summaryrefslogtreecommitdiff
path: root/mm/page_io.c
blob: 868e7a96bf8a39aa9cd4ad5606db1a0eb0f080d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*
 *  linux/mm/page_io.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, 
 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 */

#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/gfp.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/swapops.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/frontswap.h>
#include <linux/blkdev.h>
#include <linux/uio.h>
#include <linux/sched/task.h>
#include <asm/pgtable.h>

static struct bio *get_swap_bio(gfp_t gfp_flags,
				struct page *page, bio_end_io_t end_io)
{
	struct bio *bio;

	bio = bio_alloc(gfp_flags, 1);
	if (bio) {
		struct block_device *bdev;

		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
		bio_set_dev(bio, bdev);
		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
		bio->bi_end_io = end_io;

		bio_add_page(bio, page, PAGE_SIZE, 0);
		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
	}
	return bio;
}

void end_swap_bio_write(struct bio *bio)
{
	struct page *page = bio->bi_io_vec[0].bv_page;

	if (bio->bi_status) {
		SetPageError(page);
		/*
		 * We failed to write the page out to swap-space.
		 * Re-dirty the page in order to avoid it being reclaimed.
		 * Also print a dire warning that things will go BAD (tm)
		 * very quickly.
		 *
		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
		 */
		set_page_dirty(page);
		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
			 (unsigned long long)bio->bi_iter.bi_sector);
		ClearPageReclaim(page);
	}
	end_page_writeback(page);
	bio_put(bio);
}

static void swap_slot_free_notify(struct page *page)
{
	struct swap_info_struct *sis;
	struct gendisk *disk;

	/*
	 * There is no guarantee that the page is in swap cache - the software
	 * suspend code (at least) uses end_swap_bio_read() against a non-
	 * swapcache page.  So we must check PG_swapcache before proceeding with
	 * this optimization.
	 */
	if (unlikely(!PageSwapCache(page)))
		return;

	sis = page_swap_info(page);
	if (!(sis->flags & SWP_BLKDEV))
		return;

	/*
	 * The swap subsystem performs lazy swap slot freeing,
	 * expecting that the page will be swapped out again.
	 * So we can avoid an unnecessary write if the page
	 * isn't redirtied.
	 * This is good for real swap storage because we can
	 * reduce unnecessary I/O and enhance wear-leveling
	 * if an SSD is used as the as swap device.
	 * But if in-memory swap device (eg zram) is used,
	 * this causes a duplicated copy between uncompressed
	 * data in VM-owned memory and compressed data in
	 * zram-owned memory.  So let's free zram-owned memory
	 * and make the VM-owned decompressed page *dirty*,
	 * so the page should be swapped out somewhere again if
	 * we again wish to reclaim it.
	 */
	disk = sis->bdev->bd_disk;
	if (disk->fops->swap_slot_free_notify) {
		swp_entry_t entry;
		unsigned long offset;

		entry.val = page_private(page);
		offset = swp_offset(entry);

		SetPageDirty(page);
		disk->fops->swap_slot_free_notify(sis->bdev,
				offset);
	}
}

static void end_swap_bio_read(struct bio *bio)
{
	struct page *page = bio->bi_io_vec[0].bv_page;
	struct task_struct *waiter = bio->bi_private;

	if (bio->bi_status) {
		SetPageError(page);
		ClearPageUptodate(page);
		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
			 (unsigned long long)bio->bi_iter.bi_sector);
		goto out;
	}

	SetPageUptodate(page);
	swap_slot_free_notify(page);
out:
	unlock_page(page);
	WRITE_ONCE(bio->bi_private, NULL);
	bio_put(bio);
	wake_up_process(waiter);
	put_task_struct(waiter);
}

int generic_swapfile_activate(struct swap_info_struct *sis,
				struct file *swap_file,
				sector_t *span)
{
	struct address_space *mapping = swap_file->f_mapping;
	struct inode *inode = mapping->host;
	unsigned blocks_per_page;
	unsigned long page_no;
	unsigned blkbits;
	sector_t probe_block;
	sector_t last_block;
	sector_t lowest_block = -1;
	sector_t highest_block = 0;
	int nr_extents = 0;
	int ret;

	blkbits = inode->i_blkbits;
	blocks_per_page = PAGE_SIZE >> blkbits;

	/*
	 * Map all the blocks into the extent list.  This code doesn't try
	 * to be very smart.
	 */
	probe_block = 0;
	page_no = 0;
	last_block = i_size_read(inode) >> blkbits;
	while ((probe_block + blocks_per_page) <= last_block &&
			page_no < sis->max) {
		unsigned block_in_page;
		sector_t first_block;

		cond_resched();

		first_block = bmap(inode, probe_block);
		if (first_block == 0)
			goto bad_bmap;

		/*
		 * It must be PAGE_SIZE aligned on-disk
		 */
		if (first_block & (blocks_per_page - 1)) {
			probe_block++;
			goto reprobe;
		}

		for (block_in_page = 1; block_in_page < blocks_per_page;
					block_in_page++) {
			sector_t block;

			block = bmap(inode, probe_block + block_in_page);
			if (block == 0)
				goto bad_bmap;
			if (block != first_block + block_in_page) {
				/* Discontiguity */
				probe_block++;
				goto reprobe;
			}
		}

		first_block >>= (PAGE_SHIFT - blkbits);
		if (page_no) {	/* exclude the header page */
			if (first_block < lowest_block)
				lowest_block = first_block;
			if (first_block > highest_block)
				highest_block = first_block;
		}

		/*
		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
		 */
		ret = add_swap_extent(sis, page_no, 1, first_block);
		if (ret < 0)
			goto out;
		nr_extents += ret;
		page_no++;
		probe_block += blocks_per_page;
reprobe:
		continue;
	}
	ret = nr_extents;
	*span = 1 + highest_block - lowest_block;
	if (page_no == 0)
		page_no = 1;	/* force Empty message */
	sis->max = page_no;
	sis->pages = page_no - 1;
	sis->highest_bit = page_no - 1;
out:
	return ret;
bad_bmap:
	pr_err("swapon: swapfile has holes\n");
	ret = -EINVAL;
	goto out;
}

/*
 * We may have stale swap cache pages in memory: notice
 * them here and get rid of the unnecessary final write.
 */
int swap_writepage(struct page *page, struct writeback_control *wbc)
{
	int ret = 0;

	if (try_to_free_swap(page)) {
		unlock_page(page);
		goto out;
	}
	if (frontswap_store(page) == 0) {
		set_page_writeback(page);
		unlock_page(page);
		end_page_writeback(page);
		goto out;
	}
	ret = __swap_writepage(page, wbc, end_swap_bio_write);
out:
	return ret;
}

static sector_t swap_page_sector(struct page *page)
{
	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
}

int __swap_writepage(struct page *page, struct writeback_control *wbc,
		bio_end_io_t end_write_func)
{
	struct bio *bio;
	int ret;
	struct swap_info_struct *sis = page_swap_info(page);

	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
	if (sis->flags & SWP_FILE) {
		struct kiocb kiocb;
		struct file *swap_file = sis->swap_file;
		struct address_space *mapping = swap_file->f_mapping;
		struct bio_vec bv = {
			.bv_page = page,
			.bv_len  = PAGE_SIZE,
			.bv_offset = 0
		};
		struct iov_iter from;

		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
		init_sync_kiocb(&kiocb, swap_file);
		kiocb.ki_pos = page_file_offset(page);

		set_page_writeback(page);
		unlock_page(page);
		ret = mapping->a_ops->direct_IO(&kiocb, &from);
		if (ret == PAGE_SIZE) {
			count_vm_event(PSWPOUT);
			ret = 0;
		} else {
			/*
			 * In the case of swap-over-nfs, this can be a
			 * temporary failure if the system has limited
			 * memory for allocating transmit buffers.
			 * Mark the page dirty and avoid
			 * rotate_reclaimable_page but rate-limit the
			 * messages but do not flag PageError like
			 * the normal direct-to-bio case as it could
			 * be temporary.
			 */
			set_page_dirty(page);
			ClearPageReclaim(page);
			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
					   page_file_offset(page));
		}
		end_page_writeback(page);
		return ret;
	}

	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
	if (!ret) {
		count_vm_event(PSWPOUT);
		return 0;
	}

	ret = 0;
	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
	if (bio == NULL) {
		set_page_dirty(page);
		unlock_page(page);
		ret = -ENOMEM;
		goto out;
	}
	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
	count_vm_event(PSWPOUT);
	set_page_writeback(page);
	unlock_page(page);
	submit_bio(bio);
out:
	return ret;
}

int swap_readpage(struct page *page, bool do_poll)
{
	struct bio *bio;
	int ret = 0;
	struct swap_info_struct *sis = page_swap_info(page);
	blk_qc_t qc;
	struct gendisk *disk;

	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageUptodate(page), page);
	if (frontswap_load(page) == 0) {
		SetPageUptodate(page);
		unlock_page(page);
		goto out;
	}

	if (sis->flags & SWP_FILE) {
		struct file *swap_file = sis->swap_file;
		struct address_space *mapping = swap_file->f_mapping;

		ret = mapping->a_ops->readpage(swap_file, page);
		if (!ret)
			count_vm_event(PSWPIN);
		return ret;
	}

	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
	if (!ret) {
		if (trylock_page(page)) {
			swap_slot_free_notify(page);
			unlock_page(page);
		}

		count_vm_event(PSWPIN);
		return 0;
	}

	ret = 0;
	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
	if (bio == NULL) {
		unlock_page(page);
		ret = -ENOMEM;
		goto out;
	}
	/*
	 * Keep this task valid during swap readpage because the oom killer may
	 * attempt to access it in the page fault retry time check.
	 */
	get_task_struct(current);
	disk = bio->bi_disk;
	bio->bi_private = current;
	bio_set_op_attrs(bio, REQ_OP_READ, 0);
	count_vm_event(PSWPIN);
	bio_get(bio);
	qc = submit_bio(bio);
	while (do_poll) {
		set_current_state(TASK_UNINTERRUPTIBLE);
		if (!READ_ONCE(bio->bi_private))
			break;

		if (!blk_mq_poll(disk->queue, qc))
			break;
	}
	__set_current_state(TASK_RUNNING);
	bio_put(bio);

out:
	return ret;
}

int swap_set_page_dirty(struct page *page)
{
	struct swap_info_struct *sis = page_swap_info(page);

	if (sis->flags & SWP_FILE) {
		struct address_space *mapping = sis->swap_file->f_mapping;

		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
		return mapping->a_ops->set_page_dirty(page);
	} else {
		return __set_page_dirty_no_writeback(page);
	}
}