1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
// SPDX-License-Identifier: GPL-2.0
#define _GNU_SOURCE
#include <stdio.h>
#include <stdbool.h>
#include <linux/kernel.h>
#include <linux/magic.h>
#include <linux/mman.h>
#include <sys/mman.h>
#include <sys/shm.h>
#include <sys/syscall.h>
#include <sys/vfs.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include "../kselftest.h"
#define NR_TESTS 9
static const char * const dev_files[] = {
"/dev/zero", "/dev/null", "/dev/urandom",
"/proc/version", "/proc"
};
void print_cachestat(struct cachestat *cs)
{
ksft_print_msg(
"Using cachestat: Cached: %llu, Dirty: %llu, Writeback: %llu, Evicted: %llu, Recently Evicted: %llu\n",
cs->nr_cache, cs->nr_dirty, cs->nr_writeback,
cs->nr_evicted, cs->nr_recently_evicted);
}
bool write_exactly(int fd, size_t filesize)
{
int random_fd = open("/dev/urandom", O_RDONLY);
char *cursor, *data;
int remained;
bool ret;
if (random_fd < 0) {
ksft_print_msg("Unable to access urandom.\n");
ret = false;
goto out;
}
data = malloc(filesize);
if (!data) {
ksft_print_msg("Unable to allocate data.\n");
ret = false;
goto close_random_fd;
}
remained = filesize;
cursor = data;
while (remained) {
ssize_t read_len = read(random_fd, cursor, remained);
if (read_len <= 0) {
ksft_print_msg("Unable to read from urandom.\n");
ret = false;
goto out_free_data;
}
remained -= read_len;
cursor += read_len;
}
/* write random data to fd */
remained = filesize;
cursor = data;
while (remained) {
ssize_t write_len = write(fd, cursor, remained);
if (write_len <= 0) {
ksft_print_msg("Unable write random data to file.\n");
ret = false;
goto out_free_data;
}
remained -= write_len;
cursor += write_len;
}
ret = true;
out_free_data:
free(data);
close_random_fd:
close(random_fd);
out:
return ret;
}
/*
* fsync() is implemented via noop_fsync() on tmpfs. This makes the fsync()
* test fail below, so we need to check for test file living on a tmpfs.
*/
static bool is_on_tmpfs(int fd)
{
struct statfs statfs_buf;
if (fstatfs(fd, &statfs_buf))
return false;
return statfs_buf.f_type == TMPFS_MAGIC;
}
/*
* Open/create the file at filename, (optionally) write random data to it
* (exactly num_pages), then test the cachestat syscall on this file.
*
* If test_fsync == true, fsync the file, then check the number of dirty
* pages.
*/
static int test_cachestat(const char *filename, bool write_random, bool create,
bool test_fsync, unsigned long num_pages,
int open_flags, mode_t open_mode)
{
size_t PS = sysconf(_SC_PAGESIZE);
int filesize = num_pages * PS;
int ret = KSFT_PASS;
long syscall_ret;
struct cachestat cs;
struct cachestat_range cs_range = { 0, filesize };
int fd = open(filename, open_flags, open_mode);
if (fd == -1) {
ksft_print_msg("Unable to create/open file.\n");
ret = KSFT_FAIL;
goto out;
} else {
ksft_print_msg("Create/open %s\n", filename);
}
if (write_random) {
if (!write_exactly(fd, filesize)) {
ksft_print_msg("Unable to access urandom.\n");
ret = KSFT_FAIL;
goto out1;
}
}
syscall_ret = syscall(__NR_cachestat, fd, &cs_range, &cs, 0);
ksft_print_msg("Cachestat call returned %ld\n", syscall_ret);
if (syscall_ret) {
ksft_print_msg("Cachestat returned non-zero.\n");
ret = KSFT_FAIL;
goto out1;
} else {
print_cachestat(&cs);
if (write_random) {
if (cs.nr_cache + cs.nr_evicted != num_pages) {
ksft_print_msg(
"Total number of cached and evicted pages is off.\n");
ret = KSFT_FAIL;
}
}
}
if (test_fsync) {
if (is_on_tmpfs(fd)) {
ret = KSFT_SKIP;
} else if (fsync(fd)) {
ksft_print_msg("fsync fails.\n");
ret = KSFT_FAIL;
} else {
syscall_ret = syscall(__NR_cachestat, fd, &cs_range, &cs, 0);
ksft_print_msg("Cachestat call (after fsync) returned %ld\n",
syscall_ret);
if (!syscall_ret) {
print_cachestat(&cs);
if (cs.nr_dirty) {
ret = KSFT_FAIL;
ksft_print_msg(
"Number of dirty should be zero after fsync.\n");
}
} else {
ksft_print_msg("Cachestat (after fsync) returned non-zero.\n");
ret = KSFT_FAIL;
goto out1;
}
}
}
out1:
close(fd);
if (create)
remove(filename);
out:
return ret;
}
bool test_cachestat_shmem(void)
{
size_t PS = sysconf(_SC_PAGESIZE);
size_t filesize = PS * 512 * 2; /* 2 2MB huge pages */
int syscall_ret;
size_t compute_len = PS * 512;
struct cachestat_range cs_range = { PS, compute_len };
char *filename = "tmpshmcstat";
struct cachestat cs;
bool ret = true;
unsigned long num_pages = compute_len / PS;
int fd = shm_open(filename, O_CREAT | O_RDWR, 0600);
if (fd < 0) {
ksft_print_msg("Unable to create shmem file.\n");
ret = false;
goto out;
}
if (ftruncate(fd, filesize)) {
ksft_print_msg("Unable to truncate shmem file.\n");
ret = false;
goto close_fd;
}
if (!write_exactly(fd, filesize)) {
ksft_print_msg("Unable to write to shmem file.\n");
ret = false;
goto close_fd;
}
syscall_ret = syscall(__NR_cachestat, fd, &cs_range, &cs, 0);
if (syscall_ret) {
ksft_print_msg("Cachestat returned non-zero.\n");
ret = false;
goto close_fd;
} else {
print_cachestat(&cs);
if (cs.nr_cache + cs.nr_evicted != num_pages) {
ksft_print_msg(
"Total number of cached and evicted pages is off.\n");
ret = false;
}
}
close_fd:
shm_unlink(filename);
out:
return ret;
}
int main(void)
{
int ret;
ksft_print_header();
ret = syscall(__NR_cachestat, -1, NULL, NULL, 0);
if (ret == -1 && errno == ENOSYS)
ksft_exit_skip("cachestat syscall not available\n");
ksft_set_plan(NR_TESTS);
if (ret == -1 && errno == EBADF) {
ksft_test_result_pass("bad file descriptor recognized\n");
ret = 0;
} else {
ksft_test_result_fail("bad file descriptor ignored\n");
ret = 1;
}
for (int i = 0; i < 5; i++) {
const char *dev_filename = dev_files[i];
if (test_cachestat(dev_filename, false, false, false,
4, O_RDONLY, 0400) == KSFT_PASS)
ksft_test_result_pass("cachestat works with %s\n", dev_filename);
else {
ksft_test_result_fail("cachestat fails with %s\n", dev_filename);
ret = 1;
}
}
if (test_cachestat("tmpfilecachestat", true, true,
false, 4, O_CREAT | O_RDWR, 0600) == KSFT_PASS)
ksft_test_result_pass("cachestat works with a normal file\n");
else {
ksft_test_result_fail("cachestat fails with normal file\n");
ret = 1;
}
switch (test_cachestat("tmpfilecachestat", true, true,
true, 4, O_CREAT | O_RDWR, 0600)) {
case KSFT_FAIL:
ksft_test_result_fail("cachestat fsync fails with normal file\n");
ret = KSFT_FAIL;
break;
case KSFT_PASS:
ksft_test_result_pass("cachestat fsync works with a normal file\n");
break;
case KSFT_SKIP:
ksft_test_result_skip("tmpfilecachestat is on tmpfs\n");
break;
}
if (test_cachestat_shmem())
ksft_test_result_pass("cachestat works with a shmem file\n");
else {
ksft_test_result_fail("cachestat fails with a shmem file\n");
ret = 1;
}
return ret;
}
|