summaryrefslogtreecommitdiff
path: root/tools/lib/rbtree.c
blob: 2548ff8c4d9c1c75e1ad59baa346d9f5cf205b50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
// SPDX-License-Identifier: GPL-2.0-or-later
/*
  Red Black Trees
  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  (C) 2002  David Woodhouse <dwmw2@infradead.org>
  (C) 2012  Michel Lespinasse <walken@google.com>


  linux/lib/rbtree.c
*/

#include <linux/rbtree_augmented.h>
#include <linux/export.h>

/*
 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 *
 *  1) A node is either red or black
 *  2) The root is black
 *  3) All leaves (NULL) are black
 *  4) Both children of every red node are black
 *  5) Every simple path from root to leaves contains the same number
 *     of black nodes.
 *
 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 *  consecutive red nodes in a path and every red node is therefore followed by
 *  a black. So if B is the number of black nodes on every simple path (as per
 *  5), then the longest possible path due to 4 is 2B.
 *
 *  We shall indicate color with case, where black nodes are uppercase and red
 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 *  parentheses and have some accompanying text comment.
 */

/*
 * Notes on lockless lookups:
 *
 * All stores to the tree structure (rb_left and rb_right) must be done using
 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
 * tree structure as seen in program order.
 *
 * These two requirements will allow lockless iteration of the tree -- not
 * correct iteration mind you, tree rotations are not atomic so a lookup might
 * miss entire subtrees.
 *
 * But they do guarantee that any such traversal will only see valid elements
 * and that it will indeed complete -- does not get stuck in a loop.
 *
 * It also guarantees that if the lookup returns an element it is the 'correct'
 * one. But not returning an element does _NOT_ mean it's not present.
 *
 * NOTE:
 *
 * Stores to __rb_parent_color are not important for simple lookups so those
 * are left undone as of now. Nor did I check for loops involving parent
 * pointers.
 */

static inline void rb_set_black(struct rb_node *rb)
{
	rb->__rb_parent_color |= RB_BLACK;
}

static inline struct rb_node *rb_red_parent(struct rb_node *red)
{
	return (struct rb_node *)red->__rb_parent_color;
}

/*
 * Helper function for rotations:
 * - old's parent and color get assigned to new
 * - old gets assigned new as a parent and 'color' as a color.
 */
static inline void
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
			struct rb_root *root, int color)
{
	struct rb_node *parent = rb_parent(old);
	new->__rb_parent_color = old->__rb_parent_color;
	rb_set_parent_color(old, new, color);
	__rb_change_child(old, new, parent, root);
}

static __always_inline void
__rb_insert(struct rb_node *node, struct rb_root *root,
	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;

	while (true) {
		/*
		 * Loop invariant: node is red.
		 */
		if (unlikely(!parent)) {
			/*
			 * The inserted node is root. Either this is the
			 * first node, or we recursed at Case 1 below and
			 * are no longer violating 4).
			 */
			rb_set_parent_color(node, NULL, RB_BLACK);
			break;
		}

		/*
		 * If there is a black parent, we are done.
		 * Otherwise, take some corrective action as,
		 * per 4), we don't want a red root or two
		 * consecutive red nodes.
		 */
		if(rb_is_black(parent))
			break;

		gparent = rb_red_parent(parent);

		tmp = gparent->rb_right;
		if (parent != tmp) {	/* parent == gparent->rb_left */
			if (tmp && rb_is_red(tmp)) {
				/*
				 * Case 1 - node's uncle is red (color flips).
				 *
				 *       G            g
				 *      / \          / \
				 *     p   u  -->   P   U
				 *    /            /
				 *   n            n
				 *
				 * However, since g's parent might be red, and
				 * 4) does not allow this, we need to recurse
				 * at g.
				 */
				rb_set_parent_color(tmp, gparent, RB_BLACK);
				rb_set_parent_color(parent, gparent, RB_BLACK);
				node = gparent;
				parent = rb_parent(node);
				rb_set_parent_color(node, parent, RB_RED);
				continue;
			}

			tmp = parent->rb_right;
			if (node == tmp) {
				/*
				 * Case 2 - node's uncle is black and node is
				 * the parent's right child (left rotate at parent).
				 *
				 *      G             G
				 *     / \           / \
				 *    p   U  -->    n   U
				 *     \           /
				 *      n         p
				 *
				 * This still leaves us in violation of 4), the
				 * continuation into Case 3 will fix that.
				 */
				tmp = node->rb_left;
				WRITE_ONCE(parent->rb_right, tmp);
				WRITE_ONCE(node->rb_left, parent);
				if (tmp)
					rb_set_parent_color(tmp, parent,
							    RB_BLACK);
				rb_set_parent_color(parent, node, RB_RED);
				augment_rotate(parent, node);
				parent = node;
				tmp = node->rb_right;
			}

			/*
			 * Case 3 - node's uncle is black and node is
			 * the parent's left child (right rotate at gparent).
			 *
			 *        G           P
			 *       / \         / \
			 *      p   U  -->  n   g
			 *     /                 \
			 *    n                   U
			 */
			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
			WRITE_ONCE(parent->rb_right, gparent);
			if (tmp)
				rb_set_parent_color(tmp, gparent, RB_BLACK);
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
			augment_rotate(gparent, parent);
			break;
		} else {
			tmp = gparent->rb_left;
			if (tmp && rb_is_red(tmp)) {
				/* Case 1 - color flips */
				rb_set_parent_color(tmp, gparent, RB_BLACK);
				rb_set_parent_color(parent, gparent, RB_BLACK);
				node = gparent;
				parent = rb_parent(node);
				rb_set_parent_color(node, parent, RB_RED);
				continue;
			}

			tmp = parent->rb_left;
			if (node == tmp) {
				/* Case 2 - right rotate at parent */
				tmp = node->rb_right;
				WRITE_ONCE(parent->rb_left, tmp);
				WRITE_ONCE(node->rb_right, parent);
				if (tmp)
					rb_set_parent_color(tmp, parent,
							    RB_BLACK);
				rb_set_parent_color(parent, node, RB_RED);
				augment_rotate(parent, node);
				parent = node;
				tmp = node->rb_left;
			}

			/* Case 3 - left rotate at gparent */
			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
			WRITE_ONCE(parent->rb_left, gparent);
			if (tmp)
				rb_set_parent_color(tmp, gparent, RB_BLACK);
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
			augment_rotate(gparent, parent);
			break;
		}
	}
}

/*
 * Inline version for rb_erase() use - we want to be able to inline
 * and eliminate the dummy_rotate callback there
 */
static __always_inline void
____rb_erase_color(struct rb_node *parent, struct rb_root *root,
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;

	while (true) {
		/*
		 * Loop invariants:
		 * - node is black (or NULL on first iteration)
		 * - node is not the root (parent is not NULL)
		 * - All leaf paths going through parent and node have a
		 *   black node count that is 1 lower than other leaf paths.
		 */
		sibling = parent->rb_right;
		if (node != sibling) {	/* node == parent->rb_left */
			if (rb_is_red(sibling)) {
				/*
				 * Case 1 - left rotate at parent
				 *
				 *     P               S
				 *    / \             / \
				 *   N   s    -->    p   Sr
				 *      / \         / \
				 *     Sl  Sr      N   Sl
				 */
				tmp1 = sibling->rb_left;
				WRITE_ONCE(parent->rb_right, tmp1);
				WRITE_ONCE(sibling->rb_left, parent);
				rb_set_parent_color(tmp1, parent, RB_BLACK);
				__rb_rotate_set_parents(parent, sibling, root,
							RB_RED);
				augment_rotate(parent, sibling);
				sibling = tmp1;
			}
			tmp1 = sibling->rb_right;
			if (!tmp1 || rb_is_black(tmp1)) {
				tmp2 = sibling->rb_left;
				if (!tmp2 || rb_is_black(tmp2)) {
					/*
					 * Case 2 - sibling color flip
					 * (p could be either color here)
					 *
					 *    (p)           (p)
					 *    / \           / \
					 *   N   S    -->  N   s
					 *      / \           / \
					 *     Sl  Sr        Sl  Sr
					 *
					 * This leaves us violating 5) which
					 * can be fixed by flipping p to black
					 * if it was red, or by recursing at p.
					 * p is red when coming from Case 1.
					 */
					rb_set_parent_color(sibling, parent,
							    RB_RED);
					if (rb_is_red(parent))
						rb_set_black(parent);
					else {
						node = parent;
						parent = rb_parent(node);
						if (parent)
							continue;
					}
					break;
				}
				/*
				 * Case 3 - right rotate at sibling
				 * (p could be either color here)
				 *
				 *   (p)           (p)
				 *   / \           / \
				 *  N   S    -->  N   sl
				 *     / \             \
				 *    sl  Sr            S
				 *                       \
				 *                        Sr
				 *
				 * Note: p might be red, and then both
				 * p and sl are red after rotation(which
				 * breaks property 4). This is fixed in
				 * Case 4 (in __rb_rotate_set_parents()
				 *         which set sl the color of p
				 *         and set p RB_BLACK)
				 *
				 *   (p)            (sl)
				 *   / \            /  \
				 *  N   sl   -->   P    S
				 *       \        /      \
				 *        S      N        Sr
				 *         \
				 *          Sr
				 */
				tmp1 = tmp2->rb_right;
				WRITE_ONCE(sibling->rb_left, tmp1);
				WRITE_ONCE(tmp2->rb_right, sibling);
				WRITE_ONCE(parent->rb_right, tmp2);
				if (tmp1)
					rb_set_parent_color(tmp1, sibling,
							    RB_BLACK);
				augment_rotate(sibling, tmp2);
				tmp1 = sibling;
				sibling = tmp2;
			}
			/*
			 * Case 4 - left rotate at parent + color flips
			 * (p and sl could be either color here.
			 *  After rotation, p becomes black, s acquires
			 *  p's color, and sl keeps its color)
			 *
			 *      (p)             (s)
			 *      / \             / \
			 *     N   S     -->   P   Sr
			 *        / \         / \
			 *      (sl) sr      N  (sl)
			 */
			tmp2 = sibling->rb_left;
			WRITE_ONCE(parent->rb_right, tmp2);
			WRITE_ONCE(sibling->rb_left, parent);
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
			if (tmp2)
				rb_set_parent(tmp2, parent);
			__rb_rotate_set_parents(parent, sibling, root,
						RB_BLACK);
			augment_rotate(parent, sibling);
			break;
		} else {
			sibling = parent->rb_left;
			if (rb_is_red(sibling)) {
				/* Case 1 - right rotate at parent */
				tmp1 = sibling->rb_right;
				WRITE_ONCE(parent->rb_left, tmp1);
				WRITE_ONCE(sibling->rb_right, parent);
				rb_set_parent_color(tmp1, parent, RB_BLACK);
				__rb_rotate_set_parents(parent, sibling, root,
							RB_RED);
				augment_rotate(parent, sibling);
				sibling = tmp1;
			}
			tmp1 = sibling->rb_left;
			if (!tmp1 || rb_is_black(tmp1)) {
				tmp2 = sibling->rb_right;
				if (!tmp2 || rb_is_black(tmp2)) {
					/* Case 2 - sibling color flip */
					rb_set_parent_color(sibling, parent,
							    RB_RED);
					if (rb_is_red(parent))
						rb_set_black(parent);
					else {
						node = parent;
						parent = rb_parent(node);
						if (parent)
							continue;
					}
					break;
				}
				/* Case 3 - left rotate at sibling */
				tmp1 = tmp2->rb_left;
				WRITE_ONCE(sibling->rb_right, tmp1);
				WRITE_ONCE(tmp2->rb_left, sibling);
				WRITE_ONCE(parent->rb_left, tmp2);
				if (tmp1)
					rb_set_parent_color(tmp1, sibling,
							    RB_BLACK);
				augment_rotate(sibling, tmp2);
				tmp1 = sibling;
				sibling = tmp2;
			}
			/* Case 4 - right rotate at parent + color flips */
			tmp2 = sibling->rb_right;
			WRITE_ONCE(parent->rb_left, tmp2);
			WRITE_ONCE(sibling->rb_right, parent);
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
			if (tmp2)
				rb_set_parent(tmp2, parent);
			__rb_rotate_set_parents(parent, sibling, root,
						RB_BLACK);
			augment_rotate(parent, sibling);
			break;
		}
	}
}

/* Non-inline version for rb_erase_augmented() use */
void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
	____rb_erase_color(parent, root, augment_rotate);
}

/*
 * Non-augmented rbtree manipulation functions.
 *
 * We use dummy augmented callbacks here, and have the compiler optimize them
 * out of the rb_insert_color() and rb_erase() function definitions.
 */

static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}

static const struct rb_augment_callbacks dummy_callbacks = {
	.propagate = dummy_propagate,
	.copy = dummy_copy,
	.rotate = dummy_rotate
};

void rb_insert_color(struct rb_node *node, struct rb_root *root)
{
	__rb_insert(node, root, dummy_rotate);
}

void rb_erase(struct rb_node *node, struct rb_root *root)
{
	struct rb_node *rebalance;
	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
	if (rebalance)
		____rb_erase_color(rebalance, root, dummy_rotate);
}

/*
 * Augmented rbtree manipulation functions.
 *
 * This instantiates the same __always_inline functions as in the non-augmented
 * case, but this time with user-defined callbacks.
 */

void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
	__rb_insert(node, root, augment_rotate);
}

/*
 * This function returns the first node (in sort order) of the tree.
 */
struct rb_node *rb_first(const struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_left)
		n = n->rb_left;
	return n;
}

struct rb_node *rb_last(const struct rb_root *root)
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_right)
		n = n->rb_right;
	return n;
}

struct rb_node *rb_next(const struct rb_node *node)
{
	struct rb_node *parent;

	if (RB_EMPTY_NODE(node))
		return NULL;

	/*
	 * If we have a right-hand child, go down and then left as far
	 * as we can.
	 */
	if (node->rb_right) {
		node = node->rb_right;
		while (node->rb_left)
			node=node->rb_left;
		return (struct rb_node *)node;
	}

	/*
	 * No right-hand children. Everything down and left is smaller than us,
	 * so any 'next' node must be in the general direction of our parent.
	 * Go up the tree; any time the ancestor is a right-hand child of its
	 * parent, keep going up. First time it's a left-hand child of its
	 * parent, said parent is our 'next' node.
	 */
	while ((parent = rb_parent(node)) && node == parent->rb_right)
		node = parent;

	return parent;
}

struct rb_node *rb_prev(const struct rb_node *node)
{
	struct rb_node *parent;

	if (RB_EMPTY_NODE(node))
		return NULL;

	/*
	 * If we have a left-hand child, go down and then right as far
	 * as we can.
	 */
	if (node->rb_left) {
		node = node->rb_left;
		while (node->rb_right)
			node=node->rb_right;
		return (struct rb_node *)node;
	}

	/*
	 * No left-hand children. Go up till we find an ancestor which
	 * is a right-hand child of its parent.
	 */
	while ((parent = rb_parent(node)) && node == parent->rb_left)
		node = parent;

	return parent;
}

void rb_replace_node(struct rb_node *victim, struct rb_node *new,
		     struct rb_root *root)
{
	struct rb_node *parent = rb_parent(victim);

	/* Copy the pointers/colour from the victim to the replacement */
	*new = *victim;

	/* Set the surrounding nodes to point to the replacement */
	if (victim->rb_left)
		rb_set_parent(victim->rb_left, new);
	if (victim->rb_right)
		rb_set_parent(victim->rb_right, new);
	__rb_change_child(victim, new, parent, root);
}

static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
{
	for (;;) {
		if (node->rb_left)
			node = node->rb_left;
		else if (node->rb_right)
			node = node->rb_right;
		else
			return (struct rb_node *)node;
	}
}

struct rb_node *rb_next_postorder(const struct rb_node *node)
{
	const struct rb_node *parent;
	if (!node)
		return NULL;
	parent = rb_parent(node);

	/* If we're sitting on node, we've already seen our children */
	if (parent && node == parent->rb_left && parent->rb_right) {
		/* If we are the parent's left node, go to the parent's right
		 * node then all the way down to the left */
		return rb_left_deepest_node(parent->rb_right);
	} else
		/* Otherwise we are the parent's right node, and the parent
		 * should be next */
		return (struct rb_node *)parent;
}

struct rb_node *rb_first_postorder(const struct rb_root *root)
{
	if (!root->rb_node)
		return NULL;

	return rb_left_deepest_node(root->rb_node);
}