summaryrefslogtreecommitdiff
path: root/mm/khugepaged.c
blob: 434674ca0c8a8e1c339460ce56ea2951234252bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
// SPDX-License-Identifier: GPL-2.0
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/mm_inline.h>
#include <linux/kthread.h>
#include <linux/khugepaged.h>
#include <linux/freezer.h>
#include <linux/mman.h>
#include <linux/hashtable.h>
#include <linux/userfaultfd_k.h>
#include <linux/page_idle.h>
#include <linux/page_table_check.h>
#include <linux/swapops.h>
#include <linux/shmem_fs.h>

#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
#include "mm_slot.h"

enum scan_result {
	SCAN_FAIL,
	SCAN_SUCCEED,
	SCAN_PMD_NULL,
	SCAN_PMD_NONE,
	SCAN_PMD_MAPPED,
	SCAN_EXCEED_NONE_PTE,
	SCAN_EXCEED_SWAP_PTE,
	SCAN_EXCEED_SHARED_PTE,
	SCAN_PTE_NON_PRESENT,
	SCAN_PTE_UFFD_WP,
	SCAN_PTE_MAPPED_HUGEPAGE,
	SCAN_PAGE_RO,
	SCAN_LACK_REFERENCED_PAGE,
	SCAN_PAGE_NULL,
	SCAN_SCAN_ABORT,
	SCAN_PAGE_COUNT,
	SCAN_PAGE_LRU,
	SCAN_PAGE_LOCK,
	SCAN_PAGE_ANON,
	SCAN_PAGE_COMPOUND,
	SCAN_ANY_PROCESS,
	SCAN_VMA_NULL,
	SCAN_VMA_CHECK,
	SCAN_ADDRESS_RANGE,
	SCAN_DEL_PAGE_LRU,
	SCAN_ALLOC_HUGE_PAGE_FAIL,
	SCAN_CGROUP_CHARGE_FAIL,
	SCAN_TRUNCATED,
	SCAN_PAGE_HAS_PRIVATE,
	SCAN_STORE_FAILED,
	SCAN_COPY_MC,
	SCAN_PAGE_FILLED,
};

#define CREATE_TRACE_POINTS
#include <trace/events/huge_memory.h>

static struct task_struct *khugepaged_thread __read_mostly;
static DEFINE_MUTEX(khugepaged_mutex);

/* default scan 8*512 pte (or vmas) every 30 second */
static unsigned int khugepaged_pages_to_scan __read_mostly;
static unsigned int khugepaged_pages_collapsed;
static unsigned int khugepaged_full_scans;
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
/* during fragmentation poll the hugepage allocator once every minute */
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
static unsigned long khugepaged_sleep_expire;
static DEFINE_SPINLOCK(khugepaged_mm_lock);
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
/*
 * default collapse hugepages if there is at least one pte mapped like
 * it would have happened if the vma was large enough during page
 * fault.
 *
 * Note that these are only respected if collapse was initiated by khugepaged.
 */
static unsigned int khugepaged_max_ptes_none __read_mostly;
static unsigned int khugepaged_max_ptes_swap __read_mostly;
static unsigned int khugepaged_max_ptes_shared __read_mostly;

#define MM_SLOTS_HASH_BITS 10
static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);

static struct kmem_cache *mm_slot_cache __read_mostly;

#define MAX_PTE_MAPPED_THP 8

struct collapse_control {
	bool is_khugepaged;

	/* Num pages scanned per node */
	u32 node_load[MAX_NUMNODES];

	/* nodemask for allocation fallback */
	nodemask_t alloc_nmask;
};

/**
 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
 * @slot: hash lookup from mm to mm_slot
 * @nr_pte_mapped_thp: number of pte mapped THP
 * @pte_mapped_thp: address array corresponding pte mapped THP
 */
struct khugepaged_mm_slot {
	struct mm_slot slot;

	/* pte-mapped THP in this mm */
	int nr_pte_mapped_thp;
	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
};

/**
 * struct khugepaged_scan - cursor for scanning
 * @mm_head: the head of the mm list to scan
 * @mm_slot: the current mm_slot we are scanning
 * @address: the next address inside that to be scanned
 *
 * There is only the one khugepaged_scan instance of this cursor structure.
 */
struct khugepaged_scan {
	struct list_head mm_head;
	struct khugepaged_mm_slot *mm_slot;
	unsigned long address;
};

static struct khugepaged_scan khugepaged_scan = {
	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
};

#ifdef CONFIG_SYSFS
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
					 struct kobj_attribute *attr,
					 char *buf)
{
	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
}

static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
					  struct kobj_attribute *attr,
					  const char *buf, size_t count)
{
	unsigned int msecs;
	int err;

	err = kstrtouint(buf, 10, &msecs);
	if (err)
		return -EINVAL;

	khugepaged_scan_sleep_millisecs = msecs;
	khugepaged_sleep_expire = 0;
	wake_up_interruptible(&khugepaged_wait);

	return count;
}
static struct kobj_attribute scan_sleep_millisecs_attr =
	__ATTR_RW(scan_sleep_millisecs);

static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
					  struct kobj_attribute *attr,
					  char *buf)
{
	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
}

static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
					   struct kobj_attribute *attr,
					   const char *buf, size_t count)
{
	unsigned int msecs;
	int err;

	err = kstrtouint(buf, 10, &msecs);
	if (err)
		return -EINVAL;

	khugepaged_alloc_sleep_millisecs = msecs;
	khugepaged_sleep_expire = 0;
	wake_up_interruptible(&khugepaged_wait);

	return count;
}
static struct kobj_attribute alloc_sleep_millisecs_attr =
	__ATTR_RW(alloc_sleep_millisecs);

static ssize_t pages_to_scan_show(struct kobject *kobj,
				  struct kobj_attribute *attr,
				  char *buf)
{
	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
}
static ssize_t pages_to_scan_store(struct kobject *kobj,
				   struct kobj_attribute *attr,
				   const char *buf, size_t count)
{
	unsigned int pages;
	int err;

	err = kstrtouint(buf, 10, &pages);
	if (err || !pages)
		return -EINVAL;

	khugepaged_pages_to_scan = pages;

	return count;
}
static struct kobj_attribute pages_to_scan_attr =
	__ATTR_RW(pages_to_scan);

static ssize_t pages_collapsed_show(struct kobject *kobj,
				    struct kobj_attribute *attr,
				    char *buf)
{
	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
}
static struct kobj_attribute pages_collapsed_attr =
	__ATTR_RO(pages_collapsed);

static ssize_t full_scans_show(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       char *buf)
{
	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
}
static struct kobj_attribute full_scans_attr =
	__ATTR_RO(full_scans);

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	return single_hugepage_flag_show(kobj, attr, buf,
					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
	return single_hugepage_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static struct kobj_attribute khugepaged_defrag_attr =
	__ATTR_RW(defrag);

/*
 * max_ptes_none controls if khugepaged should collapse hugepages over
 * any unmapped ptes in turn potentially increasing the memory
 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 * reduce the available free memory in the system as it
 * runs. Increasing max_ptes_none will instead potentially reduce the
 * free memory in the system during the khugepaged scan.
 */
static ssize_t max_ptes_none_show(struct kobject *kobj,
				  struct kobj_attribute *attr,
				  char *buf)
{
	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
}
static ssize_t max_ptes_none_store(struct kobject *kobj,
				   struct kobj_attribute *attr,
				   const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_none;

	err = kstrtoul(buf, 10, &max_ptes_none);
	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
		return -EINVAL;

	khugepaged_max_ptes_none = max_ptes_none;

	return count;
}
static struct kobj_attribute khugepaged_max_ptes_none_attr =
	__ATTR_RW(max_ptes_none);

static ssize_t max_ptes_swap_show(struct kobject *kobj,
				  struct kobj_attribute *attr,
				  char *buf)
{
	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
}

static ssize_t max_ptes_swap_store(struct kobject *kobj,
				   struct kobj_attribute *attr,
				   const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_swap;

	err  = kstrtoul(buf, 10, &max_ptes_swap);
	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
		return -EINVAL;

	khugepaged_max_ptes_swap = max_ptes_swap;

	return count;
}

static struct kobj_attribute khugepaged_max_ptes_swap_attr =
	__ATTR_RW(max_ptes_swap);

static ssize_t max_ptes_shared_show(struct kobject *kobj,
				    struct kobj_attribute *attr,
				    char *buf)
{
	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
}

static ssize_t max_ptes_shared_store(struct kobject *kobj,
				     struct kobj_attribute *attr,
				     const char *buf, size_t count)
{
	int err;
	unsigned long max_ptes_shared;

	err  = kstrtoul(buf, 10, &max_ptes_shared);
	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
		return -EINVAL;

	khugepaged_max_ptes_shared = max_ptes_shared;

	return count;
}

static struct kobj_attribute khugepaged_max_ptes_shared_attr =
	__ATTR_RW(max_ptes_shared);

static struct attribute *khugepaged_attr[] = {
	&khugepaged_defrag_attr.attr,
	&khugepaged_max_ptes_none_attr.attr,
	&khugepaged_max_ptes_swap_attr.attr,
	&khugepaged_max_ptes_shared_attr.attr,
	&pages_to_scan_attr.attr,
	&pages_collapsed_attr.attr,
	&full_scans_attr.attr,
	&scan_sleep_millisecs_attr.attr,
	&alloc_sleep_millisecs_attr.attr,
	NULL,
};

struct attribute_group khugepaged_attr_group = {
	.attrs = khugepaged_attr,
	.name = "khugepaged",
};
#endif /* CONFIG_SYSFS */

int hugepage_madvise(struct vm_area_struct *vma,
		     unsigned long *vm_flags, int advice)
{
	switch (advice) {
	case MADV_HUGEPAGE:
#ifdef CONFIG_S390
		/*
		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
		 * can't handle this properly after s390_enable_sie, so we simply
		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
		 */
		if (mm_has_pgste(vma->vm_mm))
			return 0;
#endif
		*vm_flags &= ~VM_NOHUGEPAGE;
		*vm_flags |= VM_HUGEPAGE;
		/*
		 * If the vma become good for khugepaged to scan,
		 * register it here without waiting a page fault that
		 * may not happen any time soon.
		 */
		khugepaged_enter_vma(vma, *vm_flags);
		break;
	case MADV_NOHUGEPAGE:
		*vm_flags &= ~VM_HUGEPAGE;
		*vm_flags |= VM_NOHUGEPAGE;
		/*
		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
		 * this vma even if we leave the mm registered in khugepaged if
		 * it got registered before VM_NOHUGEPAGE was set.
		 */
		break;
	}

	return 0;
}

int __init khugepaged_init(void)
{
	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
					  sizeof(struct khugepaged_mm_slot),
					  __alignof__(struct khugepaged_mm_slot),
					  0, NULL);
	if (!mm_slot_cache)
		return -ENOMEM;

	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;

	return 0;
}

void __init khugepaged_destroy(void)
{
	kmem_cache_destroy(mm_slot_cache);
}

static inline int hpage_collapse_test_exit(struct mm_struct *mm)
{
	return atomic_read(&mm->mm_users) == 0;
}

void __khugepaged_enter(struct mm_struct *mm)
{
	struct khugepaged_mm_slot *mm_slot;
	struct mm_slot *slot;
	int wakeup;

	mm_slot = mm_slot_alloc(mm_slot_cache);
	if (!mm_slot)
		return;

	slot = &mm_slot->slot;

	/* __khugepaged_exit() must not run from under us */
	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
		mm_slot_free(mm_slot_cache, mm_slot);
		return;
	}

	spin_lock(&khugepaged_mm_lock);
	mm_slot_insert(mm_slots_hash, mm, slot);
	/*
	 * Insert just behind the scanning cursor, to let the area settle
	 * down a little.
	 */
	wakeup = list_empty(&khugepaged_scan.mm_head);
	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
	spin_unlock(&khugepaged_mm_lock);

	mmgrab(mm);
	if (wakeup)
		wake_up_interruptible(&khugepaged_wait);
}

void khugepaged_enter_vma(struct vm_area_struct *vma,
			  unsigned long vm_flags)
{
	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
	    hugepage_flags_enabled()) {
		if (hugepage_vma_check(vma, vm_flags, false, false, true))
			__khugepaged_enter(vma->vm_mm);
	}
}

void __khugepaged_exit(struct mm_struct *mm)
{
	struct khugepaged_mm_slot *mm_slot;
	struct mm_slot *slot;
	int free = 0;

	spin_lock(&khugepaged_mm_lock);
	slot = mm_slot_lookup(mm_slots_hash, mm);
	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
		hash_del(&slot->hash);
		list_del(&slot->mm_node);
		free = 1;
	}
	spin_unlock(&khugepaged_mm_lock);

	if (free) {
		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
		mm_slot_free(mm_slot_cache, mm_slot);
		mmdrop(mm);
	} else if (mm_slot) {
		/*
		 * This is required to serialize against
		 * hpage_collapse_test_exit() (which is guaranteed to run
		 * under mmap sem read mode). Stop here (after we return all
		 * pagetables will be destroyed) until khugepaged has finished
		 * working on the pagetables under the mmap_lock.
		 */
		mmap_write_lock(mm);
		mmap_write_unlock(mm);
	}
}

static void release_pte_folio(struct folio *folio)
{
	node_stat_mod_folio(folio,
			NR_ISOLATED_ANON + folio_is_file_lru(folio),
			-folio_nr_pages(folio));
	folio_unlock(folio);
	folio_putback_lru(folio);
}

static void release_pte_page(struct page *page)
{
	release_pte_folio(page_folio(page));
}

static void release_pte_pages(pte_t *pte, pte_t *_pte,
		struct list_head *compound_pagelist)
{
	struct folio *folio, *tmp;

	while (--_pte >= pte) {
		pte_t pteval = *_pte;
		unsigned long pfn;

		if (pte_none(pteval))
			continue;
		pfn = pte_pfn(pteval);
		if (is_zero_pfn(pfn))
			continue;
		folio = pfn_folio(pfn);
		if (folio_test_large(folio))
			continue;
		release_pte_folio(folio);
	}

	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
		list_del(&folio->lru);
		release_pte_folio(folio);
	}
}

static bool is_refcount_suitable(struct page *page)
{
	int expected_refcount;

	expected_refcount = total_mapcount(page);
	if (PageSwapCache(page))
		expected_refcount += compound_nr(page);

	return page_count(page) == expected_refcount;
}

static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
					unsigned long address,
					pte_t *pte,
					struct collapse_control *cc,
					struct list_head *compound_pagelist)
{
	struct page *page = NULL;
	pte_t *_pte;
	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
	bool writable = false;

	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
	     _pte++, address += PAGE_SIZE) {
		pte_t pteval = *_pte;
		if (pte_none(pteval) || (pte_present(pteval) &&
				is_zero_pfn(pte_pfn(pteval)))) {
			++none_or_zero;
			if (!userfaultfd_armed(vma) &&
			    (!cc->is_khugepaged ||
			     none_or_zero <= khugepaged_max_ptes_none)) {
				continue;
			} else {
				result = SCAN_EXCEED_NONE_PTE;
				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
				goto out;
			}
		}
		if (!pte_present(pteval)) {
			result = SCAN_PTE_NON_PRESENT;
			goto out;
		}
		if (pte_uffd_wp(pteval)) {
			result = SCAN_PTE_UFFD_WP;
			goto out;
		}
		page = vm_normal_page(vma, address, pteval);
		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
			result = SCAN_PAGE_NULL;
			goto out;
		}

		VM_BUG_ON_PAGE(!PageAnon(page), page);

		if (page_mapcount(page) > 1) {
			++shared;
			if (cc->is_khugepaged &&
			    shared > khugepaged_max_ptes_shared) {
				result = SCAN_EXCEED_SHARED_PTE;
				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
				goto out;
			}
		}

		if (PageCompound(page)) {
			struct page *p;
			page = compound_head(page);

			/*
			 * Check if we have dealt with the compound page
			 * already
			 */
			list_for_each_entry(p, compound_pagelist, lru) {
				if (page == p)
					goto next;
			}
		}

		/*
		 * We can do it before isolate_lru_page because the
		 * page can't be freed from under us. NOTE: PG_lock
		 * is needed to serialize against split_huge_page
		 * when invoked from the VM.
		 */
		if (!trylock_page(page)) {
			result = SCAN_PAGE_LOCK;
			goto out;
		}

		/*
		 * Check if the page has any GUP (or other external) pins.
		 *
		 * The page table that maps the page has been already unlinked
		 * from the page table tree and this process cannot get
		 * an additional pin on the page.
		 *
		 * New pins can come later if the page is shared across fork,
		 * but not from this process. The other process cannot write to
		 * the page, only trigger CoW.
		 */
		if (!is_refcount_suitable(page)) {
			unlock_page(page);
			result = SCAN_PAGE_COUNT;
			goto out;
		}

		/*
		 * Isolate the page to avoid collapsing an hugepage
		 * currently in use by the VM.
		 */
		if (!isolate_lru_page(page)) {
			unlock_page(page);
			result = SCAN_DEL_PAGE_LRU;
			goto out;
		}
		mod_node_page_state(page_pgdat(page),
				NR_ISOLATED_ANON + page_is_file_lru(page),
				compound_nr(page));
		VM_BUG_ON_PAGE(!PageLocked(page), page);
		VM_BUG_ON_PAGE(PageLRU(page), page);

		if (PageCompound(page))
			list_add_tail(&page->lru, compound_pagelist);
next:
		/*
		 * If collapse was initiated by khugepaged, check that there is
		 * enough young pte to justify collapsing the page
		 */
		if (cc->is_khugepaged &&
		    (pte_young(pteval) || page_is_young(page) ||
		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
								     address)))
			referenced++;

		if (pte_write(pteval))
			writable = true;
	}

	if (unlikely(!writable)) {
		result = SCAN_PAGE_RO;
	} else if (unlikely(cc->is_khugepaged && !referenced)) {
		result = SCAN_LACK_REFERENCED_PAGE;
	} else {
		result = SCAN_SUCCEED;
		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
						    referenced, writable, result);
		return result;
	}
out:
	release_pte_pages(pte, _pte, compound_pagelist);
	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
					    referenced, writable, result);
	return result;
}

static void __collapse_huge_page_copy_succeeded(pte_t *pte,
						struct vm_area_struct *vma,
						unsigned long address,
						spinlock_t *ptl,
						struct list_head *compound_pagelist)
{
	struct page *src_page;
	struct page *tmp;
	pte_t *_pte;
	pte_t pteval;

	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
	     _pte++, address += PAGE_SIZE) {
		pteval = *_pte;
		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
			if (is_zero_pfn(pte_pfn(pteval))) {
				/*
				 * ptl mostly unnecessary.
				 */
				spin_lock(ptl);
				ptep_clear(vma->vm_mm, address, _pte);
				spin_unlock(ptl);
			}
		} else {
			src_page = pte_page(pteval);
			if (!PageCompound(src_page))
				release_pte_page(src_page);
			/*
			 * ptl mostly unnecessary, but preempt has to
			 * be disabled to update the per-cpu stats
			 * inside page_remove_rmap().
			 */
			spin_lock(ptl);
			ptep_clear(vma->vm_mm, address, _pte);
			page_remove_rmap(src_page, vma, false);
			spin_unlock(ptl);
			free_page_and_swap_cache(src_page);
		}
	}

	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
		list_del(&src_page->lru);
		mod_node_page_state(page_pgdat(src_page),
				    NR_ISOLATED_ANON + page_is_file_lru(src_page),
				    -compound_nr(src_page));
		unlock_page(src_page);
		free_swap_cache(src_page);
		putback_lru_page(src_page);
	}
}

static void __collapse_huge_page_copy_failed(pte_t *pte,
					     pmd_t *pmd,
					     pmd_t orig_pmd,
					     struct vm_area_struct *vma,
					     struct list_head *compound_pagelist)
{
	spinlock_t *pmd_ptl;

	/*
	 * Re-establish the PMD to point to the original page table
	 * entry. Restoring PMD needs to be done prior to releasing
	 * pages. Since pages are still isolated and locked here,
	 * acquiring anon_vma_lock_write is unnecessary.
	 */
	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
	spin_unlock(pmd_ptl);
	/*
	 * Release both raw and compound pages isolated
	 * in __collapse_huge_page_isolate.
	 */
	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
}

/*
 * __collapse_huge_page_copy - attempts to copy memory contents from raw
 * pages to a hugepage. Cleans up the raw pages if copying succeeds;
 * otherwise restores the original page table and releases isolated raw pages.
 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
 *
 * @pte: starting of the PTEs to copy from
 * @page: the new hugepage to copy contents to
 * @pmd: pointer to the new hugepage's PMD
 * @orig_pmd: the original raw pages' PMD
 * @vma: the original raw pages' virtual memory area
 * @address: starting address to copy
 * @ptl: lock on raw pages' PTEs
 * @compound_pagelist: list that stores compound pages
 */
static int __collapse_huge_page_copy(pte_t *pte,
				     struct page *page,
				     pmd_t *pmd,
				     pmd_t orig_pmd,
				     struct vm_area_struct *vma,
				     unsigned long address,
				     spinlock_t *ptl,
				     struct list_head *compound_pagelist)
{
	struct page *src_page;
	pte_t *_pte;
	pte_t pteval;
	unsigned long _address;
	int result = SCAN_SUCCEED;

	/*
	 * Copying pages' contents is subject to memory poison at any iteration.
	 */
	for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
	     _pte++, page++, _address += PAGE_SIZE) {
		pteval = *_pte;
		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			clear_user_highpage(page, _address);
			continue;
		}
		src_page = pte_page(pteval);
		if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
			result = SCAN_COPY_MC;
			break;
		}
	}

	if (likely(result == SCAN_SUCCEED))
		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
						    compound_pagelist);
	else
		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
						 compound_pagelist);

	return result;
}

static void khugepaged_alloc_sleep(void)
{
	DEFINE_WAIT(wait);

	add_wait_queue(&khugepaged_wait, &wait);
	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
	remove_wait_queue(&khugepaged_wait, &wait);
}

struct collapse_control khugepaged_collapse_control = {
	.is_khugepaged = true,
};

static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
{
	int i;

	/*
	 * If node_reclaim_mode is disabled, then no extra effort is made to
	 * allocate memory locally.
	 */
	if (!node_reclaim_enabled())
		return false;

	/* If there is a count for this node already, it must be acceptable */
	if (cc->node_load[nid])
		return false;

	for (i = 0; i < MAX_NUMNODES; i++) {
		if (!cc->node_load[i])
			continue;
		if (node_distance(nid, i) > node_reclaim_distance)
			return true;
	}
	return false;
}

#define khugepaged_defrag()					\
	(transparent_hugepage_flags &				\
	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))

/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
{
	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
}

#ifdef CONFIG_NUMA
static int hpage_collapse_find_target_node(struct collapse_control *cc)
{
	int nid, target_node = 0, max_value = 0;

	/* find first node with max normal pages hit */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		if (cc->node_load[nid] > max_value) {
			max_value = cc->node_load[nid];
			target_node = nid;
		}

	for_each_online_node(nid) {
		if (max_value == cc->node_load[nid])
			node_set(nid, cc->alloc_nmask);
	}

	return target_node;
}
#else
static int hpage_collapse_find_target_node(struct collapse_control *cc)
{
	return 0;
}
#endif

static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
				      nodemask_t *nmask)
{
	*hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
	if (unlikely(!*hpage)) {
		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
		return false;
	}

	prep_transhuge_page(*hpage);
	count_vm_event(THP_COLLAPSE_ALLOC);
	return true;
}

/*
 * If mmap_lock temporarily dropped, revalidate vma
 * before taking mmap_lock.
 * Returns enum scan_result value.
 */

static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
				   bool expect_anon,
				   struct vm_area_struct **vmap,
				   struct collapse_control *cc)
{
	struct vm_area_struct *vma;

	if (unlikely(hpage_collapse_test_exit(mm)))
		return SCAN_ANY_PROCESS;

	*vmap = vma = find_vma(mm, address);
	if (!vma)
		return SCAN_VMA_NULL;

	if (!transhuge_vma_suitable(vma, address))
		return SCAN_ADDRESS_RANGE;
	if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
				cc->is_khugepaged))
		return SCAN_VMA_CHECK;
	/*
	 * Anon VMA expected, the address may be unmapped then
	 * remapped to file after khugepaged reaquired the mmap_lock.
	 *
	 * hugepage_vma_check may return true for qualified file
	 * vmas.
	 */
	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
		return SCAN_PAGE_ANON;
	return SCAN_SUCCEED;
}

/*
 * See pmd_trans_unstable() for how the result may change out from
 * underneath us, even if we hold mmap_lock in read.
 */
static int find_pmd_or_thp_or_none(struct mm_struct *mm,
				   unsigned long address,
				   pmd_t **pmd)
{
	pmd_t pmde;

	*pmd = mm_find_pmd(mm, address);
	if (!*pmd)
		return SCAN_PMD_NULL;

	pmde = pmdp_get_lockless(*pmd);

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/* See comments in pmd_none_or_trans_huge_or_clear_bad() */
	barrier();
#endif
	if (pmd_none(pmde))
		return SCAN_PMD_NONE;
	if (!pmd_present(pmde))
		return SCAN_PMD_NULL;
	if (pmd_trans_huge(pmde))
		return SCAN_PMD_MAPPED;
	if (pmd_devmap(pmde))
		return SCAN_PMD_NULL;
	if (pmd_bad(pmde))
		return SCAN_PMD_NULL;
	return SCAN_SUCCEED;
}

static int check_pmd_still_valid(struct mm_struct *mm,
				 unsigned long address,
				 pmd_t *pmd)
{
	pmd_t *new_pmd;
	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);

	if (result != SCAN_SUCCEED)
		return result;
	if (new_pmd != pmd)
		return SCAN_FAIL;
	return SCAN_SUCCEED;
}

/*
 * Bring missing pages in from swap, to complete THP collapse.
 * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
 *
 * Called and returns without pte mapped or spinlocks held.
 * Note that if false is returned, mmap_lock will be released.
 */

static int __collapse_huge_page_swapin(struct mm_struct *mm,
				       struct vm_area_struct *vma,
				       unsigned long haddr, pmd_t *pmd,
				       int referenced)
{
	int swapped_in = 0;
	vm_fault_t ret = 0;
	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);

	for (address = haddr; address < end; address += PAGE_SIZE) {
		struct vm_fault vmf = {
			.vma = vma,
			.address = address,
			.pgoff = linear_page_index(vma, haddr),
			.flags = FAULT_FLAG_ALLOW_RETRY,
			.pmd = pmd,
		};

		vmf.pte = pte_offset_map(pmd, address);
		vmf.orig_pte = *vmf.pte;
		if (!is_swap_pte(vmf.orig_pte)) {
			pte_unmap(vmf.pte);
			continue;
		}
		ret = do_swap_page(&vmf);

		/*
		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
		 * we do not retry here and swap entry will remain in pagetable
		 * resulting in later failure.
		 */
		if (ret & VM_FAULT_RETRY) {
			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
			/* Likely, but not guaranteed, that page lock failed */
			return SCAN_PAGE_LOCK;
		}
		if (ret & VM_FAULT_ERROR) {
			mmap_read_unlock(mm);
			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
			return SCAN_FAIL;
		}
		swapped_in++;
	}

	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
	if (swapped_in)
		lru_add_drain();

	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
	return SCAN_SUCCEED;
}

static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
			      struct collapse_control *cc)
{
	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
		     GFP_TRANSHUGE);
	int node = hpage_collapse_find_target_node(cc);
	struct folio *folio;

	if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
		return SCAN_ALLOC_HUGE_PAGE_FAIL;

	folio = page_folio(*hpage);
	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
		folio_put(folio);
		*hpage = NULL;
		return SCAN_CGROUP_CHARGE_FAIL;
	}
	count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);

	return SCAN_SUCCEED;
}

static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
			      int referenced, int unmapped,
			      struct collapse_control *cc)
{
	LIST_HEAD(compound_pagelist);
	pmd_t *pmd, _pmd;
	pte_t *pte;
	pgtable_t pgtable;
	struct page *hpage;
	spinlock_t *pmd_ptl, *pte_ptl;
	int result = SCAN_FAIL;
	struct vm_area_struct *vma;
	struct mmu_notifier_range range;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	/*
	 * Before allocating the hugepage, release the mmap_lock read lock.
	 * The allocation can take potentially a long time if it involves
	 * sync compaction, and we do not need to hold the mmap_lock during
	 * that. We will recheck the vma after taking it again in write mode.
	 */
	mmap_read_unlock(mm);

	result = alloc_charge_hpage(&hpage, mm, cc);
	if (result != SCAN_SUCCEED)
		goto out_nolock;

	mmap_read_lock(mm);
	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
	if (result != SCAN_SUCCEED) {
		mmap_read_unlock(mm);
		goto out_nolock;
	}

	result = find_pmd_or_thp_or_none(mm, address, &pmd);
	if (result != SCAN_SUCCEED) {
		mmap_read_unlock(mm);
		goto out_nolock;
	}

	if (unmapped) {
		/*
		 * __collapse_huge_page_swapin will return with mmap_lock
		 * released when it fails. So we jump out_nolock directly in
		 * that case.  Continuing to collapse causes inconsistency.
		 */
		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
						     referenced);
		if (result != SCAN_SUCCEED)
			goto out_nolock;
	}

	mmap_read_unlock(mm);
	/*
	 * Prevent all access to pagetables with the exception of
	 * gup_fast later handled by the ptep_clear_flush and the VM
	 * handled by the anon_vma lock + PG_lock.
	 */
	mmap_write_lock(mm);
	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
	if (result != SCAN_SUCCEED)
		goto out_up_write;
	/* check if the pmd is still valid */
	result = check_pmd_still_valid(mm, address, pmd);
	if (result != SCAN_SUCCEED)
		goto out_up_write;

	vma_start_write(vma);
	anon_vma_lock_write(vma->anon_vma);

	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
				address + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);

	pte = pte_offset_map(pmd, address);
	pte_ptl = pte_lockptr(mm, pmd);

	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
	/*
	 * This removes any huge TLB entry from the CPU so we won't allow
	 * huge and small TLB entries for the same virtual address to
	 * avoid the risk of CPU bugs in that area.
	 *
	 * Parallel fast GUP is fine since fast GUP will back off when
	 * it detects PMD is changed.
	 */
	_pmd = pmdp_collapse_flush(vma, address, pmd);
	spin_unlock(pmd_ptl);
	mmu_notifier_invalidate_range_end(&range);
	tlb_remove_table_sync_one();

	spin_lock(pte_ptl);
	result =  __collapse_huge_page_isolate(vma, address, pte, cc,
					       &compound_pagelist);
	spin_unlock(pte_ptl);

	if (unlikely(result != SCAN_SUCCEED)) {
		pte_unmap(pte);
		spin_lock(pmd_ptl);
		BUG_ON(!pmd_none(*pmd));
		/*
		 * We can only use set_pmd_at when establishing
		 * hugepmds and never for establishing regular pmds that
		 * points to regular pagetables. Use pmd_populate for that
		 */
		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
		spin_unlock(pmd_ptl);
		anon_vma_unlock_write(vma->anon_vma);
		goto out_up_write;
	}

	/*
	 * All pages are isolated and locked so anon_vma rmap
	 * can't run anymore.
	 */
	anon_vma_unlock_write(vma->anon_vma);

	result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
					   vma, address, pte_ptl,
					   &compound_pagelist);
	pte_unmap(pte);
	if (unlikely(result != SCAN_SUCCEED))
		goto out_up_write;

	/*
	 * spin_lock() below is not the equivalent of smp_wmb(), but
	 * the smp_wmb() inside __SetPageUptodate() can be reused to
	 * avoid the copy_huge_page writes to become visible after
	 * the set_pmd_at() write.
	 */
	__SetPageUptodate(hpage);
	pgtable = pmd_pgtable(_pmd);

	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);

	spin_lock(pmd_ptl);
	BUG_ON(!pmd_none(*pmd));
	page_add_new_anon_rmap(hpage, vma, address);
	lru_cache_add_inactive_or_unevictable(hpage, vma);
	pgtable_trans_huge_deposit(mm, pmd, pgtable);
	set_pmd_at(mm, address, pmd, _pmd);
	update_mmu_cache_pmd(vma, address, pmd);
	spin_unlock(pmd_ptl);

	hpage = NULL;

	result = SCAN_SUCCEED;
out_up_write:
	mmap_write_unlock(mm);
out_nolock:
	if (hpage)
		put_page(hpage);
	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
	return result;
}

static int hpage_collapse_scan_pmd(struct mm_struct *mm,
				   struct vm_area_struct *vma,
				   unsigned long address, bool *mmap_locked,
				   struct collapse_control *cc)
{
	pmd_t *pmd;
	pte_t *pte, *_pte;
	int result = SCAN_FAIL, referenced = 0;
	int none_or_zero = 0, shared = 0;
	struct page *page = NULL;
	unsigned long _address;
	spinlock_t *ptl;
	int node = NUMA_NO_NODE, unmapped = 0;
	bool writable = false;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	result = find_pmd_or_thp_or_none(mm, address, &pmd);
	if (result != SCAN_SUCCEED)
		goto out;

	memset(cc->node_load, 0, sizeof(cc->node_load));
	nodes_clear(cc->alloc_nmask);
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
	     _pte++, _address += PAGE_SIZE) {
		pte_t pteval = *_pte;
		if (is_swap_pte(pteval)) {
			++unmapped;
			if (!cc->is_khugepaged ||
			    unmapped <= khugepaged_max_ptes_swap) {
				/*
				 * Always be strict with uffd-wp
				 * enabled swap entries.  Please see
				 * comment below for pte_uffd_wp().
				 */
				if (pte_swp_uffd_wp_any(pteval)) {
					result = SCAN_PTE_UFFD_WP;
					goto out_unmap;
				}
				continue;
			} else {
				result = SCAN_EXCEED_SWAP_PTE;
				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
				goto out_unmap;
			}
		}
		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
			++none_or_zero;
			if (!userfaultfd_armed(vma) &&
			    (!cc->is_khugepaged ||
			     none_or_zero <= khugepaged_max_ptes_none)) {
				continue;
			} else {
				result = SCAN_EXCEED_NONE_PTE;
				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
				goto out_unmap;
			}
		}
		if (pte_uffd_wp(pteval)) {
			/*
			 * Don't collapse the page if any of the small
			 * PTEs are armed with uffd write protection.
			 * Here we can also mark the new huge pmd as
			 * write protected if any of the small ones is
			 * marked but that could bring unknown
			 * userfault messages that falls outside of
			 * the registered range.  So, just be simple.
			 */
			result = SCAN_PTE_UFFD_WP;
			goto out_unmap;
		}
		if (pte_write(pteval))
			writable = true;

		page = vm_normal_page(vma, _address, pteval);
		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
			result = SCAN_PAGE_NULL;
			goto out_unmap;
		}

		if (page_mapcount(page) > 1) {
			++shared;
			if (cc->is_khugepaged &&
			    shared > khugepaged_max_ptes_shared) {
				result = SCAN_EXCEED_SHARED_PTE;
				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
				goto out_unmap;
			}
		}

		page = compound_head(page);

		/*
		 * Record which node the original page is from and save this
		 * information to cc->node_load[].
		 * Khugepaged will allocate hugepage from the node has the max
		 * hit record.
		 */
		node = page_to_nid(page);
		if (hpage_collapse_scan_abort(node, cc)) {
			result = SCAN_SCAN_ABORT;
			goto out_unmap;
		}
		cc->node_load[node]++;
		if (!PageLRU(page)) {
			result = SCAN_PAGE_LRU;
			goto out_unmap;
		}
		if (PageLocked(page)) {
			result = SCAN_PAGE_LOCK;
			goto out_unmap;
		}
		if (!PageAnon(page)) {
			result = SCAN_PAGE_ANON;
			goto out_unmap;
		}

		/*
		 * Check if the page has any GUP (or other external) pins.
		 *
		 * Here the check may be racy:
		 * it may see total_mapcount > refcount in some cases?
		 * But such case is ephemeral we could always retry collapse
		 * later.  However it may report false positive if the page
		 * has excessive GUP pins (i.e. 512).  Anyway the same check
		 * will be done again later the risk seems low.
		 */
		if (!is_refcount_suitable(page)) {
			result = SCAN_PAGE_COUNT;
			goto out_unmap;
		}

		/*
		 * If collapse was initiated by khugepaged, check that there is
		 * enough young pte to justify collapsing the page
		 */
		if (cc->is_khugepaged &&
		    (pte_young(pteval) || page_is_young(page) ||
		     PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
								     address)))
			referenced++;
	}
	if (!writable) {
		result = SCAN_PAGE_RO;
	} else if (cc->is_khugepaged &&
		   (!referenced ||
		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
		result = SCAN_LACK_REFERENCED_PAGE;
	} else {
		result = SCAN_SUCCEED;
	}
out_unmap:
	pte_unmap_unlock(pte, ptl);
	if (result == SCAN_SUCCEED) {
		result = collapse_huge_page(mm, address, referenced,
					    unmapped, cc);
		/* collapse_huge_page will return with the mmap_lock released */
		*mmap_locked = false;
	}
out:
	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
				     none_or_zero, result, unmapped);
	return result;
}

static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
{
	struct mm_slot *slot = &mm_slot->slot;
	struct mm_struct *mm = slot->mm;

	lockdep_assert_held(&khugepaged_mm_lock);

	if (hpage_collapse_test_exit(mm)) {
		/* free mm_slot */
		hash_del(&slot->hash);
		list_del(&slot->mm_node);

		/*
		 * Not strictly needed because the mm exited already.
		 *
		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
		 */

		/* khugepaged_mm_lock actually not necessary for the below */
		mm_slot_free(mm_slot_cache, mm_slot);
		mmdrop(mm);
	}
}

#ifdef CONFIG_SHMEM
/*
 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
 * khugepaged should try to collapse the page table.
 *
 * Note that following race exists:
 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A,
 *     emptying the A's ->pte_mapped_thp[] array.
 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and
 *     retract_page_tables() finds a VMA in mm_struct A mapping the same extent
 *     (at virtual address X) and adds an entry (for X) into mm_struct A's
 *     ->pte-mapped_thp[] array.
 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X,
 *     sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry
 *     (for X) into mm_struct A's ->pte-mapped_thp[] array.
 * Thus, it's possible the same address is added multiple times for the same
 * mm_struct.  Should this happen, we'll simply attempt
 * collapse_pte_mapped_thp() multiple times for the same address, under the same
 * exclusive mmap_lock, and assuming the first call is successful, subsequent
 * attempts will return quickly (without grabbing any additional locks) when
 * a huge pmd is found in find_pmd_or_thp_or_none().  Since this is a cheap
 * check, and since this is a rare occurrence, the cost of preventing this
 * "multiple-add" is thought to be more expensive than just handling it, should
 * it occur.
 */
static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
					  unsigned long addr)
{
	struct khugepaged_mm_slot *mm_slot;
	struct mm_slot *slot;
	bool ret = false;

	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);

	spin_lock(&khugepaged_mm_lock);
	slot = mm_slot_lookup(mm_slots_hash, mm);
	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) {
		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
		ret = true;
	}
	spin_unlock(&khugepaged_mm_lock);
	return ret;
}

/* hpage must be locked, and mmap_lock must be held in write */
static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
			pmd_t *pmdp, struct page *hpage)
{
	struct vm_fault vmf = {
		.vma = vma,
		.address = addr,
		.flags = 0,
		.pmd = pmdp,
	};

	VM_BUG_ON(!PageTransHuge(hpage));
	mmap_assert_write_locked(vma->vm_mm);

	if (do_set_pmd(&vmf, hpage))
		return SCAN_FAIL;

	get_page(hpage);
	return SCAN_SUCCEED;
}

/*
 * A note about locking:
 * Trying to take the page table spinlocks would be useless here because those
 * are only used to synchronize:
 *
 *  - modifying terminal entries (ones that point to a data page, not to another
 *    page table)
 *  - installing *new* non-terminal entries
 *
 * Instead, we need roughly the same kind of protection as free_pgtables() or
 * mm_take_all_locks() (but only for a single VMA):
 * The mmap lock together with this VMA's rmap locks covers all paths towards
 * the page table entries we're messing with here, except for hardware page
 * table walks and lockless_pages_from_mm().
 */
static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
				  unsigned long addr, pmd_t *pmdp)
{
	pmd_t pmd;
	struct mmu_notifier_range range;

	mmap_assert_write_locked(mm);
	if (vma->vm_file)
		lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem);
	/*
	 * All anon_vmas attached to the VMA have the same root and are
	 * therefore locked by the same lock.
	 */
	if (vma->anon_vma)
		lockdep_assert_held_write(&vma->anon_vma->root->rwsem);

	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
				addr + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	pmd = pmdp_collapse_flush(vma, addr, pmdp);
	tlb_remove_table_sync_one();
	mmu_notifier_invalidate_range_end(&range);
	mm_dec_nr_ptes(mm);
	page_table_check_pte_clear_range(mm, addr, pmd);
	pte_free(mm, pmd_pgtable(pmd));
}

/**
 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
 * address haddr.
 *
 * @mm: process address space where collapse happens
 * @addr: THP collapse address
 * @install_pmd: If a huge PMD should be installed
 *
 * This function checks whether all the PTEs in the PMD are pointing to the
 * right THP. If so, retract the page table so the THP can refault in with
 * as pmd-mapped. Possibly install a huge PMD mapping the THP.
 */
int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
			    bool install_pmd)
{
	unsigned long haddr = addr & HPAGE_PMD_MASK;
	struct vm_area_struct *vma = vma_lookup(mm, haddr);
	struct page *hpage;
	pte_t *start_pte, *pte;
	pmd_t *pmd;
	spinlock_t *ptl;
	int count = 0, result = SCAN_FAIL;
	int i;

	mmap_assert_write_locked(mm);

	/* Fast check before locking page if already PMD-mapped */
	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
	if (result == SCAN_PMD_MAPPED)
		return result;

	if (!vma || !vma->vm_file ||
	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
		return SCAN_VMA_CHECK;

	/*
	 * If we are here, we've succeeded in replacing all the native pages
	 * in the page cache with a single hugepage. If a mm were to fault-in
	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
	 * analogously elide sysfs THP settings here.
	 */
	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
		return SCAN_VMA_CHECK;

	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
	if (userfaultfd_wp(vma))
		return SCAN_PTE_UFFD_WP;

	hpage = find_lock_page(vma->vm_file->f_mapping,
			       linear_page_index(vma, haddr));
	if (!hpage)
		return SCAN_PAGE_NULL;

	if (!PageHead(hpage)) {
		result = SCAN_FAIL;
		goto drop_hpage;
	}

	if (compound_order(hpage) != HPAGE_PMD_ORDER) {
		result = SCAN_PAGE_COMPOUND;
		goto drop_hpage;
	}

	switch (result) {
	case SCAN_SUCCEED:
		break;
	case SCAN_PMD_NONE:
		/*
		 * In MADV_COLLAPSE path, possible race with khugepaged where
		 * all pte entries have been removed and pmd cleared.  If so,
		 * skip all the pte checks and just update the pmd mapping.
		 */
		goto maybe_install_pmd;
	default:
		goto drop_hpage;
	}

	/* Lock the vma before taking i_mmap and page table locks */
	vma_start_write(vma);

	/*
	 * We need to lock the mapping so that from here on, only GUP-fast and
	 * hardware page walks can access the parts of the page tables that
	 * we're operating on.
	 * See collapse_and_free_pmd().
	 */
	i_mmap_lock_write(vma->vm_file->f_mapping);

	/*
	 * This spinlock should be unnecessary: Nobody else should be accessing
	 * the page tables under spinlock protection here, only
	 * lockless_pages_from_mm() and the hardware page walker can access page
	 * tables while all the high-level locks are held in write mode.
	 */
	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
	result = SCAN_FAIL;

	/* step 1: check all mapped PTEs are to the right huge page */
	for (i = 0, addr = haddr, pte = start_pte;
	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
		struct page *page;

		/* empty pte, skip */
		if (pte_none(*pte))
			continue;

		/* page swapped out, abort */
		if (!pte_present(*pte)) {
			result = SCAN_PTE_NON_PRESENT;
			goto abort;
		}

		page = vm_normal_page(vma, addr, *pte);
		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
			page = NULL;
		/*
		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
		 * page table, but the new page will not be a subpage of hpage.
		 */
		if (hpage + i != page)
			goto abort;
		count++;
	}

	/* step 2: adjust rmap */
	for (i = 0, addr = haddr, pte = start_pte;
	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
		struct page *page;

		if (pte_none(*pte))
			continue;
		page = vm_normal_page(vma, addr, *pte);
		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
			goto abort;
		page_remove_rmap(page, vma, false);
	}

	pte_unmap_unlock(start_pte, ptl);

	/* step 3: set proper refcount and mm_counters. */
	if (count) {
		page_ref_sub(hpage, count);
		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
	}

	/* step 4: remove pte entries */
	/* we make no change to anon, but protect concurrent anon page lookup */
	if (vma->anon_vma)
		anon_vma_lock_write(vma->anon_vma);

	collapse_and_free_pmd(mm, vma, haddr, pmd);

	if (vma->anon_vma)
		anon_vma_unlock_write(vma->anon_vma);
	i_mmap_unlock_write(vma->vm_file->f_mapping);

maybe_install_pmd:
	/* step 5: install pmd entry */
	result = install_pmd
			? set_huge_pmd(vma, haddr, pmd, hpage)
			: SCAN_SUCCEED;

drop_hpage:
	unlock_page(hpage);
	put_page(hpage);
	return result;

abort:
	pte_unmap_unlock(start_pte, ptl);
	i_mmap_unlock_write(vma->vm_file->f_mapping);
	goto drop_hpage;
}

static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
{
	struct mm_slot *slot = &mm_slot->slot;
	struct mm_struct *mm = slot->mm;
	int i;

	if (likely(mm_slot->nr_pte_mapped_thp == 0))
		return;

	if (!mmap_write_trylock(mm))
		return;

	if (unlikely(hpage_collapse_test_exit(mm)))
		goto out;

	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false);

out:
	mm_slot->nr_pte_mapped_thp = 0;
	mmap_write_unlock(mm);
}

static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff,
			       struct mm_struct *target_mm,
			       unsigned long target_addr, struct page *hpage,
			       struct collapse_control *cc)
{
	struct vm_area_struct *vma;
	int target_result = SCAN_FAIL;

	i_mmap_lock_write(mapping);
	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
		int result = SCAN_FAIL;
		struct mm_struct *mm = NULL;
		unsigned long addr = 0;
		pmd_t *pmd;
		bool is_target = false;

		/*
		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
		 * got written to. These VMAs are likely not worth investing
		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
		 * later.
		 *
		 * Note that vma->anon_vma check is racy: it can be set up after
		 * the check but before we took mmap_lock by the fault path.
		 * But page lock would prevent establishing any new ptes of the
		 * page, so we are safe.
		 *
		 * An alternative would be drop the check, but check that page
		 * table is clear before calling pmdp_collapse_flush() under
		 * ptl. It has higher chance to recover THP for the VMA, but
		 * has higher cost too. It would also probably require locking
		 * the anon_vma.
		 */
		if (READ_ONCE(vma->anon_vma)) {
			result = SCAN_PAGE_ANON;
			goto next;
		}
		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
		if (addr & ~HPAGE_PMD_MASK ||
		    vma->vm_end < addr + HPAGE_PMD_SIZE) {
			result = SCAN_VMA_CHECK;
			goto next;
		}
		mm = vma->vm_mm;
		is_target = mm == target_mm && addr == target_addr;
		result = find_pmd_or_thp_or_none(mm, addr, &pmd);
		if (result != SCAN_SUCCEED)
			goto next;
		/*
		 * We need exclusive mmap_lock to retract page table.
		 *
		 * We use trylock due to lock inversion: we need to acquire
		 * mmap_lock while holding page lock. Fault path does it in
		 * reverse order. Trylock is a way to avoid deadlock.
		 *
		 * Also, it's not MADV_COLLAPSE's job to collapse other
		 * mappings - let khugepaged take care of them later.
		 */
		result = SCAN_PTE_MAPPED_HUGEPAGE;
		if ((cc->is_khugepaged || is_target) &&
		    mmap_write_trylock(mm)) {
			/* trylock for the same lock inversion as above */
			if (!vma_try_start_write(vma))
				goto unlock_next;

			/*
			 * Re-check whether we have an ->anon_vma, because
			 * collapse_and_free_pmd() requires that either no
			 * ->anon_vma exists or the anon_vma is locked.
			 * We already checked ->anon_vma above, but that check
			 * is racy because ->anon_vma can be populated under the
			 * mmap lock in read mode.
			 */
			if (vma->anon_vma) {
				result = SCAN_PAGE_ANON;
				goto unlock_next;
			}
			/*
			 * When a vma is registered with uffd-wp, we can't
			 * recycle the pmd pgtable because there can be pte
			 * markers installed.  Skip it only, so the rest mm/vma
			 * can still have the same file mapped hugely, however
			 * it'll always mapped in small page size for uffd-wp
			 * registered ranges.
			 */
			if (hpage_collapse_test_exit(mm)) {
				result = SCAN_ANY_PROCESS;
				goto unlock_next;
			}
			if (userfaultfd_wp(vma)) {
				result = SCAN_PTE_UFFD_WP;
				goto unlock_next;
			}
			collapse_and_free_pmd(mm, vma, addr, pmd);
			if (!cc->is_khugepaged && is_target)
				result = set_huge_pmd(vma, addr, pmd, hpage);
			else
				result = SCAN_SUCCEED;

unlock_next:
			mmap_write_unlock(mm);
			goto next;
		}
		/*
		 * Calling context will handle target mm/addr. Otherwise, let
		 * khugepaged try again later.
		 */
		if (!is_target) {
			khugepaged_add_pte_mapped_thp(mm, addr);
			continue;
		}
next:
		if (is_target)
			target_result = result;
	}
	i_mmap_unlock_write(mapping);
	return target_result;
}

/**
 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
 *
 * @mm: process address space where collapse happens
 * @addr: virtual collapse start address
 * @file: file that collapse on
 * @start: collapse start address
 * @cc: collapse context and scratchpad
 *
 * Basic scheme is simple, details are more complex:
 *  - allocate and lock a new huge page;
 *  - scan page cache replacing old pages with the new one
 *    + swap/gup in pages if necessary;
 *    + keep old pages around in case rollback is required;
 *  - finalize updates to the page cache;
 *  - if replacing succeeds:
 *    + copy data over;
 *    + free old pages;
 *    + unlock huge page;
 *  - if replacing failed;
 *    + put all pages back and unfreeze them;
 *    + restore gaps in the page cache;
 *    + unlock and free huge page;
 */
static int collapse_file(struct mm_struct *mm, unsigned long addr,
			 struct file *file, pgoff_t start,
			 struct collapse_control *cc)
{
	struct address_space *mapping = file->f_mapping;
	struct page *hpage;
	struct page *page;
	struct page *tmp;
	struct folio *folio;
	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
	LIST_HEAD(pagelist);
	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
	int nr_none = 0, result = SCAN_SUCCEED;
	bool is_shmem = shmem_file(file);
	int nr = 0;

	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));

	result = alloc_charge_hpage(&hpage, mm, cc);
	if (result != SCAN_SUCCEED)
		goto out;

	__SetPageLocked(hpage);
	if (is_shmem)
		__SetPageSwapBacked(hpage);
	hpage->index = start;
	hpage->mapping = mapping;

	/*
	 * Ensure we have slots for all the pages in the range.  This is
	 * almost certainly a no-op because most of the pages must be present
	 */
	do {
		xas_lock_irq(&xas);
		xas_create_range(&xas);
		if (!xas_error(&xas))
			break;
		xas_unlock_irq(&xas);
		if (!xas_nomem(&xas, GFP_KERNEL)) {
			result = SCAN_FAIL;
			goto rollback;
		}
	} while (1);

	/*
	 * At this point the hpage is locked and not up-to-date.
	 * It's safe to insert it into the page cache, because nobody would
	 * be able to map it or use it in another way until we unlock it.
	 */

	xas_set(&xas, start);
	for (index = start; index < end; index++) {
		page = xas_next(&xas);

		VM_BUG_ON(index != xas.xa_index);
		if (is_shmem) {
			if (!page) {
				/*
				 * Stop if extent has been truncated or
				 * hole-punched, and is now completely
				 * empty.
				 */
				if (index == start) {
					if (!xas_next_entry(&xas, end - 1)) {
						result = SCAN_TRUNCATED;
						goto xa_locked;
					}
					xas_set(&xas, index + 1);
				}
				if (!shmem_charge(mapping->host, 1)) {
					result = SCAN_FAIL;
					goto xa_locked;
				}
				xas_store(&xas, hpage);
				if (xas_error(&xas)) {
					/* revert shmem_charge performed
					 * in the previous condition
					 */
					mapping->nrpages--;
					shmem_uncharge(mapping->host, 1);
					result = SCAN_STORE_FAILED;
					goto xa_locked;
				}
				nr_none++;
				continue;
			}

			if (xa_is_value(page) || !PageUptodate(page)) {
				xas_unlock_irq(&xas);
				/* swap in or instantiate fallocated page */
				if (shmem_get_folio(mapping->host, index,
						&folio, SGP_NOALLOC)) {
					result = SCAN_FAIL;
					goto xa_unlocked;
				}
				/* drain pagevecs to help isolate_lru_page() */
				lru_add_drain();
				page = folio_file_page(folio, index);
			} else if (trylock_page(page)) {
				get_page(page);
				xas_unlock_irq(&xas);
			} else {
				result = SCAN_PAGE_LOCK;
				goto xa_locked;
			}
		} else {	/* !is_shmem */
			if (!page || xa_is_value(page)) {
				xas_unlock_irq(&xas);
				page_cache_sync_readahead(mapping, &file->f_ra,
							  file, index,
							  end - index);
				/* drain pagevecs to help isolate_lru_page() */
				lru_add_drain();
				page = find_lock_page(mapping, index);
				if (unlikely(page == NULL)) {
					result = SCAN_FAIL;
					goto xa_unlocked;
				}
			} else if (PageDirty(page)) {
				/*
				 * khugepaged only works on read-only fd,
				 * so this page is dirty because it hasn't
				 * been flushed since first write. There
				 * won't be new dirty pages.
				 *
				 * Trigger async flush here and hope the
				 * writeback is done when khugepaged
				 * revisits this page.
				 *
				 * This is a one-off situation. We are not
				 * forcing writeback in loop.
				 */
				xas_unlock_irq(&xas);
				filemap_flush(mapping);
				result = SCAN_FAIL;
				goto xa_unlocked;
			} else if (PageWriteback(page)) {
				xas_unlock_irq(&xas);
				result = SCAN_FAIL;
				goto xa_unlocked;
			} else if (trylock_page(page)) {
				get_page(page);
				xas_unlock_irq(&xas);
			} else {
				result = SCAN_PAGE_LOCK;
				goto xa_locked;
			}
		}

		/*
		 * The page must be locked, so we can drop the i_pages lock
		 * without racing with truncate.
		 */
		VM_BUG_ON_PAGE(!PageLocked(page), page);

		/* make sure the page is up to date */
		if (unlikely(!PageUptodate(page))) {
			result = SCAN_FAIL;
			goto out_unlock;
		}

		/*
		 * If file was truncated then extended, or hole-punched, before
		 * we locked the first page, then a THP might be there already.
		 * This will be discovered on the first iteration.
		 */
		if (PageTransCompound(page)) {
			struct page *head = compound_head(page);

			result = compound_order(head) == HPAGE_PMD_ORDER &&
					head->index == start
					/* Maybe PMD-mapped */
					? SCAN_PTE_MAPPED_HUGEPAGE
					: SCAN_PAGE_COMPOUND;
			goto out_unlock;
		}

		folio = page_folio(page);

		if (folio_mapping(folio) != mapping) {
			result = SCAN_TRUNCATED;
			goto out_unlock;
		}

		if (!is_shmem && (folio_test_dirty(folio) ||
				  folio_test_writeback(folio))) {
			/*
			 * khugepaged only works on read-only fd, so this
			 * page is dirty because it hasn't been flushed
			 * since first write.
			 */
			result = SCAN_FAIL;
			goto out_unlock;
		}

		if (!folio_isolate_lru(folio)) {
			result = SCAN_DEL_PAGE_LRU;
			goto out_unlock;
		}

		if (folio_has_private(folio) &&
		    !filemap_release_folio(folio, GFP_KERNEL)) {
			result = SCAN_PAGE_HAS_PRIVATE;
			folio_putback_lru(folio);
			goto out_unlock;
		}

		if (folio_mapped(folio))
			try_to_unmap(folio,
					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);

		xas_lock_irq(&xas);
		xas_set(&xas, index);

		VM_BUG_ON_PAGE(page != xas_load(&xas), page);

		/*
		 * The page is expected to have page_count() == 3:
		 *  - we hold a pin on it;
		 *  - one reference from page cache;
		 *  - one from isolate_lru_page;
		 */
		if (!page_ref_freeze(page, 3)) {
			result = SCAN_PAGE_COUNT;
			xas_unlock_irq(&xas);
			putback_lru_page(page);
			goto out_unlock;
		}

		/*
		 * Add the page to the list to be able to undo the collapse if
		 * something go wrong.
		 */
		list_add_tail(&page->lru, &pagelist);

		/* Finally, replace with the new page. */
		xas_store(&xas, hpage);
		/* We can't get an ENOMEM here (because the allocation happened before)
		 * but let's check for errors (XArray implementation can be
		 * changed in the future)
		 */
		WARN_ON_ONCE(xas_error(&xas));
		continue;
out_unlock:
		unlock_page(page);
		put_page(page);
		goto xa_unlocked;
	}

	if (!is_shmem) {
		filemap_nr_thps_inc(mapping);
		/*
		 * Paired with smp_mb() in do_dentry_open() to ensure
		 * i_writecount is up to date and the update to nr_thps is
		 * visible. Ensures the page cache will be truncated if the
		 * file is opened writable.
		 */
		smp_mb();
		if (inode_is_open_for_write(mapping->host)) {
			result = SCAN_FAIL;
			filemap_nr_thps_dec(mapping);
		}
	}

	/* Here we can't get an ENOMEM (because entries were
	 * previously allocated) But let's check for errors
	 * (XArray implementation can be changed in the future)
	 */
	WARN_ON_ONCE(xas_error(&xas));
xa_locked:
	xas_unlock_irq(&xas);
xa_unlocked:

	/*
	 * If collapse is successful, flush must be done now before copying.
	 * If collapse is unsuccessful, does flush actually need to be done?
	 * Do it anyway, to clear the state.
	 */
	try_to_unmap_flush();

	if (result != SCAN_SUCCEED)
		goto rollback;

	/*
	 * Replacing old pages with new one has succeeded, now we
	 * attempt to copy the contents.
	 */
	index = start;
	list_for_each_entry(page, &pagelist, lru) {
		while (index < page->index) {
			clear_highpage(hpage + (index % HPAGE_PMD_NR));
			index++;
		}
		if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) {
			result = SCAN_COPY_MC;
			goto rollback;
		}
		index++;
	}
	while (index < end) {
		clear_highpage(hpage + (index % HPAGE_PMD_NR));
		index++;
	}

	if (nr_none) {
		struct vm_area_struct *vma;
		int nr_none_check = 0;

		i_mmap_lock_read(mapping);
		xas_lock_irq(&xas);

		xas_set(&xas, start);
		for (index = start; index < end; index++) {
			if (!xas_next(&xas)) {
				xas_store(&xas, XA_RETRY_ENTRY);
				if (xas_error(&xas)) {
					result = SCAN_STORE_FAILED;
					goto immap_locked;
				}
				nr_none_check++;
			}
		}

		if (nr_none != nr_none_check) {
			result = SCAN_PAGE_FILLED;
			goto immap_locked;
		}

		/*
		 * If userspace observed a missing page in a VMA with a MODE_MISSING
		 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that
		 * page. If so, we need to roll back to avoid suppressing such an
		 * event. Since wp/minor userfaultfds don't give userspace any
		 * guarantees that the kernel doesn't fill a missing page with a zero
		 * page, so they don't matter here.
		 *
		 * Any userfaultfds registered after this point will not be able to
		 * observe any missing pages due to the previously inserted retry
		 * entries.
		 */
		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
			if (userfaultfd_missing(vma)) {
				result = SCAN_EXCEED_NONE_PTE;
				goto immap_locked;
			}
		}

immap_locked:
		i_mmap_unlock_read(mapping);
		if (result != SCAN_SUCCEED) {
			xas_set(&xas, start);
			for (index = start; index < end; index++) {
				if (xas_next(&xas) == XA_RETRY_ENTRY)
					xas_store(&xas, NULL);
			}

			xas_unlock_irq(&xas);
			goto rollback;
		}
	} else {
		xas_lock_irq(&xas);
	}

	nr = thp_nr_pages(hpage);
	if (is_shmem)
		__mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
	else
		__mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);

	if (nr_none) {
		__mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
		/* nr_none is always 0 for non-shmem. */
		__mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
	}
	/* Join all the small entries into a single multi-index entry. */
	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
	xas_store(&xas, hpage);
	xas_unlock_irq(&xas);

	folio = page_folio(hpage);
	folio_mark_uptodate(folio);
	folio_ref_add(folio, HPAGE_PMD_NR - 1);

	if (is_shmem)
		folio_mark_dirty(folio);
	folio_add_lru(folio);

	/*
	 * Remove pte page tables, so we can re-fault the page as huge.
	 */
	result = retract_page_tables(mapping, start, mm, addr, hpage,
				     cc);
	unlock_page(hpage);

	/*
	 * The collapse has succeeded, so free the old pages.
	 */
	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
		list_del(&page->lru);
		page->mapping = NULL;
		page_ref_unfreeze(page, 1);
		ClearPageActive(page);
		ClearPageUnevictable(page);
		unlock_page(page);
		put_page(page);
	}

	goto out;

rollback:
	/* Something went wrong: roll back page cache changes */
	xas_lock_irq(&xas);
	if (nr_none) {
		mapping->nrpages -= nr_none;
		shmem_uncharge(mapping->host, nr_none);
	}

	xas_set(&xas, start);
	end = index;
	for (index = start; index < end; index++) {
		xas_next(&xas);
		page = list_first_entry_or_null(&pagelist,
				struct page, lru);
		if (!page || xas.xa_index < page->index) {
			nr_none--;
			continue;
		}

		VM_BUG_ON_PAGE(page->index != xas.xa_index, page);

		/* Unfreeze the page. */
		list_del(&page->lru);
		page_ref_unfreeze(page, 2);
		xas_store(&xas, page);
		xas_pause(&xas);
		xas_unlock_irq(&xas);
		unlock_page(page);
		putback_lru_page(page);
		xas_lock_irq(&xas);
	}
	VM_BUG_ON(nr_none);
	/*
	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
	 * file only. This undo is not needed unless failure is
	 * due to SCAN_COPY_MC.
	 */
	if (!is_shmem && result == SCAN_COPY_MC) {
		filemap_nr_thps_dec(mapping);
		/*
		 * Paired with smp_mb() in do_dentry_open() to
		 * ensure the update to nr_thps is visible.
		 */
		smp_mb();
	}

	xas_unlock_irq(&xas);

	hpage->mapping = NULL;

	unlock_page(hpage);
	put_page(hpage);
out:
	VM_BUG_ON(!list_empty(&pagelist));
	trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
	return result;
}

static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
				    struct file *file, pgoff_t start,
				    struct collapse_control *cc)
{
	struct page *page = NULL;
	struct address_space *mapping = file->f_mapping;
	XA_STATE(xas, &mapping->i_pages, start);
	int present, swap;
	int node = NUMA_NO_NODE;
	int result = SCAN_SUCCEED;

	present = 0;
	swap = 0;
	memset(cc->node_load, 0, sizeof(cc->node_load));
	nodes_clear(cc->alloc_nmask);
	rcu_read_lock();
	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
		if (xas_retry(&xas, page))
			continue;

		if (xa_is_value(page)) {
			++swap;
			if (cc->is_khugepaged &&
			    swap > khugepaged_max_ptes_swap) {
				result = SCAN_EXCEED_SWAP_PTE;
				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
				break;
			}
			continue;
		}

		/*
		 * TODO: khugepaged should compact smaller compound pages
		 * into a PMD sized page
		 */
		if (PageTransCompound(page)) {
			struct page *head = compound_head(page);

			result = compound_order(head) == HPAGE_PMD_ORDER &&
					head->index == start
					/* Maybe PMD-mapped */
					? SCAN_PTE_MAPPED_HUGEPAGE
					: SCAN_PAGE_COMPOUND;
			/*
			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
			 * by the caller won't touch the page cache, and so
			 * it's safe to skip LRU and refcount checks before
			 * returning.
			 */
			break;
		}

		node = page_to_nid(page);
		if (hpage_collapse_scan_abort(node, cc)) {
			result = SCAN_SCAN_ABORT;
			break;
		}
		cc->node_load[node]++;

		if (!PageLRU(page)) {
			result = SCAN_PAGE_LRU;
			break;
		}

		if (page_count(page) !=
		    1 + page_mapcount(page) + page_has_private(page)) {
			result = SCAN_PAGE_COUNT;
			break;
		}

		/*
		 * We probably should check if the page is referenced here, but
		 * nobody would transfer pte_young() to PageReferenced() for us.
		 * And rmap walk here is just too costly...
		 */

		present++;

		if (need_resched()) {
			xas_pause(&xas);
			cond_resched_rcu();
		}
	}
	rcu_read_unlock();

	if (result == SCAN_SUCCEED) {
		if (cc->is_khugepaged &&
		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
			result = SCAN_EXCEED_NONE_PTE;
			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
		} else {
			result = collapse_file(mm, addr, file, start, cc);
		}
	}

	trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
	return result;
}
#else
static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
				    struct file *file, pgoff_t start,
				    struct collapse_control *cc)
{
	BUILD_BUG();
}

static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
{
}

static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
					  unsigned long addr)
{
	return false;
}
#endif

static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
					    struct collapse_control *cc)
	__releases(&khugepaged_mm_lock)
	__acquires(&khugepaged_mm_lock)
{
	struct vma_iterator vmi;
	struct khugepaged_mm_slot *mm_slot;
	struct mm_slot *slot;
	struct mm_struct *mm;
	struct vm_area_struct *vma;
	int progress = 0;

	VM_BUG_ON(!pages);
	lockdep_assert_held(&khugepaged_mm_lock);
	*result = SCAN_FAIL;

	if (khugepaged_scan.mm_slot) {
		mm_slot = khugepaged_scan.mm_slot;
		slot = &mm_slot->slot;
	} else {
		slot = list_entry(khugepaged_scan.mm_head.next,
				     struct mm_slot, mm_node);
		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
		khugepaged_scan.address = 0;
		khugepaged_scan.mm_slot = mm_slot;
	}
	spin_unlock(&khugepaged_mm_lock);
	khugepaged_collapse_pte_mapped_thps(mm_slot);

	mm = slot->mm;
	/*
	 * Don't wait for semaphore (to avoid long wait times).  Just move to
	 * the next mm on the list.
	 */
	vma = NULL;
	if (unlikely(!mmap_read_trylock(mm)))
		goto breakouterloop_mmap_lock;

	progress++;
	if (unlikely(hpage_collapse_test_exit(mm)))
		goto breakouterloop;

	vma_iter_init(&vmi, mm, khugepaged_scan.address);
	for_each_vma(vmi, vma) {
		unsigned long hstart, hend;

		cond_resched();
		if (unlikely(hpage_collapse_test_exit(mm))) {
			progress++;
			break;
		}
		if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
skip:
			progress++;
			continue;
		}
		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
		if (khugepaged_scan.address > hend)
			goto skip;
		if (khugepaged_scan.address < hstart)
			khugepaged_scan.address = hstart;
		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);

		while (khugepaged_scan.address < hend) {
			bool mmap_locked = true;

			cond_resched();
			if (unlikely(hpage_collapse_test_exit(mm)))
				goto breakouterloop;

			VM_BUG_ON(khugepaged_scan.address < hstart ||
				  khugepaged_scan.address + HPAGE_PMD_SIZE >
				  hend);
			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
				struct file *file = get_file(vma->vm_file);
				pgoff_t pgoff = linear_page_index(vma,
						khugepaged_scan.address);

				mmap_read_unlock(mm);
				*result = hpage_collapse_scan_file(mm,
								   khugepaged_scan.address,
								   file, pgoff, cc);
				mmap_locked = false;
				fput(file);
			} else {
				*result = hpage_collapse_scan_pmd(mm, vma,
								  khugepaged_scan.address,
								  &mmap_locked,
								  cc);
			}
			switch (*result) {
			case SCAN_PTE_MAPPED_HUGEPAGE: {
				pmd_t *pmd;

				*result = find_pmd_or_thp_or_none(mm,
								  khugepaged_scan.address,
								  &pmd);
				if (*result != SCAN_SUCCEED)
					break;
				if (!khugepaged_add_pte_mapped_thp(mm,
								   khugepaged_scan.address))
					break;
			} fallthrough;
			case SCAN_SUCCEED:
				++khugepaged_pages_collapsed;
				break;
			default:
				break;
			}

			/* move to next address */
			khugepaged_scan.address += HPAGE_PMD_SIZE;
			progress += HPAGE_PMD_NR;
			if (!mmap_locked)
				/*
				 * We released mmap_lock so break loop.  Note
				 * that we drop mmap_lock before all hugepage
				 * allocations, so if allocation fails, we are
				 * guaranteed to break here and report the
				 * correct result back to caller.
				 */
				goto breakouterloop_mmap_lock;
			if (progress >= pages)
				goto breakouterloop;
		}
	}
breakouterloop:
	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
breakouterloop_mmap_lock:

	spin_lock(&khugepaged_mm_lock);
	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
	/*
	 * Release the current mm_slot if this mm is about to die, or
	 * if we scanned all vmas of this mm.
	 */
	if (hpage_collapse_test_exit(mm) || !vma) {
		/*
		 * Make sure that if mm_users is reaching zero while
		 * khugepaged runs here, khugepaged_exit will find
		 * mm_slot not pointing to the exiting mm.
		 */
		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
			slot = list_entry(slot->mm_node.next,
					  struct mm_slot, mm_node);
			khugepaged_scan.mm_slot =
				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
			khugepaged_scan.address = 0;
		} else {
			khugepaged_scan.mm_slot = NULL;
			khugepaged_full_scans++;
		}

		collect_mm_slot(mm_slot);
	}

	return progress;
}

static int khugepaged_has_work(void)
{
	return !list_empty(&khugepaged_scan.mm_head) &&
		hugepage_flags_enabled();
}

static int khugepaged_wait_event(void)
{
	return !list_empty(&khugepaged_scan.mm_head) ||
		kthread_should_stop();
}

static void khugepaged_do_scan(struct collapse_control *cc)
{
	unsigned int progress = 0, pass_through_head = 0;
	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
	bool wait = true;
	int result = SCAN_SUCCEED;

	lru_add_drain_all();

	while (true) {
		cond_resched();

		if (unlikely(kthread_should_stop() || try_to_freeze()))
			break;

		spin_lock(&khugepaged_mm_lock);
		if (!khugepaged_scan.mm_slot)
			pass_through_head++;
		if (khugepaged_has_work() &&
		    pass_through_head < 2)
			progress += khugepaged_scan_mm_slot(pages - progress,
							    &result, cc);
		else
			progress = pages;
		spin_unlock(&khugepaged_mm_lock);

		if (progress >= pages)
			break;

		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
			/*
			 * If fail to allocate the first time, try to sleep for
			 * a while.  When hit again, cancel the scan.
			 */
			if (!wait)
				break;
			wait = false;
			khugepaged_alloc_sleep();
		}
	}
}

static bool khugepaged_should_wakeup(void)
{
	return kthread_should_stop() ||
	       time_after_eq(jiffies, khugepaged_sleep_expire);
}

static void khugepaged_wait_work(void)
{
	if (khugepaged_has_work()) {
		const unsigned long scan_sleep_jiffies =
			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);

		if (!scan_sleep_jiffies)
			return;

		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
		wait_event_freezable_timeout(khugepaged_wait,
					     khugepaged_should_wakeup(),
					     scan_sleep_jiffies);
		return;
	}

	if (hugepage_flags_enabled())
		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
}

static int khugepaged(void *none)
{
	struct khugepaged_mm_slot *mm_slot;

	set_freezable();
	set_user_nice(current, MAX_NICE);

	while (!kthread_should_stop()) {
		khugepaged_do_scan(&khugepaged_collapse_control);
		khugepaged_wait_work();
	}

	spin_lock(&khugepaged_mm_lock);
	mm_slot = khugepaged_scan.mm_slot;
	khugepaged_scan.mm_slot = NULL;
	if (mm_slot)
		collect_mm_slot(mm_slot);
	spin_unlock(&khugepaged_mm_lock);
	return 0;
}

static void set_recommended_min_free_kbytes(void)
{
	struct zone *zone;
	int nr_zones = 0;
	unsigned long recommended_min;

	if (!hugepage_flags_enabled()) {
		calculate_min_free_kbytes();
		goto update_wmarks;
	}

	for_each_populated_zone(zone) {
		/*
		 * We don't need to worry about fragmentation of
		 * ZONE_MOVABLE since it only has movable pages.
		 */
		if (zone_idx(zone) > gfp_zone(GFP_USER))
			continue;

		nr_zones++;
	}

	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
	recommended_min = pageblock_nr_pages * nr_zones * 2;

	/*
	 * Make sure that on average at least two pageblocks are almost free
	 * of another type, one for a migratetype to fall back to and a
	 * second to avoid subsequent fallbacks of other types There are 3
	 * MIGRATE_TYPES we care about.
	 */
	recommended_min += pageblock_nr_pages * nr_zones *
			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;

	/* don't ever allow to reserve more than 5% of the lowmem */
	recommended_min = min(recommended_min,
			      (unsigned long) nr_free_buffer_pages() / 20);
	recommended_min <<= (PAGE_SHIFT-10);

	if (recommended_min > min_free_kbytes) {
		if (user_min_free_kbytes >= 0)
			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
				min_free_kbytes, recommended_min);

		min_free_kbytes = recommended_min;
	}

update_wmarks:
	setup_per_zone_wmarks();
}

int start_stop_khugepaged(void)
{
	int err = 0;

	mutex_lock(&khugepaged_mutex);
	if (hugepage_flags_enabled()) {
		if (!khugepaged_thread)
			khugepaged_thread = kthread_run(khugepaged, NULL,
							"khugepaged");
		if (IS_ERR(khugepaged_thread)) {
			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
			err = PTR_ERR(khugepaged_thread);
			khugepaged_thread = NULL;
			goto fail;
		}

		if (!list_empty(&khugepaged_scan.mm_head))
			wake_up_interruptible(&khugepaged_wait);
	} else if (khugepaged_thread) {
		kthread_stop(khugepaged_thread);
		khugepaged_thread = NULL;
	}
	set_recommended_min_free_kbytes();
fail:
	mutex_unlock(&khugepaged_mutex);
	return err;
}

void khugepaged_min_free_kbytes_update(void)
{
	mutex_lock(&khugepaged_mutex);
	if (hugepage_flags_enabled() && khugepaged_thread)
		set_recommended_min_free_kbytes();
	mutex_unlock(&khugepaged_mutex);
}

bool current_is_khugepaged(void)
{
	return kthread_func(current) == khugepaged;
}

static int madvise_collapse_errno(enum scan_result r)
{
	/*
	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
	 * actionable feedback to caller, so they may take an appropriate
	 * fallback measure depending on the nature of the failure.
	 */
	switch (r) {
	case SCAN_ALLOC_HUGE_PAGE_FAIL:
		return -ENOMEM;
	case SCAN_CGROUP_CHARGE_FAIL:
	case SCAN_EXCEED_NONE_PTE:
		return -EBUSY;
	/* Resource temporary unavailable - trying again might succeed */
	case SCAN_PAGE_COUNT:
	case SCAN_PAGE_LOCK:
	case SCAN_PAGE_LRU:
	case SCAN_DEL_PAGE_LRU:
	case SCAN_PAGE_FILLED:
		return -EAGAIN;
	/*
	 * Other: Trying again likely not to succeed / error intrinsic to
	 * specified memory range. khugepaged likely won't be able to collapse
	 * either.
	 */
	default:
		return -EINVAL;
	}
}

int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
		     unsigned long start, unsigned long end)
{
	struct collapse_control *cc;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long hstart, hend, addr;
	int thps = 0, last_fail = SCAN_FAIL;
	bool mmap_locked = true;

	BUG_ON(vma->vm_start > start);
	BUG_ON(vma->vm_end < end);

	*prev = vma;

	if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
		return -EINVAL;

	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
	if (!cc)
		return -ENOMEM;
	cc->is_khugepaged = false;

	mmgrab(mm);
	lru_add_drain_all();

	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
	hend = end & HPAGE_PMD_MASK;

	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
		int result = SCAN_FAIL;

		if (!mmap_locked) {
			cond_resched();
			mmap_read_lock(mm);
			mmap_locked = true;
			result = hugepage_vma_revalidate(mm, addr, false, &vma,
							 cc);
			if (result  != SCAN_SUCCEED) {
				last_fail = result;
				goto out_nolock;
			}

			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
		}
		mmap_assert_locked(mm);
		memset(cc->node_load, 0, sizeof(cc->node_load));
		nodes_clear(cc->alloc_nmask);
		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
			struct file *file = get_file(vma->vm_file);
			pgoff_t pgoff = linear_page_index(vma, addr);

			mmap_read_unlock(mm);
			mmap_locked = false;
			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
							  cc);
			fput(file);
		} else {
			result = hpage_collapse_scan_pmd(mm, vma, addr,
							 &mmap_locked, cc);
		}
		if (!mmap_locked)
			*prev = NULL;  /* Tell caller we dropped mmap_lock */

handle_result:
		switch (result) {
		case SCAN_SUCCEED:
		case SCAN_PMD_MAPPED:
			++thps;
			break;
		case SCAN_PTE_MAPPED_HUGEPAGE:
			BUG_ON(mmap_locked);
			BUG_ON(*prev);
			mmap_write_lock(mm);
			result = collapse_pte_mapped_thp(mm, addr, true);
			mmap_write_unlock(mm);
			goto handle_result;
		/* Whitelisted set of results where continuing OK */
		case SCAN_PMD_NULL:
		case SCAN_PTE_NON_PRESENT:
		case SCAN_PTE_UFFD_WP:
		case SCAN_PAGE_RO:
		case SCAN_LACK_REFERENCED_PAGE:
		case SCAN_PAGE_NULL:
		case SCAN_PAGE_COUNT:
		case SCAN_PAGE_LOCK:
		case SCAN_PAGE_COMPOUND:
		case SCAN_PAGE_LRU:
		case SCAN_DEL_PAGE_LRU:
			last_fail = result;
			break;
		default:
			last_fail = result;
			/* Other error, exit */
			goto out_maybelock;
		}
	}

out_maybelock:
	/* Caller expects us to hold mmap_lock on return */
	if (!mmap_locked)
		mmap_read_lock(mm);
out_nolock:
	mmap_assert_locked(mm);
	mmdrop(mm);
	kfree(cc);

	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
			: madvise_collapse_errno(last_fail);
}