summaryrefslogtreecommitdiff
path: root/drivers/net/pfe_eth/pfe_hw.c
blob: 722f5c238fa1dc45f7d0c0cdb2b8ef073b198ad7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2015-2016 Freescale Semiconductor, Inc.
 * Copyright 2017 NXP
 */
#include <log.h>
#include <linux/bitops.h>
#include <net/pfe_eth/pfe_eth.h>
#include <net/pfe_eth/pfe/pfe_hw.h>

static struct pe_info pe[MAX_PE];

/*
 * Initializes the PFE library.
 * Must be called before using any of the library functions.
 */
void pfe_lib_init(void)
{
	int pfe_pe_id;

	for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) {
		pe[pfe_pe_id].dmem_base_addr =
			(u32)CLASS_DMEM_BASE_ADDR(pfe_pe_id);
		pe[pfe_pe_id].pmem_base_addr =
			(u32)CLASS_IMEM_BASE_ADDR(pfe_pe_id);
		pe[pfe_pe_id].pmem_size = (u32)CLASS_IMEM_SIZE;
		pe[pfe_pe_id].mem_access_wdata =
			(void *)CLASS_MEM_ACCESS_WDATA;
		pe[pfe_pe_id].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
		pe[pfe_pe_id].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
	}

	for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) {
		if (pfe_pe_id == TMU2_ID)
			continue;
		pe[pfe_pe_id].dmem_base_addr =
			(u32)TMU_DMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
		pe[pfe_pe_id].pmem_base_addr =
			(u32)TMU_IMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
		pe[pfe_pe_id].pmem_size = (u32)TMU_IMEM_SIZE;
		pe[pfe_pe_id].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA;
		pe[pfe_pe_id].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR;
		pe[pfe_pe_id].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA;
	}
}

/*
 * Writes a buffer to PE internal memory from the host
 * through indirect access registers.
 *
 * @param[in] id	       PE identification (CLASS0_ID, ..., TMU0_ID,
 *				..., UTIL_ID)
 * @param[in] mem_access_addr	DMEM destination address (must be 32bit
 *				aligned)
 * @param[in] src		Buffer source address
 * @param[in] len		Number of bytes to copy
 */
static void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src,
			       unsigned int len)
{
	u32 offset = 0, val, addr;
	unsigned int len32 = len >> 2;
	int i;

	addr = mem_access_addr | PE_MEM_ACCESS_WRITE |
		PE_MEM_ACCESS_BYTE_ENABLE(0, 4);

	for (i = 0; i < len32; i++, offset += 4, src += 4) {
		val = *(u32 *)src;
		writel(cpu_to_be32(val), pe[id].mem_access_wdata);
		writel(addr + offset, pe[id].mem_access_addr);
	}

	len = (len & 0x3);
	if (len) {
		val = 0;

		addr = (mem_access_addr | PE_MEM_ACCESS_WRITE |
			PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset;

		for (i = 0; i < len; i++, src++)
			val |= (*(u8 *)src) << (8 * i);

		writel(cpu_to_be32(val), pe[id].mem_access_wdata);
		writel(addr, pe[id].mem_access_addr);
	}
}

/*
 * Writes a buffer to PE internal data memory (DMEM) from the host
 * through indirect access registers.
 * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID,
 *			..., UTIL_ID)
 * @param[in] dst	DMEM destination address (must be 32bit
 *			aligned)
 * @param[in] src	Buffer source address
 * @param[in] len	Number of bytes to copy
 */
static void pe_dmem_memcpy_to32(int id, u32 dst, const void *src,
				unsigned int len)
{
	pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst | PE_MEM_ACCESS_DMEM,
			   src, len);
}

/*
 * Writes a buffer to PE internal program memory (PMEM) from the host
 * through indirect access registers.
 * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID,
 *			..., TMU3_ID)
 * @param[in] dst	PMEM destination address (must be 32bit
 *			aligned)
 * @param[in] src	Buffer source address
 * @param[in] len	Number of bytes to copy
 */
static void pe_pmem_memcpy_to32(int id, u32 dst, const void *src,
				unsigned int len)
{
	pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size
				- 1)) | PE_MEM_ACCESS_IMEM, src, len);
}

/*
 * Reads PE internal program memory (IMEM) from the host
 * through indirect access registers.
 * @param[in] id		PE identification (CLASS0_ID, ..., TMU0_ID,
 *				..., TMU3_ID)
 * @param[in] addr		PMEM read address (must be aligned on size)
 * @param[in] size		Number of bytes to read (maximum 4, must not
 *				cross 32bit boundaries)
 * @return			the data read (in PE endianness, i.e BE).
 */
u32 pe_pmem_read(int id, u32 addr, u8 size)
{
	u32 offset = addr & 0x3;
	u32 mask = 0xffffffff >> ((4 - size) << 3);
	u32 val;

	addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1))
		| PE_MEM_ACCESS_READ | PE_MEM_ACCESS_IMEM |
		PE_MEM_ACCESS_BYTE_ENABLE(offset, size);

	writel(addr, pe[id].mem_access_addr);
	val = be32_to_cpu(readl(pe[id].mem_access_rdata));

	return (val >> (offset << 3)) & mask;
}

/*
 * Writes PE internal data memory (DMEM) from the host
 * through indirect access registers.
 * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID,
 *			..., UTIL_ID)
 * @param[in] val	Value to write (in PE endianness, i.e BE)
 * @param[in] addr	DMEM write address (must be aligned on size)
 * @param[in] size	Number of bytes to write (maximum 4, must not
 *			cross 32bit boundaries)
 */
void pe_dmem_write(int id, u32 val, u32 addr, u8 size)
{
	u32 offset = addr & 0x3;

	addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE |
		PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);

	/* Indirect access interface is byte swapping data being written */
	writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata);
	writel(addr, pe[id].mem_access_addr);
}

/*
 * Reads PE internal data memory (DMEM) from the host
 * through indirect access registers.
 * @param[in] id		PE identification (CLASS0_ID, ..., TMU0_ID,
 *				..., UTIL_ID)
 * @param[in] addr		DMEM read address (must be aligned on size)
 * @param[in] size		Number of bytes to read (maximum 4, must not
 *				cross 32bit boundaries)
 * @return			the data read (in PE endianness, i.e BE).
 */
u32 pe_dmem_read(int id, u32 addr, u8 size)
{
	u32 offset = addr & 0x3;
	u32 mask = 0xffffffff >> ((4 - size) << 3);
	u32 val;

	addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_READ |
		PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);

	writel(addr, pe[id].mem_access_addr);

	/* Indirect access interface is byte swapping data being read */
	val = be32_to_cpu(readl(pe[id].mem_access_rdata));

	return (val >> (offset << 3)) & mask;
}

/*
 * This function is used to write to CLASS internal bus peripherals (ccu,
 * pe-lem) from the host
 * through indirect access registers.
 * @param[in]	val	value to write
 * @param[in]	addr	Address to write to (must be aligned on size)
 * @param[in]	size	Number of bytes to write (1, 2 or 4)
 *
 */
static void class_bus_write(u32 val, u32 addr, u8 size)
{
	u32 offset = addr & 0x3;

	writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);

	addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE |
		(size << 24);

	writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA);
	writel(addr, CLASS_BUS_ACCESS_ADDR);
}

/*
 * Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host
 * through indirect access registers.
 * @param[in] addr	Address to read from (must be aligned on size)
 * @param[in] size	Number of bytes to read (1, 2 or 4)
 * @return		the read data
 */
static u32 class_bus_read(u32 addr, u8 size)
{
	u32 offset = addr & 0x3;
	u32 mask = 0xffffffff >> ((4 - size) << 3);
	u32 val;

	writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);

	addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24);

	writel(addr, CLASS_BUS_ACCESS_ADDR);
	val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA));

	return (val >> (offset << 3)) & mask;
}

/*
 * Writes data to the cluster memory (PE_LMEM)
 * @param[in] dst	PE LMEM destination address (must be 32bit aligned)
 * @param[in] src	Buffer source address
 * @param[in] len	Number of bytes to copy
 */
static void class_pe_lmem_memcpy_to32(u32 dst, const void *src,
				      unsigned int len)
{
	u32 len32 = len >> 2;
	int i;

	for (i = 0; i < len32; i++, src += 4, dst += 4)
		class_bus_write(*(u32 *)src, dst, 4);

	if (len & 0x2) {
		class_bus_write(*(u16 *)src, dst, 2);
		src += 2;
		dst += 2;
	}

	if (len & 0x1) {
		class_bus_write(*(u8 *)src, dst, 1);
		src++;
		dst++;
	}
}

/*
 * Writes value to the cluster memory (PE_LMEM)
 * @param[in] dst	PE LMEM destination address (must be 32bit aligned)
 * @param[in] val	Value to write
 * @param[in] len	Number of bytes to write
 */
static void class_pe_lmem_memset(u32 dst, int val, unsigned int len)
{
	u32 len32 = len >> 2;
	int i;

	val = val | (val << 8) | (val << 16) | (val << 24);

	for (i = 0; i < len32; i++, dst += 4)
		class_bus_write(val, dst, 4);

	if (len & 0x2) {
		class_bus_write(val, dst, 2);
		dst += 2;
	}

	if (len & 0x1) {
		class_bus_write(val, dst, 1);
		dst++;
	}
}

/*
 * Reads data from the cluster memory (PE_LMEM)
 * @param[out] dst	pointer to the source buffer data are copied to
 * @param[in] len	length in bytes of the amount of data to read
 *			from cluster memory
 * @param[in] offset	offset in bytes in the cluster memory where data are
 *			read from
 */
void pe_lmem_read(u32 *dst, u32 len, u32 offset)
{
	u32 len32 = len >> 2;
	int i = 0;

	for (i = 0; i < len32; dst++, i++, offset += 4)
		*dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, 4);

	if (len & 0x03)
		*dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, (len & 0x03));
}

/*
 * Writes data to the cluster memory (PE_LMEM)
 * @param[in] src	pointer to the source buffer data are copied from
 * @param[in] len	length in bytes of the amount of data to write to the
 *				cluster memory
 * @param[in] offset	offset in bytes in the cluster memory where data are
 *				written to
 */
void pe_lmem_write(u32 *src, u32 len, u32 offset)
{
	u32 len32 = len >> 2;
	int i = 0;

	for (i = 0; i < len32; src++, i++, offset += 4)
		class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, 4);

	if (len & 0x03)
		class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, (len &
					0x03));
}

/*
 * Loads an elf section into pmem
 * Code needs to be at least 16bit aligned and only PROGBITS sections are
 * supported
 *
 * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID, ...,
 *					TMU3_ID)
 * @param[in] data	pointer to the elf firmware
 * @param[in] shdr	pointer to the elf section header
 */
static int pe_load_pmem_section(int id, const void *data, Elf32_Shdr *shdr)
{
	u32 offset = be32_to_cpu(shdr->sh_offset);
	u32 addr = be32_to_cpu(shdr->sh_addr);
	u32 size = be32_to_cpu(shdr->sh_size);
	u32 type = be32_to_cpu(shdr->sh_type);

	if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
		printf(
			"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
			__func__, addr, (unsigned long)data + offset);

		return -1;
	}

	if (addr & 0x1) {
		printf("%s: load address(%x) is not 16bit aligned\n",
		       __func__, addr);
		return -1;
	}

	if (size & 0x1) {
		printf("%s: load size(%x) is not 16bit aligned\n", __func__,
		       size);
		return -1;
	}

		debug("pmem pe%d @%x len %d\n", id, addr, size);
	switch (type) {
	case SHT_PROGBITS:
		pe_pmem_memcpy_to32(id, addr, data + offset, size);
		break;

	default:
		printf("%s: unsupported section type(%x)\n", __func__, type);
		return -1;
	}

	return 0;
}

/*
 * Loads an elf section into dmem
 * Data needs to be at least 32bit aligned, NOBITS sections are correctly
 * initialized to 0
 *
 * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID,
 *			..., UTIL_ID)
 * @param[in] data	pointer to the elf firmware
 * @param[in] shdr	pointer to the elf section header
 */
static int pe_load_dmem_section(int id, const void *data, Elf32_Shdr *shdr)
{
	u32 offset = be32_to_cpu(shdr->sh_offset);
	u32 addr = be32_to_cpu(shdr->sh_addr);
	u32 size = be32_to_cpu(shdr->sh_size);
	u32 type = be32_to_cpu(shdr->sh_type);
	u32 size32 = size >> 2;
	int i;

	if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
		printf(
			"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
			__func__, addr, (unsigned long)data + offset);

		return -1;
	}

	if (addr & 0x3) {
		printf("%s: load address(%x) is not 32bit aligned\n",
		       __func__, addr);
		return -1;
	}

	switch (type) {
	case SHT_PROGBITS:
		debug("dmem pe%d @%x len %d\n", id, addr, size);
		pe_dmem_memcpy_to32(id, addr, data + offset, size);
		break;

	case SHT_NOBITS:
		debug("dmem zero pe%d @%x len %d\n", id, addr, size);
		for (i = 0; i < size32; i++, addr += 4)
			pe_dmem_write(id, 0, addr, 4);

		if (size & 0x3)
			pe_dmem_write(id, 0, addr, size & 0x3);

		break;

	default:
		printf("%s: unsupported section type(%x)\n", __func__, type);
		return -1;
	}

	return 0;
}

/*
 * Loads an elf section into DDR
 * Data needs to be at least 32bit aligned, NOBITS sections are correctly
 *		initialized to 0
 *
 * @param[in] id	PE identification (CLASS0_ID, ..., TMU0_ID,
 *			..., UTIL_ID)
 * @param[in] data	pointer to the elf firmware
 * @param[in] shdr	pointer to the elf section header
 */
static int pe_load_ddr_section(int id, const void *data, Elf32_Shdr *shdr)
{
	u32 offset = be32_to_cpu(shdr->sh_offset);
	u32 addr = be32_to_cpu(shdr->sh_addr);
	u32 size = be32_to_cpu(shdr->sh_size);
	u32 type = be32_to_cpu(shdr->sh_type);
	u32 flags = be32_to_cpu(shdr->sh_flags);

	switch (type) {
	case SHT_PROGBITS:
		debug("ddr  pe%d @%x len %d\n", id, addr, size);
		if (flags & SHF_EXECINSTR) {
			if (id <= CLASS_MAX_ID) {
				/* DO the loading only once in DDR */
				if (id == CLASS0_ID) {
					debug(
						"%s: load address(%x) and elf file address(%lx) rcvd\n"
						, __func__, addr,
						(unsigned long)data + offset);
					if (((unsigned long)(data + offset)
						& 0x3) != (addr & 0x3)) {
						printf(
							"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
							__func__, addr,
							(unsigned long)data +
							offset);

						return -1;
					}

					if (addr & 0x1) {
						printf(
							"%s: load address(%x) is not 16bit aligned\n"
							, __func__, addr);
						return -1;
					}

					if (size & 0x1) {
						printf(
							"%s: load length(%x) is not 16bit aligned\n"
							, __func__, size);
						return -1;
					}

					memcpy((void *)DDR_PFE_TO_VIRT(addr),
					       data + offset, size);
				}
			} else {
				printf(
					"%s: unsupported ddr section type(%x) for PE(%d)\n"
					, __func__, type, id);
				return -1;
			}

		} else {
			memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset,
			       size);
		}

		break;

	case SHT_NOBITS:
		debug("ddr zero pe%d @%x len %d\n", id, addr, size);
		memset((void *)DDR_PFE_TO_VIRT(addr), 0, size);

		break;

	default:
		printf("%s: unsupported section type(%x)\n", __func__, type);
		return -1;
	}

	return 0;
}

/*
 * Loads an elf section into pe lmem
 * Data needs to be at least 32bit aligned, NOBITS sections are correctly
 * initialized to 0
 *
 * @param[in] id	PE identification (CLASS0_ID,..., CLASS5_ID)
 * @param[in] data	pointer to the elf firmware
 * @param[in] shdr	pointer to the elf section header
 */
static int pe_load_pe_lmem_section(int id, const void *data, Elf32_Shdr *shdr)
{
	u32 offset = be32_to_cpu(shdr->sh_offset);
	u32 addr = be32_to_cpu(shdr->sh_addr);
	u32 size = be32_to_cpu(shdr->sh_size);
	u32 type = be32_to_cpu(shdr->sh_type);

	if (id > CLASS_MAX_ID) {
		printf("%s: unsupported pe-lmem section type(%x) for PE(%d)\n",
		       __func__, type, id);
		return -1;
	}

	if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
		printf(
			"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
			__func__, addr, (unsigned long)data + offset);

		return -1;
	}

	if (addr & 0x3) {
		printf("%s: load address(%x) is not 32bit aligned\n",
		       __func__, addr);
		return -1;
	}

	debug("lmem  pe%d @%x len %d\n", id, addr, size);

	switch (type) {
	case SHT_PROGBITS:
		class_pe_lmem_memcpy_to32(addr, data + offset, size);
		break;

	case SHT_NOBITS:
		class_pe_lmem_memset(addr, 0, size);
		break;

	default:
		printf("%s: unsupported section type(%x)\n", __func__, type);
		return -1;
	}

	return 0;
}

/*
 * Loads an elf section into a PE
 * For now only supports loading a section to dmem (all PE's), pmem (class and
 * tmu PE's), DDDR (util PE code)
 * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
 * ..., UTIL_ID)
 * @param[in] data	pointer to the elf firmware
 * @param[in] shdr	pointer to the elf section header
 */
int pe_load_elf_section(int id, const void *data, Elf32_Shdr *shdr)
{
	u32 addr = be32_to_cpu(shdr->sh_addr);
	u32 size = be32_to_cpu(shdr->sh_size);

	if (IS_DMEM(addr, size))
		return pe_load_dmem_section(id, data, shdr);
	else if (IS_PMEM(addr, size))
		return pe_load_pmem_section(id, data, shdr);
	else if (IS_PFE_LMEM(addr, size))
		return 0;
	else if (IS_PHYS_DDR(addr, size))
		return pe_load_ddr_section(id, data, shdr);
	else if (IS_PE_LMEM(addr, size))
		return pe_load_pe_lmem_section(id, data, shdr);

	printf("%s: unsupported memory range(%x)\n", __func__, addr);

	return 0;
}

/**************************** BMU ***************************/
/*
 * Resets a BMU block.
 * @param[in] base	BMU block base address
 */
static inline void bmu_reset(void *base)
{
	writel(CORE_SW_RESET, base + BMU_CTRL);

	/* Wait for self clear */
	while (readl(base + BMU_CTRL) & CORE_SW_RESET)
		;
}

/*
 * Enabled a BMU block.
 * @param[in] base	BMU block base address
 */
void bmu_enable(void *base)
{
	writel(CORE_ENABLE, base + BMU_CTRL);
}

/*
 * Disables a BMU block.
 * @param[in] base	BMU block base address
 */
static inline void bmu_disable(void *base)
{
	writel(CORE_DISABLE, base + BMU_CTRL);
}

/*
 * Sets the configuration of a BMU block.
 * @param[in] base	BMU block base address
 * @param[in] cfg	BMU configuration
 */
static inline void bmu_set_config(void *base, struct bmu_cfg *cfg)
{
	writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR);
	writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG);
	writel(cfg->size & 0xffff, base + BMU_BUF_SIZE);

	/* Interrupts are never used */
	writel(0x0, base + BMU_INT_ENABLE);
}

/*
 * Initializes a BMU block.
 * @param[in] base	BMU block base address
 * @param[in] cfg	BMU configuration
 */
void bmu_init(void *base, struct bmu_cfg *cfg)
{
	bmu_disable(base);

	bmu_set_config(base, cfg);

	bmu_reset(base);
}

/**************************** GPI ***************************/
/*
 * Resets a GPI block.
 * @param[in] base	GPI base address
 */
static inline void gpi_reset(void *base)
{
	writel(CORE_SW_RESET, base + GPI_CTRL);
}

/*
 * Enables a GPI block.
 * @param[in] base	GPI base address
 */
void gpi_enable(void *base)
{
	writel(CORE_ENABLE, base + GPI_CTRL);
}

/*
 * Disables a GPI block.
 * @param[in] base	GPI base address
 */
void gpi_disable(void *base)
{
	writel(CORE_DISABLE, base + GPI_CTRL);
}

/*
 * Sets the configuration of a GPI block.
 * @param[in] base	GPI base address
 * @param[in] cfg	GPI configuration
 */
static inline void gpi_set_config(void *base, struct gpi_cfg *cfg)
{
	writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base
	       + GPI_LMEM_ALLOC_ADDR);
	writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base
	       + GPI_LMEM_FREE_ADDR);
	writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base
	       + GPI_DDR_ALLOC_ADDR);
	writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base
	       + GPI_DDR_FREE_ADDR);
	writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR);
	writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET);
	writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET);
	writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET);
	writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET);
	writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE);
	writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE);

	writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) |
		GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG);
	writel(cfg->tmlf_txthres, base + GPI_TMLF_TX);
	writel(cfg->aseq_len, base + GPI_DTX_ASEQ);

	/*Make GPI AXI transactions non-bufferable */
	writel(0x1, base + GPI_AXI_CTRL);
}

/*
 * Initializes a GPI block.
 * @param[in] base	GPI base address
 * @param[in] cfg	GPI configuration
 */
void gpi_init(void *base, struct gpi_cfg *cfg)
{
	gpi_reset(base);

	gpi_disable(base);

	gpi_set_config(base, cfg);
}

/**************************** CLASSIFIER ***************************/
/*
 * Resets CLASSIFIER block.
 */
static inline void class_reset(void)
{
	writel(CORE_SW_RESET, CLASS_TX_CTRL);
}

/*
 * Enables all CLASS-PE's cores.
 */
void class_enable(void)
{
	writel(CORE_ENABLE, CLASS_TX_CTRL);
}

/*
 * Disables all CLASS-PE's cores.
 */
void class_disable(void)
{
	writel(CORE_DISABLE, CLASS_TX_CTRL);
}

/*
 * Sets the configuration of the CLASSIFIER block.
 * @param[in] cfg	CLASSIFIER configuration
 */
static inline void class_set_config(struct class_cfg *cfg)
{
	if (PLL_CLK_EN == 0) {
		/* Clock ratio: for 1:1 the value is 0 */
		writel(0x0, CLASS_PE_SYS_CLK_RATIO);
	} else {
		/* Clock ratio: for 1:2 the value is 1 */
		writel(0x1, CLASS_PE_SYS_CLK_RATIO);
	}
	writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE);
	writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE);
	writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) |
		CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits),
		CLASS_ROUTE_HASH_ENTRY_SIZE);
	writel(HASH_CRC_PORT_IP | QB2BUS_LE, CLASS_ROUTE_MULTI);

	writel(cfg->route_table_baseaddr, CLASS_ROUTE_TABLE_BASE);
	memset((void *)DDR_PFE_TO_VIRT(cfg->route_table_baseaddr), 0,
	       ROUTE_TABLE_SIZE);

	writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0);
	writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1);
	writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0);
	writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1);
	writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR);

	writel(23, CLASS_AFULL_THRES);
	writel(23, CLASS_TSQ_FIFO_THRES);

	writel(24, CLASS_MAX_BUF_CNT);
	writel(24, CLASS_TSQ_MAX_CNT);

	/*Make Class AXI transactions non-bufferable */
	writel(0x1, CLASS_AXI_CTRL);

	/*Make Util AXI transactions non-bufferable */
	/*Util is disabled in U-boot, do it from here */
	writel(0x1, UTIL_AXI_CTRL);
}

/*
 * Initializes CLASSIFIER block.
 * @param[in] cfg	CLASSIFIER configuration
 */
void class_init(struct class_cfg *cfg)
{
	class_reset();

	class_disable();

	class_set_config(cfg);
}

/**************************** TMU ***************************/
/*
 * Enables TMU-PE cores.
 * @param[in] pe_mask	TMU PE mask
 */
void tmu_enable(u32 pe_mask)
{
	writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL);
}

/*
 * Disables TMU cores.
 * @param[in] pe_mask	TMU PE mask
 */
void tmu_disable(u32 pe_mask)
{
	writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL);
}

/*
 * Initializes TMU block.
 * @param[in] cfg	TMU configuration
 */
void tmu_init(struct tmu_cfg *cfg)
{
	int q, phyno;

	/* keep in soft reset */
	writel(SW_RESET, TMU_CTRL);

	/*Make Class AXI transactions non-bufferable */
	writel(0x1, TMU_AXI_CTRL);

	/* enable EMAC PHY ports */
	writel(0x3, TMU_SYS_GENERIC_CONTROL);

	writel(750, TMU_INQ_WATERMARK);

	writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR + GPI_INQ_PKTPTR),
	       TMU_PHY0_INQ_ADDR);
	writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR + GPI_INQ_PKTPTR),
	       TMU_PHY1_INQ_ADDR);

	writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR + GPI_INQ_PKTPTR),
	       TMU_PHY3_INQ_ADDR);
	writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR);
	writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR);
	writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL),
	       TMU_BMU_INQ_ADDR);

	/* enabling all 10 schedulers [9:0] of each TDQ  */
	writel(0x3FF, TMU_TDQ0_SCH_CTRL);
	writel(0x3FF, TMU_TDQ1_SCH_CTRL);
	writel(0x3FF, TMU_TDQ3_SCH_CTRL);

	if (PLL_CLK_EN == 0) {
		/* Clock ratio: for 1:1 the value is 0 */
		writel(0x0, TMU_PE_SYS_CLK_RATIO);
	} else {
		/* Clock ratio: for 1:2 the value is 1 */
		writel(0x1, TMU_PE_SYS_CLK_RATIO);
	}

	/* Extra packet pointers will be stored from this address onwards */
	debug("TMU_LLM_BASE_ADDR %x\n", cfg->llm_base_addr);
	writel(cfg->llm_base_addr, TMU_LLM_BASE_ADDR);

	debug("TMU_LLM_QUE_LEN %x\n", cfg->llm_queue_len);
	writel(cfg->llm_queue_len,	TMU_LLM_QUE_LEN);

	writel(5, TMU_TDQ_IIFG_CFG);
	writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE);

	writel(0x0, TMU_CTRL);

	/* MEM init */
	writel(MEM_INIT, TMU_CTRL);

	while (!(readl(TMU_CTRL) & MEM_INIT_DONE))
		;

	/* LLM init */
	writel(LLM_INIT, TMU_CTRL);

	while (!(readl(TMU_CTRL) & LLM_INIT_DONE))
		;

	/* set up each queue for tail drop */
	for (phyno = 0; phyno < 4; phyno++) {
		if (phyno == 2)
			continue;
		for (q = 0; q < 16; q++) {
			u32 qmax;

			writel((phyno << 8) | q, TMU_TEQ_CTRL);
			writel(BIT(22), TMU_TEQ_QCFG);

			if (phyno == 3)
				qmax = DEFAULT_TMU3_QDEPTH;
			else
				qmax = (q == 0) ? DEFAULT_Q0_QDEPTH :
					DEFAULT_MAX_QDEPTH;

			writel(qmax << 18, TMU_TEQ_HW_PROB_CFG2);
			writel(qmax >> 14, TMU_TEQ_HW_PROB_CFG3);
		}
	}
	writel(0x05, TMU_TEQ_DISABLE_DROPCHK);
	writel(0, TMU_CTRL);
}

/**************************** HIF ***************************/
/*
 * Enable hif tx DMA and interrupt
 */
void hif_tx_enable(void)
{
	writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL);
}

/*
 * Disable hif tx DMA and interrupt
 */
void hif_tx_disable(void)
{
	u32 hif_int;

	writel(0, HIF_TX_CTRL);

	hif_int = readl(HIF_INT_ENABLE);
	hif_int &= HIF_TXPKT_INT_EN;
	writel(hif_int, HIF_INT_ENABLE);
}

/*
 * Enable hif rx DMA and interrupt
 */
void hif_rx_enable(void)
{
	writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL);
}

/*
 * Disable hif rx DMA and interrupt
 */
void hif_rx_disable(void)
{
	u32 hif_int;

	writel(0, HIF_RX_CTRL);

	hif_int = readl(HIF_INT_ENABLE);
	hif_int &= HIF_RXPKT_INT_EN;
	writel(hif_int, HIF_INT_ENABLE);
}

/*
 * Initializes HIF copy block.
 */
void hif_init(void)
{
	/* Initialize HIF registers */
	writel(HIF_RX_POLL_CTRL_CYCLE << 16 | HIF_TX_POLL_CTRL_CYCLE,
	       HIF_POLL_CTRL);
	/* Make HIF AXI transactions non-bufferable */
	writel(0x1, HIF_AXI_CTRL);
}