
	struct rk3288_sdram_pctl_timing *pctl_timing = &params->pctl_timing;
	const ulong MHz = 1000000;
	u32 tccd;
	u32 tfaw_as_ps;

	if (params->ddr_speed_bin != DDR3_1600K) {
		pr_err("%s: unimplemented DDR3 speed bin %d\n",
		      __func__, params->ddr_speed_bin);
		return -1;
	}

	/* PCTL is clocked at 1/2 the DRAM clock; err on the side of caution */
	pctl_timing->togcnt1u = DIV_ROUND_UP(freq, 2 * MHz);
	pctl_timing->togcnt100n = DIV_ROUND_UP(freq / 10, 2 * MHz);

	pctl_timing->tinit = 200;                 /* 200 usec                */
	pctl_timing->trsth = 500;                 /* 500 usec                */
	pctl_timing->trefi = 78;                  /* 7.8usec = 78 * 100ns    */
	params->trefi_mem_ddr3 = ns_to_tCK(pctl_timing->trefi * 100, freq);

	if (freq <= (400 * MHz)) {
		pctl_timing->tcl = 6;
		pctl_timing->tcwl = 10;
	} else if (freq <= (533 * MHz)) {
		pctl_timing->tcl = 8;
		pctl_timing->tcwl = 6;
	} else if (freq <= (666 * MHz)) {
		pctl_timing->tcl = 10;
		pctl_timing->tcwl = 7;
	} else {
		pctl_timing->tcl = 11;
		pctl_timing->tcwl = 8;
	}

	pctl_timing->tmrd = 4;                    /* 4 tCK (all speed bins)  */
	pctl_timing->trfc = ns_to_tCK(350, freq); /* tRFC: 350 (max) @ 8GBit */
	pctl_timing->trp = max(4u, ps_to_tCK(13750, freq));
	/*
	 * JESD-79:
	 *   READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL
	 */
	tccd = 4;
	pctl_timing->trtw = pctl_timing->tcl + tccd/2 + 2 - pctl_timing->tcwl;
	pctl_timing->tal = 0;
	pctl_timing->tras = ps_to_tCK(35000, freq);
	pctl_timing->trc = ps_to_tCK(48750, freq);
	pctl_timing->trcd = ps_to_tCK(13750, freq);
	pctl_timing->trrd = max(4u, ps_to_tCK(7500, freq));
	pctl_timing->trtp = max(4u, ps_to_tCK(7500, freq));
	pctl_timing->twr = ps_to_tCK(15000, freq);
	/* The DDR3 mode-register does only support even values for tWR > 8. */
	if (pctl_timing->twr > 8)
		pctl_timing->twr = (pctl_timing->twr + 1) & ~1;
	pctl_timing->twtr = max(4u, ps_to_tCK(7500, freq));
	pctl_timing->texsr = 512;                 /* tEXSR(max) is tDLLLK    */
	pctl_timing->txp = max(3u, ps_to_tCK(6000, freq));
	pctl_timing->txpdll = max(10u, ps_to_tCK(24000, freq));
	pctl_timing->tzqcs = max(64u, ps_to_tCK(80000, freq));
	pctl_timing->tzqcsi = 10000;               /* as used by Rockchip    */
	pctl_timing->tdqs = 1;                     /* fixed for DDR3         */
	pctl_timing->tcksre = max(5u, ps_to_tCK(10000, freq));
	pctl_timing->tcksrx = max(5u, ps_to_tCK(10000, freq));
	pctl_timing->tcke = max(3u, ps_to_tCK(5000, freq));
	pctl_timing->tmod = max(12u, ps_to_tCK(15000, freq));
	pctl_timing->trstl = ns_to_tCK(100, freq);
	pctl_timing->tzqcl = max(256u, ps_to_tCK(320000, freq));   /* tZQoper */
	pctl_timing->tmrr = 0;
	pctl_timing->tckesr = pctl_timing->tcke + 1;  /* JESD-79: tCKE + 1tCK */
	pctl_timing->tdpd = 0;    /* RK3368 TRM: "allowed values for DDR3: 0" */


	/*
	 * The controller can represent tFAW as 4x, 5x or 6x tRRD only.
	 * We want to use the smallest multiplier that satisfies the tFAW
	 * requirements of the given speed-bin.  If necessary, we stretch out
	 * tRRD to allow us to operate on a 6x multiplier for tFAW.
	 */
	tfaw_as_ps = 40000;      /* 40ns: tFAW for DDR3-1600K, 2KB page-size */
	if (tCK_to_ps(pctl_timing->trrd * 6, freq) < tfaw_as_ps) {
		/* If tFAW is > 6 x tRRD, we need to stretch tRRD */
		pctl_timing->trrd = ps_to_tCK(DIV_ROUND_UP(40000, 6), freq);
		params->tfaw_mult = TFAW_TRRD_MULT6;
	} else if (tCK_to_ps(pctl_timing->trrd * 5, freq) < tfaw_as_ps) {
		params->tfaw_mult = TFAW_TRRD_MULT6;
	} else if (tCK_to_ps(pctl_timing->trrd * 4, freq) < tfaw_as_ps) {
		params->tfaw_mult = TFAW_TRRD_MULT5;
	} else {
		params->tfaw_mult = TFAW_TRRD_MULT4;
	}

	return 0;
}

static void pctl_cfg(struct rk3368_ddr_pctl *pctl,
		     struct rk3368_sdram_params *params,
		     struct rk3368_grf *grf)
{
	/* Configure PCTL timing registers */
	params->pctl_timing.trefi |= BIT(31);   /* see PCTL_TREFI */
	copy_to_reg(&pctl->togcnt1u, &params->pctl_timing.togcnt1u,
		    sizeof(params->pctl_timing));
	writel(params->trefi_mem_ddr3, &pctl->trefi_mem_ddr3);

	/* Set up ODT write selector and ODT write length */
	writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg);
	writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1);

	/* Set up the CL/CWL-dependent timings of DFI */
	writel((params->pctl_timing.tcl - 1) / 2 - 1, &pctl->dfitrddataen);
	writel((params->pctl_timing.tcwl - 1) / 2 - 1, &pctl->dfitphywrlat);

	/* DDR3 */
	writel(params->tfaw_mult | DDR3_EN | DDR2_DDR3_BL_8, &pctl->mcfg);
	writel(0x001c0004, &grf->ddrc0_con0);

	setbits_le32(&pctl->scfg, HW_LOW_POWER_EN);
}

static int ddrphy_data_training(struct rk3368_ddr_pctl *pctl,
				struct rk3368_ddrphy *ddrphy)
{
	const u32 trefi = readl(&pctl->trefi);
	const ulong timeout_ms = 500;
	ulong tmp;

	/* disable auto-refresh */
	writel(0 | BIT(31), &pctl->trefi);

	clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
	clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x21);

	tmp = get_timer(0);
	do {
		if (get_timer(tmp) > timeout_ms) {
			pr_err("%s: did not complete within %ld ms\n",
			      __func__, timeout_ms);
			return -ETIME;
		}
	} while ((readl(&ddrphy->reg[0xff]) & 0xf) != 0xf);

	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
	clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
	/* resume auto-refresh */
	writel(trefi | BIT(31), &pctl->trefi);

	return 0;
}

static int sdram_col_row_detect(struct udevice *dev)
{
	struct dram_info *priv = dev_get_priv(dev);
	struct rk3368_sdram_params *params = dev_get_platdata(dev);
	struct rk3368_ddr_pctl *pctl = priv->pctl;
	struct rk3368_msch *msch = priv->msch;
	const u32 test_pattern = 0x5aa5f00f;
	int row, col;
	uintptr_t addr;

	move_to_config_state(pctl);
	writel(6, &msch->ddrconf);
	move_to_access_state(pctl);

	/* Detect col */
	for (col = 11; col >= 9; col--) {
		writel(0, CONFIG_SYS_SDRAM_BASE);
		addr = CONFIG_SYS_SDRAM_BASE +
			(1 << (col + params->chan.bw - 1));
		writel(test_pattern, addr);
		if ((readl(addr) == test_pattern) &&
		    (readl(CONFIG_SYS_SDRAM_BASE) == 0))
			break;
	}

	if (col == 8) {
		pr_err("%s: col detect error\n", __func__);
		return -EINVAL;
	}

	move_to_config_state(pctl);
	writel(15, &msch->ddrconf);
	move_to_access_state(pctl);

	/* Detect row*/
	for (row = 16; row >= 12; row--) {
		writel(0, CONFIG_SYS_SDRAM_BASE);
		addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1));
		writel(test_pattern, addr);
		if ((readl(addr) == test_pattern) &&
		    (readl(CONFIG_SYS_SDRAM_BASE) == 0))
			break;
	}

	if (row == 11) {
		pr_err("%s: row detect error\n", __func__);
		return -EINVAL;
	}

	/* Record results */
	debug("%s: col %d, row %d\n", __func__, col, row);
	params->chan.col = col;
	params->chan.cs0_row = row;
	params->chan.cs1_row = row;
	params->chan.row_3_4 = 0;

	return 0;
}

static int msch_niu_config(struct rk3368_msch *msch,
			   struct rk3368_sdram_params *params)
{
	int i;
	const u8 cols =	params->chan.col - ((params->chan.bw == 2) ? 0 : 1);
	const u8 rows = params->chan.cs0_row;

	/*
	 * The DDR address-translation table always assumes a 32bit
	 * bus and the comparison below takes care of adjusting for
	 * a 16bit bus (i.e. one column-address is consumed).
	 */
	const struct {
		u8 rows;
		u8 columns;
		u8 type;
	} ddrconf_table[] = {
		/*
		 * C-B-R-D patterns are first. For these we require an
		 * exact match for the columns and rows (as there's
		 * one entry per possible configuration).
		 */
		[0] =  { .rows = 13, .columns = 10, .type = DMC_MSCH_CBRD },
		[1] =  { .rows = 14, .columns = 10, .type = DMC_MSCH_CBRD },
		[2] =  { .rows = 15, .columns = 10, .type = DMC_MSCH_CBRD },
		[3] =  { .rows = 16, .columns = 10, .type = DMC_MSCH_CBRD },
		[4] =  { .rows = 14, .columns = 11, .type = DMC_MSCH_CBRD },
		[5] =  { .rows = 15, .columns = 11, .type = DMC_MSCH_CBRD },
		[6] =  { .rows = 16, .columns = 11, .type = DMC_MSCH_CBRD },
		[7] =  { .rows = 13, .columns = 9, .type = DMC_MSCH_CBRD },
		[8] =  { .rows = 14, .columns = 9, .type = DMC_MSCH_CBRD },
		[9] =  { .rows = 15, .columns = 9, .type = DMC_MSCH_CBRD },
		[10] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBRD },
		/*
		 * 11 through 13 are C-R-B-D patterns. These are
		 * matched for an exact number of columns and to
		 * ensure that the hardware uses at least as many rows
		 * as the pattern requires (i.e. we make sure that
		 * there's no gaps up until we hit the device/chip-select;
		 * however, these patterns can accept up to 16 rows,
		 * as the row-address continues right after the CS
		 * switching)
		 */
		[11] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CRBD },
		[12] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CRBD },
		[13] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CRBD },
		/*
		 * 14 and 15 are catch-all variants using a C-B-D-R
		 * scheme (i.e. alternating the chip-select every time
		 * C-B overflows) and stuffing the remaining C-bits
		 * into the top. Matching needs to make sure that the
		 * number of columns is either an exact match (i.e. we
		 * can use less the the maximum number of rows) -or-
		 * that the columns exceed what is given in this table
		 * and the rows are an exact match (in which case the
		 * remaining C-bits will be stuffed onto the top after
		 * the device/chip-select switches).
		 */
		[14] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBDR },
		[15] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBDR },
	};

	/*
	 * For C-B-R-D, we need an exact match (i.e. both for the number of
	 * columns and rows), while for C-B-D-R, only the the number of
	 * columns needs to match.
	 */
	for (i = 0; i < ARRAY_SIZE(ddrconf_table); i++) {
		bool match = false;

		/* If this entry if for a different matcher, then skip it */
		if (ddrconf_table[i].type != params->memory_schedule)
			continue;

		/*
		 * Match according to the rules (exact/inexact/at-least)
		 * documented in the ddrconf_table above.
		 */
		switch (params->memory_schedule) {
		case DMC_MSCH_CBRD:
			match = (ddrconf_table[i].columns == cols) &&
				(ddrconf_table[i].rows == rows);
			break;

		case DMC_MSCH_CRBD:
			match = (ddrconf_table[i].columns == cols) &&
				(ddrconf_table[i].rows <= rows);
			break;

		case DMC_MSCH_CBDR:
			match = (ddrconf_table[i].columns == cols) ||
				((ddrconf_table[i].columns <= cols) &&
				 (ddrconf_table[i].rows == rows));
			break;

		default:
			break;
		}

		if (match) {
			debug("%s: setting ddrconf 0x%x\n", __func__, i);
			writel(i, &msch->ddrconf);
			return 0;
		}
	}

	pr_err("%s: ddrconf (NIU config) not found\n", __func__);
	return -EINVAL;
}

static void dram_all_config(struct udevice *dev)
{
	struct dram_info *priv = dev_get_priv(dev);
	struct rk3368_pmu_grf *pmugrf = priv->pmugrf;
	struct rk3368_sdram_params *params = dev_get_platdata(dev);
	const struct rk3288_sdram_channel *info = &params->chan;
	u32 sys_reg = 0;
	const int chan = 0;

	sys_reg |= DDR3 << SYS_REG_DDRTYPE_SHIFT;
	sys_reg |= 0 << SYS_REG_NUM_CH_SHIFT;

	sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan);
	sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan);
	sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan);
	sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan);
	sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan);
	sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan);
	sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan);
	sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan);
	sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan);

	writel(sys_reg, &pmugrf->os_reg[2]);
}

static int setup_sdram(struct udevice *dev)
{
	struct dram_info *priv = dev_get_priv(dev);
	struct rk3368_sdram_params *params = dev_get_platdata(dev);

	struct rk3368_ddr_pctl *pctl = priv->pctl;
	struct rk3368_ddrphy *ddrphy = priv->phy;
	struct rk3368_cru *cru = priv->cru;
	struct rk3368_grf *grf = priv->grf;
	struct rk3368_msch *msch = priv->msch;

	int ret;

	/* The input clock (i.e. DPLL) needs to be 2x the DRAM frequency */
	ret = clk_set_rate(&priv->ddr_clk, 2 * params->ddr_freq);
	if (ret < 0) {
		debug("%s: could not set DDR clock: %d\n", __func__, ret);
		return ret;
	}

	/* Update the read-latency for the RK3368 */
	writel(0x32, &msch->readlatency);

	/* Initialise the DDR PCTL and DDR PHY */
	ddrctl_reset(cru);
	ddrphy_reset(ddrphy);
	ddrphy_config_delays(ddrphy, params->ddr_freq);
	dfi_cfg(pctl);
	/* Configure relative system information of grf_ddrc0_con0 register */
	ddr_set_ddr3_mode(grf, true);
	ddr_set_noc_spr_err_stall(grf, true);
	/* Calculate timings */
	pctl_calc_timings(params, params->ddr_freq);
	/* Initialise the device timings in protocol controller */
	pctl_cfg(pctl, params, grf);
	/* Configure AL, CL ... information of PHY registers */
	ddrphy_config(ddrphy,
		      params->pctl_timing.tcl,
		      params->pctl_timing.tal,
		      params->pctl_timing.tcwl);

	/* Initialize DRAM and configure with mode-register values */
	ret = memory_init(pctl, params);
	if (ret)
		goto error;

	move_to_config_state(pctl);
	/* Perform data-training */
	ddrphy_data_training(pctl, ddrphy);
	move_to_access_state(pctl);

	/* TODO(prt): could detect rank in training... */
#ifdef CONFIG_TARGET_EVB_PX5
	params->chan.rank = 1;
#else
	params->chan.rank = 2;
#endif
	/* TODO(prt): bus width is not auto-detected (yet)... */
	params->chan.bw = 2;  /* 32bit wide bus */
	params->chan.dbw = params->chan.dbw;  /* 32bit wide bus */

	/* DDR3 is always 8 bank */
	params->chan.bk = 3;
	/* Detect col and row number */
	ret = sdram_col_row_detect(dev);
	if (ret)
		goto error;

	/* Configure NIU DDR configuration */
	ret = msch_niu_config(msch, params);
	if (ret)
		goto error;

	/* set up OS_REG to communicate w/ next stage and OS */
	dram_all_config(dev);

	return 0;

error:
	printf("DRAM init failed!\n");
	hang();
}
#endif

static int rk3368_dmc_ofdata_to_platdata(struct udevice *dev)
{
	int ret = 0;

#if !CONFIG_IS_ENABLED(OF_PLATDATA)
	struct rk3368_sdram_params *plat = dev_get_platdata(dev);

	ret = regmap_init_mem(dev_ofnode(dev), &plat->map);
	if (ret)
		return ret;
#endif

	return ret;
}

#if CONFIG_IS_ENABLED(OF_PLATDATA)
static int conv_of_platdata(struct udevice *dev)
{
	struct rk3368_sdram_params *plat = dev_get_platdata(dev);
	struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat;

	plat->ddr_freq = of_plat->rockchip_ddr_frequency;
	plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin;
	plat->memory_schedule = of_plat->rockchip_memory_schedule;

	return 0;
}
#endif

static int rk3368_dmc_probe(struct udevice *dev)
{
#ifdef CONFIG_TPL_BUILD
	struct rk3368_sdram_params *plat = dev_get_platdata(dev);
	struct rk3368_ddr_pctl *pctl;
	struct rk3368_ddrphy *ddrphy;
	struct rk3368_cru *cru;
	struct rk3368_grf *grf;
	struct rk3368_msch *msch;
	int ret;
	struct udevice *dev_clk;
#endif
	struct dram_info *priv = dev_get_priv(dev);

#if CONFIG_IS_ENABLED(OF_PLATDATA)
	ret = conv_of_platdata(dev);
	if (ret)
		return ret;
#endif

	priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
	debug("%s: pmugrf=%p\n", __func__, priv->pmugrf);

#ifdef CONFIG_TPL_BUILD
	pctl = (struct rk3368_ddr_pctl *)plat->of_plat.reg[0];
	ddrphy = (struct rk3368_ddrphy *)plat->of_plat.reg[2];
	msch = syscon_get_first_range(ROCKCHIP_SYSCON_MSCH);
	grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);

	priv->pctl = pctl;
	priv->phy = ddrphy;
	priv->msch = msch;
	priv->grf = grf;

	ret = rockchip_get_clk(&dev_clk);
	if (ret)
		return ret;
	priv->ddr_clk.id = CLK_DDR;
	ret = clk_request(dev_clk, &priv->ddr_clk);
	if (ret)
		return ret;

	cru = rockchip_get_cru();
	priv->cru = cru;
	if (IS_ERR(priv->cru))
		return PTR_ERR(priv->cru);

	ret = setup_sdram(dev);
	if (ret)
		return ret;
#endif

	priv->info.base = 0;
	priv->info.size =
		rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]);

	/*
	* we use the 0x00000000~0xfdffffff space since 0xff000000~0xffffffff
	* is SoC register space (i.e. reserved), and 0xfe000000~0xfeffffff is
	* inaccessible for some IP controller.
	*/
	priv->info.size = min(priv->info.size, (size_t)0xfe000000);

	return 0;
}

static int rk3368_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
	struct dram_info *priv = dev_get_priv(dev);

	*info = priv->info;
	return 0;
}

static struct ram_ops rk3368_dmc_ops = {
	.get_info = rk3368_dmc_get_info,
};


static const struct udevice_id rk3368_dmc_ids[] = {
	{ .compatible = "rockchip,rk3368-dmc" },
	{ }
};

U_BOOT_DRIVER(dmc_rk3368) = {
	.name = "rockchip_rk3368_dmc",
	.id = UCLASS_RAM,
	.of_match = rk3368_dmc_ids,
	.ops = &rk3368_dmc_ops,
	.probe = rk3368_dmc_probe,
	.priv_auto_alloc_size = sizeof(struct dram_info),
	.ofdata_to_platdata = rk3368_dmc_ofdata_to_platdata,
	.probe = rk3368_dmc_probe,
	.priv_auto_alloc_size = sizeof(struct dram_info),
	.platdata_auto_alloc_size = sizeof(struct rk3368_sdram_params),
};