1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
|
/*
* PTP 1588 clock support - User space test program
*
* Copyright (C) 2010 OMICRON electronics GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define _GNU_SOURCE
#define __SANE_USERSPACE_TYPES__ /* For PPC64, to get LL64 types */
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/timex.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <linux/ptp_clock.h>
#define DEVICE "/dev/ptp0"
#ifndef ADJ_SETOFFSET
#define ADJ_SETOFFSET 0x0100
#endif
#ifndef CLOCK_INVALID
#define CLOCK_INVALID -1
#endif
/* clock_adjtime is not available in GLIBC < 2.14 */
#if !__GLIBC_PREREQ(2, 14)
#include <sys/syscall.h>
static int clock_adjtime(clockid_t id, struct timex *tx)
{
return syscall(__NR_clock_adjtime, id, tx);
}
#endif
static clockid_t get_clockid(int fd)
{
#define CLOCKFD 3
return (((unsigned int) ~fd) << 3) | CLOCKFD;
}
static long ppb_to_scaled_ppm(int ppb)
{
/*
* The 'freq' field in the 'struct timex' is in parts per
* million, but with a 16 bit binary fractional field.
* Instead of calculating either one of
*
* scaled_ppm = (ppb / 1000) << 16 [1]
* scaled_ppm = (ppb << 16) / 1000 [2]
*
* we simply use double precision math, in order to avoid the
* truncation in [1] and the possible overflow in [2].
*/
return (long) (ppb * 65.536);
}
static int64_t pctns(struct ptp_clock_time *t)
{
return t->sec * 1000000000LL + t->nsec;
}
static void usage(char *progname)
{
fprintf(stderr,
"usage: %s [options]\n"
" -c query the ptp clock's capabilities\n"
" -d name device to open\n"
" -e val read 'val' external time stamp events\n"
" -f val adjust the ptp clock frequency by 'val' ppb\n"
" -g get the ptp clock time\n"
" -h prints this message\n"
" -i val index for event/trigger\n"
" -k val measure the time offset between system and phc clock\n"
" for 'val' times (Maximum 25)\n"
" -l list the current pin configuration\n"
" -L pin,val configure pin index 'pin' with function 'val'\n"
" the channel index is taken from the '-i' option\n"
" 'val' specifies the auxiliary function:\n"
" 0 - none\n"
" 1 - external time stamp\n"
" 2 - periodic output\n"
" -p val enable output with a period of 'val' nanoseconds\n"
" -P val enable or disable (val=1|0) the system clock PPS\n"
" -s set the ptp clock time from the system time\n"
" -S set the system time from the ptp clock time\n"
" -t val shift the ptp clock time by 'val' seconds\n"
" -T val set the ptp clock time to 'val' seconds\n",
progname);
}
int main(int argc, char *argv[])
{
struct ptp_clock_caps caps;
struct ptp_extts_event event;
struct ptp_extts_request extts_request;
struct ptp_perout_request perout_request;
struct ptp_pin_desc desc;
struct timespec ts;
struct timex tx;
struct ptp_clock_time *pct;
struct ptp_sys_offset *sysoff;
char *progname;
unsigned int i;
int c, cnt, fd;
char *device = DEVICE;
clockid_t clkid;
int adjfreq = 0x7fffffff;
int adjtime = 0;
int capabilities = 0;
int extts = 0;
int gettime = 0;
int index = 0;
int list_pins = 0;
int pct_offset = 0;
int n_samples = 0;
int perout = -1;
int pin_index = -1, pin_func;
int pps = -1;
int seconds = 0;
int settime = 0;
int64_t t1, t2, tp;
int64_t interval, offset;
progname = strrchr(argv[0], '/');
progname = progname ? 1+progname : argv[0];
while (EOF != (c = getopt(argc, argv, "cd:e:f:ghi:k:lL:p:P:sSt:T:v"))) {
switch (c) {
case 'c':
capabilities = 1;
break;
case 'd':
device = optarg;
break;
case 'e':
extts = atoi(optarg);
break;
case 'f':
adjfreq = atoi(optarg);
break;
case 'g':
gettime = 1;
break;
case 'i':
index = atoi(optarg);
break;
case 'k':
pct_offset = 1;
n_samples = atoi(optarg);
break;
case 'l':
list_pins = 1;
break;
case 'L':
cnt = sscanf(optarg, "%d,%d", &pin_index, &pin_func);
if (cnt != 2) {
usage(progname);
return -1;
}
break;
case 'p':
perout = atoi(optarg);
break;
case 'P':
pps = atoi(optarg);
break;
case 's':
settime = 1;
break;
case 'S':
settime = 2;
break;
case 't':
adjtime = atoi(optarg);
break;
case 'T':
settime = 3;
seconds = atoi(optarg);
break;
case 'h':
usage(progname);
return 0;
case '?':
default:
usage(progname);
return -1;
}
}
fd = open(device, O_RDWR);
if (fd < 0) {
fprintf(stderr, "opening %s: %s\n", device, strerror(errno));
return -1;
}
clkid = get_clockid(fd);
if (CLOCK_INVALID == clkid) {
fprintf(stderr, "failed to read clock id\n");
return -1;
}
if (capabilities) {
if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
perror("PTP_CLOCK_GETCAPS");
} else {
printf("capabilities:\n"
" %d maximum frequency adjustment (ppb)\n"
" %d programmable alarms\n"
" %d external time stamp channels\n"
" %d programmable periodic signals\n"
" %d pulse per second\n"
" %d programmable pins\n"
" %d cross timestamping\n",
caps.max_adj,
caps.n_alarm,
caps.n_ext_ts,
caps.n_per_out,
caps.pps,
caps.n_pins,
caps.cross_timestamping);
}
}
if (0x7fffffff != adjfreq) {
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_FREQUENCY;
tx.freq = ppb_to_scaled_ppm(adjfreq);
if (clock_adjtime(clkid, &tx)) {
perror("clock_adjtime");
} else {
puts("frequency adjustment okay");
}
}
if (adjtime) {
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_SETOFFSET;
tx.time.tv_sec = adjtime;
tx.time.tv_usec = 0;
if (clock_adjtime(clkid, &tx) < 0) {
perror("clock_adjtime");
} else {
puts("time shift okay");
}
}
if (gettime) {
if (clock_gettime(clkid, &ts)) {
perror("clock_gettime");
} else {
printf("clock time: %ld.%09ld or %s",
ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec));
}
}
if (settime == 1) {
clock_gettime(CLOCK_REALTIME, &ts);
if (clock_settime(clkid, &ts)) {
perror("clock_settime");
} else {
puts("set time okay");
}
}
if (settime == 2) {
clock_gettime(clkid, &ts);
if (clock_settime(CLOCK_REALTIME, &ts)) {
perror("clock_settime");
} else {
puts("set time okay");
}
}
if (settime == 3) {
ts.tv_sec = seconds;
ts.tv_nsec = 0;
if (clock_settime(clkid, &ts)) {
perror("clock_settime");
} else {
puts("set time okay");
}
}
if (extts) {
memset(&extts_request, 0, sizeof(extts_request));
extts_request.index = index;
extts_request.flags = PTP_ENABLE_FEATURE;
if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
perror("PTP_EXTTS_REQUEST");
extts = 0;
} else {
puts("external time stamp request okay");
}
for (; extts; extts--) {
cnt = read(fd, &event, sizeof(event));
if (cnt != sizeof(event)) {
perror("read");
break;
}
printf("event index %u at %lld.%09u\n", event.index,
event.t.sec, event.t.nsec);
fflush(stdout);
}
/* Disable the feature again. */
extts_request.flags = 0;
if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
perror("PTP_EXTTS_REQUEST");
}
}
if (list_pins) {
int n_pins = 0;
if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
perror("PTP_CLOCK_GETCAPS");
} else {
n_pins = caps.n_pins;
}
for (i = 0; i < n_pins; i++) {
desc.index = i;
if (ioctl(fd, PTP_PIN_GETFUNC, &desc)) {
perror("PTP_PIN_GETFUNC");
break;
}
printf("name %s index %u func %u chan %u\n",
desc.name, desc.index, desc.func, desc.chan);
}
}
if (perout >= 0) {
if (clock_gettime(clkid, &ts)) {
perror("clock_gettime");
return -1;
}
memset(&perout_request, 0, sizeof(perout_request));
perout_request.index = index;
perout_request.start.sec = ts.tv_sec + 2;
perout_request.start.nsec = 0;
perout_request.period.sec = 0;
perout_request.period.nsec = perout;
if (ioctl(fd, PTP_PEROUT_REQUEST, &perout_request)) {
perror("PTP_PEROUT_REQUEST");
} else {
puts("periodic output request okay");
}
}
if (pin_index >= 0) {
memset(&desc, 0, sizeof(desc));
desc.index = pin_index;
desc.func = pin_func;
desc.chan = index;
if (ioctl(fd, PTP_PIN_SETFUNC, &desc)) {
perror("PTP_PIN_SETFUNC");
} else {
puts("set pin function okay");
}
}
if (pps != -1) {
int enable = pps ? 1 : 0;
if (ioctl(fd, PTP_ENABLE_PPS, enable)) {
perror("PTP_ENABLE_PPS");
} else {
puts("pps for system time request okay");
}
}
if (pct_offset) {
if (n_samples <= 0 || n_samples > 25) {
puts("n_samples should be between 1 and 25");
usage(progname);
return -1;
}
sysoff = calloc(1, sizeof(*sysoff));
if (!sysoff) {
perror("calloc");
return -1;
}
sysoff->n_samples = n_samples;
if (ioctl(fd, PTP_SYS_OFFSET, sysoff))
perror("PTP_SYS_OFFSET");
else
puts("system and phc clock time offset request okay");
pct = &sysoff->ts[0];
for (i = 0; i < sysoff->n_samples; i++) {
t1 = pctns(pct+2*i);
tp = pctns(pct+2*i+1);
t2 = pctns(pct+2*i+2);
interval = t2 - t1;
offset = (t2 + t1) / 2 - tp;
printf("system time: %lld.%u\n",
(pct+2*i)->sec, (pct+2*i)->nsec);
printf("phc time: %lld.%u\n",
(pct+2*i+1)->sec, (pct+2*i+1)->nsec);
printf("system time: %lld.%u\n",
(pct+2*i+2)->sec, (pct+2*i+2)->nsec);
printf("system/phc clock time offset is %" PRId64 " ns\n"
"system clock time delay is %" PRId64 " ns\n",
offset, interval);
}
free(sysoff);
}
close(fd);
return 0;
}
|