summaryrefslogtreecommitdiff
path: root/net/ipv4/inetpeer.c
blob: ff327a62c9ce9b1794104c3c924f5f2b9820ac8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/*
 *		INETPEER - A storage for permanent information about peers
 *
 *  This source is covered by the GNU GPL, the same as all kernel sources.
 *
 *  Authors:	Andrey V. Savochkin <saw@msu.ru>
 */

#include <linux/cache.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/random.h>
#include <linux/timer.h>
#include <linux/time.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/net.h>
#include <linux/workqueue.h>
#include <net/ip.h>
#include <net/inetpeer.h>
#include <net/secure_seq.h>

/*
 *  Theory of operations.
 *  We keep one entry for each peer IP address.  The nodes contains long-living
 *  information about the peer which doesn't depend on routes.
 *
 *  Nodes are removed only when reference counter goes to 0.
 *  When it's happened the node may be removed when a sufficient amount of
 *  time has been passed since its last use.  The less-recently-used entry can
 *  also be removed if the pool is overloaded i.e. if the total amount of
 *  entries is greater-or-equal than the threshold.
 *
 *  Node pool is organised as an RB tree.
 *  Such an implementation has been chosen not just for fun.  It's a way to
 *  prevent easy and efficient DoS attacks by creating hash collisions.  A huge
 *  amount of long living nodes in a single hash slot would significantly delay
 *  lookups performed with disabled BHs.
 *
 *  Serialisation issues.
 *  1.  Nodes may appear in the tree only with the pool lock held.
 *  2.  Nodes may disappear from the tree only with the pool lock held
 *      AND reference count being 0.
 *  3.  Global variable peer_total is modified under the pool lock.
 *  4.  struct inet_peer fields modification:
 *		rb_node: pool lock
 *		refcnt: atomically against modifications on other CPU;
 *		   usually under some other lock to prevent node disappearing
 *		daddr: unchangeable
 */

static struct kmem_cache *peer_cachep __ro_after_init;

void inet_peer_base_init(struct inet_peer_base *bp)
{
	bp->rb_root = RB_ROOT;
	seqlock_init(&bp->lock);
	bp->total = 0;
}
EXPORT_SYMBOL_GPL(inet_peer_base_init);

#define PEER_MAX_GC 32

/* Exported for sysctl_net_ipv4.  */
int inet_peer_threshold __read_mostly = 65536 + 128;	/* start to throw entries more
					 * aggressively at this stage */
int inet_peer_minttl __read_mostly = 120 * HZ;	/* TTL under high load: 120 sec */
int inet_peer_maxttl __read_mostly = 10 * 60 * HZ;	/* usual time to live: 10 min */

/* Called from ip_output.c:ip_init  */
void __init inet_initpeers(void)
{
	struct sysinfo si;

	/* Use the straight interface to information about memory. */
	si_meminfo(&si);
	/* The values below were suggested by Alexey Kuznetsov
	 * <kuznet@ms2.inr.ac.ru>.  I don't have any opinion about the values
	 * myself.  --SAW
	 */
	if (si.totalram <= (32768*1024)/PAGE_SIZE)
		inet_peer_threshold >>= 1; /* max pool size about 1MB on IA32 */
	if (si.totalram <= (16384*1024)/PAGE_SIZE)
		inet_peer_threshold >>= 1; /* about 512KB */
	if (si.totalram <= (8192*1024)/PAGE_SIZE)
		inet_peer_threshold >>= 2; /* about 128KB */

	peer_cachep = kmem_cache_create("inet_peer_cache",
			sizeof(struct inet_peer),
			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
			NULL);
}

/* Called with rcu_read_lock() or base->lock held */
static struct inet_peer *lookup(const struct inetpeer_addr *daddr,
				struct inet_peer_base *base,
				unsigned int seq,
				struct inet_peer *gc_stack[],
				unsigned int *gc_cnt,
				struct rb_node **parent_p,
				struct rb_node ***pp_p)
{
	struct rb_node **pp, *parent, *next;
	struct inet_peer *p;

	pp = &base->rb_root.rb_node;
	parent = NULL;
	while (1) {
		int cmp;

		next = rcu_dereference_raw(*pp);
		if (!next)
			break;
		parent = next;
		p = rb_entry(parent, struct inet_peer, rb_node);
		cmp = inetpeer_addr_cmp(daddr, &p->daddr);
		if (cmp == 0) {
			if (!refcount_inc_not_zero(&p->refcnt))
				break;
			return p;
		}
		if (gc_stack) {
			if (*gc_cnt < PEER_MAX_GC)
				gc_stack[(*gc_cnt)++] = p;
		} else if (unlikely(read_seqretry(&base->lock, seq))) {
			break;
		}
		if (cmp == -1)
			pp = &next->rb_left;
		else
			pp = &next->rb_right;
	}
	*parent_p = parent;
	*pp_p = pp;
	return NULL;
}

static void inetpeer_free_rcu(struct rcu_head *head)
{
	kmem_cache_free(peer_cachep, container_of(head, struct inet_peer, rcu));
}

/* perform garbage collect on all items stacked during a lookup */
static void inet_peer_gc(struct inet_peer_base *base,
			 struct inet_peer *gc_stack[],
			 unsigned int gc_cnt)
{
	struct inet_peer *p;
	__u32 delta, ttl;
	int i;

	if (base->total >= inet_peer_threshold)
		ttl = 0; /* be aggressive */
	else
		ttl = inet_peer_maxttl
				- (inet_peer_maxttl - inet_peer_minttl) / HZ *
					base->total / inet_peer_threshold * HZ;
	for (i = 0; i < gc_cnt; i++) {
		p = gc_stack[i];

		/* The READ_ONCE() pairs with the WRITE_ONCE()
		 * in inet_putpeer()
		 */
		delta = (__u32)jiffies - READ_ONCE(p->dtime);

		if (delta < ttl || !refcount_dec_if_one(&p->refcnt))
			gc_stack[i] = NULL;
	}
	for (i = 0; i < gc_cnt; i++) {
		p = gc_stack[i];
		if (p) {
			rb_erase(&p->rb_node, &base->rb_root);
			base->total--;
			call_rcu(&p->rcu, inetpeer_free_rcu);
		}
	}
}

struct inet_peer *inet_getpeer(struct inet_peer_base *base,
			       const struct inetpeer_addr *daddr,
			       int create)
{
	struct inet_peer *p, *gc_stack[PEER_MAX_GC];
	struct rb_node **pp, *parent;
	unsigned int gc_cnt, seq;
	int invalidated;

	/* Attempt a lockless lookup first.
	 * Because of a concurrent writer, we might not find an existing entry.
	 */
	rcu_read_lock();
	seq = read_seqbegin(&base->lock);
	p = lookup(daddr, base, seq, NULL, &gc_cnt, &parent, &pp);
	invalidated = read_seqretry(&base->lock, seq);
	rcu_read_unlock();

	if (p)
		return p;

	/* If no writer did a change during our lookup, we can return early. */
	if (!create && !invalidated)
		return NULL;

	/* retry an exact lookup, taking the lock before.
	 * At least, nodes should be hot in our cache.
	 */
	parent = NULL;
	write_seqlock_bh(&base->lock);

	gc_cnt = 0;
	p = lookup(daddr, base, seq, gc_stack, &gc_cnt, &parent, &pp);
	if (!p && create) {
		p = kmem_cache_alloc(peer_cachep, GFP_ATOMIC);
		if (p) {
			p->daddr = *daddr;
			p->dtime = (__u32)jiffies;
			refcount_set(&p->refcnt, 2);
			atomic_set(&p->rid, 0);
			p->metrics[RTAX_LOCK-1] = INETPEER_METRICS_NEW;
			p->rate_tokens = 0;
			p->n_redirects = 0;
			/* 60*HZ is arbitrary, but chosen enough high so that the first
			 * calculation of tokens is at its maximum.
			 */
			p->rate_last = jiffies - 60*HZ;

			rb_link_node(&p->rb_node, parent, pp);
			rb_insert_color(&p->rb_node, &base->rb_root);
			base->total++;
		}
	}
	if (gc_cnt)
		inet_peer_gc(base, gc_stack, gc_cnt);
	write_sequnlock_bh(&base->lock);

	return p;
}
EXPORT_SYMBOL_GPL(inet_getpeer);

void inet_putpeer(struct inet_peer *p)
{
	/* The WRITE_ONCE() pairs with itself (we run lockless)
	 * and the READ_ONCE() in inet_peer_gc()
	 */
	WRITE_ONCE(p->dtime, (__u32)jiffies);

	if (refcount_dec_and_test(&p->refcnt))
		call_rcu(&p->rcu, inetpeer_free_rcu);
}
EXPORT_SYMBOL_GPL(inet_putpeer);

/*
 *	Check transmit rate limitation for given message.
 *	The rate information is held in the inet_peer entries now.
 *	This function is generic and could be used for other purposes
 *	too. It uses a Token bucket filter as suggested by Alexey Kuznetsov.
 *
 *	Note that the same inet_peer fields are modified by functions in
 *	route.c too, but these work for packet destinations while xrlim_allow
 *	works for icmp destinations. This means the rate limiting information
 *	for one "ip object" is shared - and these ICMPs are twice limited:
 *	by source and by destination.
 *
 *	RFC 1812: 4.3.2.8 SHOULD be able to limit error message rate
 *			  SHOULD allow setting of rate limits
 *
 * 	Shared between ICMPv4 and ICMPv6.
 */
#define XRLIM_BURST_FACTOR 6
bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout)
{
	unsigned long now, token;
	bool rc = false;

	if (!peer)
		return true;

	token = peer->rate_tokens;
	now = jiffies;
	token += now - peer->rate_last;
	peer->rate_last = now;
	if (token > XRLIM_BURST_FACTOR * timeout)
		token = XRLIM_BURST_FACTOR * timeout;
	if (token >= timeout) {
		token -= timeout;
		rc = true;
	}
	peer->rate_tokens = token;
	return rc;
}
EXPORT_SYMBOL(inet_peer_xrlim_allow);

void inetpeer_invalidate_tree(struct inet_peer_base *base)
{
	struct rb_node *p = rb_first(&base->rb_root);

	while (p) {
		struct inet_peer *peer = rb_entry(p, struct inet_peer, rb_node);

		p = rb_next(p);
		rb_erase(&peer->rb_node, &base->rb_root);
		inet_putpeer(peer);
		cond_resched();
	}

	base->total = 0;
}
EXPORT_SYMBOL(inetpeer_invalidate_tree);