summaryrefslogtreecommitdiff
path: root/kernel/rcu/tree_plugin.h
blob: 5199559fbbf0c0922a03c93c461c93156ad6e060 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
/* SPDX-License-Identifier: GPL-2.0+ */
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
 * or preemptible semantics.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.ibm.com>
 */

#include "../locking/rtmutex_common.h"

static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
{
	/*
	 * In order to read the offloaded state of an rdp is a safe
	 * and stable way and prevent from its value to be changed
	 * under us, we must either hold the barrier mutex, the cpu
	 * hotplug lock (read or write) or the nocb lock. Local
	 * non-preemptible reads are also safe. NOCB kthreads and
	 * timers have their own means of synchronization against the
	 * offloaded state updaters.
	 */
	RCU_LOCKDEP_WARN(
		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
		  rcu_lockdep_is_held_nocb(rdp) ||
		  (rdp == this_cpu_ptr(&rcu_data) &&
		   !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
		  rcu_current_is_nocb_kthread(rdp)),
		"Unsafe read of RCU_NOCB offloaded state"
	);

	return rcu_segcblist_is_offloaded(&rdp->cblist);
}

/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.
 */
static void __init rcu_bootup_announce_oddness(void)
{
	if (IS_ENABLED(CONFIG_RCU_TRACE))
		pr_info("\tRCU event tracing is enabled.\n");
	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
			RCU_FANOUT);
	if (rcu_fanout_exact)
		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
	if (IS_ENABLED(CONFIG_PROVE_RCU))
		pr_info("\tRCU lockdep checking is enabled.\n");
	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
		pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
	if (RCU_NUM_LVLS >= 4)
		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
	if (RCU_FANOUT_LEAF != 16)
		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
			RCU_FANOUT_LEAF);
	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
			rcu_fanout_leaf);
	if (nr_cpu_ids != NR_CPUS)
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
#ifdef CONFIG_RCU_BOOST
	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
		kthread_prio, CONFIG_RCU_BOOST_DELAY);
#endif
	if (blimit != DEFAULT_RCU_BLIMIT)
		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
	if (qhimark != DEFAULT_RCU_QHIMARK)
		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
	if (qlowmark != DEFAULT_RCU_QLOMARK)
		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
	if (qovld != DEFAULT_RCU_QOVLD)
		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
	if (jiffies_till_first_fqs != ULONG_MAX)
		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
	if (jiffies_till_next_fqs != ULONG_MAX)
		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
	if (jiffies_till_sched_qs != ULONG_MAX)
		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
	if (rcu_kick_kthreads)
		pr_info("\tKick kthreads if too-long grace period.\n");
	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
	if (gp_preinit_delay)
		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
	if (gp_init_delay)
		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
	if (gp_cleanup_delay)
		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
	if (!use_softirq)
		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
		pr_info("\tRCU debug extended QS entry/exit.\n");
	rcupdate_announce_bootup_oddness();
}

#ifdef CONFIG_PREEMPT_RCU

static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
static void rcu_read_unlock_special(struct task_struct *t);

/*
 * Tell them what RCU they are running.
 */
static void __init rcu_bootup_announce(void)
{
	pr_info("Preemptible hierarchical RCU implementation.\n");
	rcu_bootup_announce_oddness();
}

/* Flags for rcu_preempt_ctxt_queue() decision table. */
#define RCU_GP_TASKS	0x8
#define RCU_EXP_TASKS	0x4
#define RCU_GP_BLKD	0x2
#define RCU_EXP_BLKD	0x1

/*
 * Queues a task preempted within an RCU-preempt read-side critical
 * section into the appropriate location within the ->blkd_tasks list,
 * depending on the states of any ongoing normal and expedited grace
 * periods.  The ->gp_tasks pointer indicates which element the normal
 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 * indicates which element the expedited grace period is waiting on (again,
 * NULL if none).  If a grace period is waiting on a given element in the
 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 * adding a task to the tail of the list blocks any grace period that is
 * already waiting on one of the elements.  In contrast, adding a task
 * to the head of the list won't block any grace period that is already
 * waiting on one of the elements.
 *
 * This queuing is imprecise, and can sometimes make an ongoing grace
 * period wait for a task that is not strictly speaking blocking it.
 * Given the choice, we needlessly block a normal grace period rather than
 * blocking an expedited grace period.
 *
 * Note that an endless sequence of expedited grace periods still cannot
 * indefinitely postpone a normal grace period.  Eventually, all of the
 * fixed number of preempted tasks blocking the normal grace period that are
 * not also blocking the expedited grace period will resume and complete
 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 * pointer will equal the ->exp_tasks pointer, at which point the end of
 * the corresponding expedited grace period will also be the end of the
 * normal grace period.
 */
static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
	__releases(rnp->lock) /* But leaves rrupts disabled. */
{
	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
	struct task_struct *t = current;

	raw_lockdep_assert_held_rcu_node(rnp);
	WARN_ON_ONCE(rdp->mynode != rnp);
	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
	/* RCU better not be waiting on newly onlined CPUs! */
	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
		     rdp->grpmask);

	/*
	 * Decide where to queue the newly blocked task.  In theory,
	 * this could be an if-statement.  In practice, when I tried
	 * that, it was quite messy.
	 */
	switch (blkd_state) {
	case 0:
	case                RCU_EXP_TASKS:
	case                RCU_EXP_TASKS + RCU_GP_BLKD:
	case RCU_GP_TASKS:
	case RCU_GP_TASKS + RCU_EXP_TASKS:

		/*
		 * Blocking neither GP, or first task blocking the normal
		 * GP but not blocking the already-waiting expedited GP.
		 * Queue at the head of the list to avoid unnecessarily
		 * blocking the already-waiting GPs.
		 */
		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
		break;

	case                                              RCU_EXP_BLKD:
	case                                RCU_GP_BLKD:
	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:

		/*
		 * First task arriving that blocks either GP, or first task
		 * arriving that blocks the expedited GP (with the normal
		 * GP already waiting), or a task arriving that blocks
		 * both GPs with both GPs already waiting.  Queue at the
		 * tail of the list to avoid any GP waiting on any of the
		 * already queued tasks that are not blocking it.
		 */
		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
		break;

	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:

		/*
		 * Second or subsequent task blocking the expedited GP.
		 * The task either does not block the normal GP, or is the
		 * first task blocking the normal GP.  Queue just after
		 * the first task blocking the expedited GP.
		 */
		list_add(&t->rcu_node_entry, rnp->exp_tasks);
		break;

	case RCU_GP_TASKS +                 RCU_GP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:

		/*
		 * Second or subsequent task blocking the normal GP.
		 * The task does not block the expedited GP. Queue just
		 * after the first task blocking the normal GP.
		 */
		list_add(&t->rcu_node_entry, rnp->gp_tasks);
		break;

	default:

		/* Yet another exercise in excessive paranoia. */
		WARN_ON_ONCE(1);
		break;
	}

	/*
	 * We have now queued the task.  If it was the first one to
	 * block either grace period, update the ->gp_tasks and/or
	 * ->exp_tasks pointers, respectively, to reference the newly
	 * blocked tasks.
	 */
	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
	}
	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
		     !(rnp->qsmask & rdp->grpmask));
	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
		     !(rnp->expmask & rdp->grpmask));
	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */

	/*
	 * Report the quiescent state for the expedited GP.  This expedited
	 * GP should not be able to end until we report, so there should be
	 * no need to check for a subsequent expedited GP.  (Though we are
	 * still in a quiescent state in any case.)
	 */
	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
		rcu_report_exp_rdp(rdp);
	else
		WARN_ON_ONCE(rdp->exp_deferred_qs);
}

/*
 * Record a preemptible-RCU quiescent state for the specified CPU.
 * Note that this does not necessarily mean that the task currently running
 * on the CPU is in a quiescent state:  Instead, it means that the current
 * grace period need not wait on any RCU read-side critical section that
 * starts later on this CPU.  It also means that if the current task is
 * in an RCU read-side critical section, it has already added itself to
 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 * current task, there might be any number of other tasks blocked while
 * in an RCU read-side critical section.
 *
 * Callers to this function must disable preemption.
 */
static void rcu_qs(void)
{
	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
		trace_rcu_grace_period(TPS("rcu_preempt"),
				       __this_cpu_read(rcu_data.gp_seq),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
	}
}

/*
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
 *
 * Caller must disable interrupts.
 */
void rcu_note_context_switch(bool preempt)
{
	struct task_struct *t = current;
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
	struct rcu_node *rnp;

	trace_rcu_utilization(TPS("Start context switch"));
	lockdep_assert_irqs_disabled();
	WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
	if (rcu_preempt_depth() > 0 &&
	    !t->rcu_read_unlock_special.b.blocked) {

		/* Possibly blocking in an RCU read-side critical section. */
		rnp = rdp->mynode;
		raw_spin_lock_rcu_node(rnp);
		t->rcu_read_unlock_special.b.blocked = true;
		t->rcu_blocked_node = rnp;

		/*
		 * Verify the CPU's sanity, trace the preemption, and
		 * then queue the task as required based on the states
		 * of any ongoing and expedited grace periods.
		 */
		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
		trace_rcu_preempt_task(rcu_state.name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gp_seq
				       : rcu_seq_snap(&rnp->gp_seq));
		rcu_preempt_ctxt_queue(rnp, rdp);
	} else {
		rcu_preempt_deferred_qs(t);
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
	rcu_qs();
	if (rdp->exp_deferred_qs)
		rcu_report_exp_rdp(rdp);
	rcu_tasks_qs(current, preempt);
	trace_rcu_utilization(TPS("End context switch"));
}
EXPORT_SYMBOL_GPL(rcu_note_context_switch);

/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
	return READ_ONCE(rnp->gp_tasks) != NULL;
}

/* limit value for ->rcu_read_lock_nesting. */
#define RCU_NEST_PMAX (INT_MAX / 2)

static void rcu_preempt_read_enter(void)
{
	WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
}

static int rcu_preempt_read_exit(void)
{
	int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;

	WRITE_ONCE(current->rcu_read_lock_nesting, ret);
	return ret;
}

static void rcu_preempt_depth_set(int val)
{
	WRITE_ONCE(current->rcu_read_lock_nesting, val);
}

/*
 * Preemptible RCU implementation for rcu_read_lock().
 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 * if we block.
 */
void __rcu_read_lock(void)
{
	rcu_preempt_read_enter();
	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
	barrier();  /* critical section after entry code. */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);

/*
 * Preemptible RCU implementation for rcu_read_unlock().
 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 * invoke rcu_read_unlock_special() to clean up after a context switch
 * in an RCU read-side critical section and other special cases.
 */
void __rcu_read_unlock(void)
{
	struct task_struct *t = current;

	barrier();  // critical section before exit code.
	if (rcu_preempt_read_exit() == 0) {
		barrier();  // critical-section exit before .s check.
		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
			rcu_read_unlock_special(t);
	}
	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
		int rrln = rcu_preempt_depth();

		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
	}
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);

/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

/*
 * Return true if the specified rcu_node structure has tasks that were
 * preempted within an RCU read-side critical section.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blkd_tasks);
}

/*
 * Report deferred quiescent states.  The deferral time can
 * be quite short, for example, in the case of the call from
 * rcu_read_unlock_special().
 */
static void
rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
{
	bool empty_exp;
	bool empty_norm;
	bool empty_exp_now;
	struct list_head *np;
	bool drop_boost_mutex = false;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	union rcu_special special;

	/*
	 * If RCU core is waiting for this CPU to exit its critical section,
	 * report the fact that it has exited.  Because irqs are disabled,
	 * t->rcu_read_unlock_special cannot change.
	 */
	special = t->rcu_read_unlock_special;
	rdp = this_cpu_ptr(&rcu_data);
	if (!special.s && !rdp->exp_deferred_qs) {
		local_irq_restore(flags);
		return;
	}
	t->rcu_read_unlock_special.s = 0;
	if (special.b.need_qs) {
		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
			rcu_report_qs_rdp(rdp);
			udelay(rcu_unlock_delay);
		} else {
			rcu_qs();
		}
	}

	/*
	 * Respond to a request by an expedited grace period for a
	 * quiescent state from this CPU.  Note that requests from
	 * tasks are handled when removing the task from the
	 * blocked-tasks list below.
	 */
	if (rdp->exp_deferred_qs)
		rcu_report_exp_rdp(rdp);

	/* Clean up if blocked during RCU read-side critical section. */
	if (special.b.blocked) {

		/*
		 * Remove this task from the list it blocked on.  The task
		 * now remains queued on the rcu_node corresponding to the
		 * CPU it first blocked on, so there is no longer any need
		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
		 */
		rnp = t->rcu_blocked_node;
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
			     (!empty_norm || rnp->qsmask));
		empty_exp = sync_rcu_exp_done(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
		np = rcu_next_node_entry(t, rnp);
		list_del_init(&t->rcu_node_entry);
		t->rcu_blocked_node = NULL;
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
						rnp->gp_seq, t->pid);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			WRITE_ONCE(rnp->gp_tasks, np);
		if (&t->rcu_node_entry == rnp->exp_tasks)
			WRITE_ONCE(rnp->exp_tasks, np);
		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
			if (&t->rcu_node_entry == rnp->boost_tasks)
				WRITE_ONCE(rnp->boost_tasks, np);
		}

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
		 */
		empty_exp_now = sync_rcu_exp_done(rnp);
		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
							 rnp->gp_seq,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
			rcu_report_unblock_qs_rnp(rnp, flags);
		} else {
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
		}

		/* Unboost if we were boosted. */
		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
			rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);

		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
		if (!empty_exp && empty_exp_now)
			rcu_report_exp_rnp(rnp, true);
	} else {
		local_irq_restore(flags);
	}
}

/*
 * Is a deferred quiescent-state pending, and are we also not in
 * an RCU read-side critical section?  It is the caller's responsibility
 * to ensure it is otherwise safe to report any deferred quiescent
 * states.  The reason for this is that it is safe to report a
 * quiescent state during context switch even though preemption
 * is disabled.  This function cannot be expected to understand these
 * nuances, so the caller must handle them.
 */
static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
{
	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
		READ_ONCE(t->rcu_read_unlock_special.s)) &&
	       rcu_preempt_depth() == 0;
}

/*
 * Report a deferred quiescent state if needed and safe to do so.
 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 * not being in an RCU read-side critical section.  The caller must
 * evaluate safety in terms of interrupt, softirq, and preemption
 * disabling.
 */
static void rcu_preempt_deferred_qs(struct task_struct *t)
{
	unsigned long flags;

	if (!rcu_preempt_need_deferred_qs(t))
		return;
	local_irq_save(flags);
	rcu_preempt_deferred_qs_irqrestore(t, flags);
}

/*
 * Minimal handler to give the scheduler a chance to re-evaluate.
 */
static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
{
	struct rcu_data *rdp;

	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
	rdp->defer_qs_iw_pending = false;
}

/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
static void rcu_read_unlock_special(struct task_struct *t)
{
	unsigned long flags;
	bool irqs_were_disabled;
	bool preempt_bh_were_disabled =
			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);
	irqs_were_disabled = irqs_disabled_flags(flags);
	if (preempt_bh_were_disabled || irqs_were_disabled) {
		bool expboost; // Expedited GP in flight or possible boosting.
		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
		struct rcu_node *rnp = rdp->mynode;

		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
			   IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
			    t->rcu_blocked_node);
		// Need to defer quiescent state until everything is enabled.
		if (use_softirq && (in_irq() || (expboost && !irqs_were_disabled))) {
			// Using softirq, safe to awaken, and either the
			// wakeup is free or there is either an expedited
			// GP in flight or a potential need to deboost.
			raise_softirq_irqoff(RCU_SOFTIRQ);
		} else {
			// Enabling BH or preempt does reschedule, so...
			// Also if no expediting and no possible deboosting,
			// slow is OK.  Plus nohz_full CPUs eventually get
			// tick enabled.
			set_tsk_need_resched(current);
			set_preempt_need_resched();
			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
				// Get scheduler to re-evaluate and call hooks.
				// If !IRQ_WORK, FQS scan will eventually IPI.
				init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler);
				rdp->defer_qs_iw_pending = true;
				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
			}
		}
		local_irq_restore(flags);
		return;
	}
	rcu_preempt_deferred_qs_irqrestore(t, flags);
}

/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gp_seq.
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
	struct task_struct *t;

	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
	raw_lockdep_assert_held_rcu_node(rnp);
	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
		dump_blkd_tasks(rnp, 10);
	if (rcu_preempt_has_tasks(rnp) &&
	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
		t = container_of(rnp->gp_tasks, struct task_struct,
				 rcu_node_entry);
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
						rnp->gp_seq, t->pid);
	}
	WARN_ON_ONCE(rnp->qsmask);
}

/*
 * Check for a quiescent state from the current CPU, including voluntary
 * context switches for Tasks RCU.  When a task blocks, the task is
 * recorded in the corresponding CPU's rcu_node structure, which is checked
 * elsewhere, hence this function need only check for quiescent states
 * related to the current CPU, not to those related to tasks.
 */
static void rcu_flavor_sched_clock_irq(int user)
{
	struct task_struct *t = current;

	lockdep_assert_irqs_disabled();
	if (user || rcu_is_cpu_rrupt_from_idle()) {
		rcu_note_voluntary_context_switch(current);
	}
	if (rcu_preempt_depth() > 0 ||
	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
		/* No QS, force context switch if deferred. */
		if (rcu_preempt_need_deferred_qs(t)) {
			set_tsk_need_resched(t);
			set_preempt_need_resched();
		}
	} else if (rcu_preempt_need_deferred_qs(t)) {
		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
		return;
	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
		rcu_qs(); /* Report immediate QS. */
		return;
	}

	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
	if (rcu_preempt_depth() > 0 &&
	    __this_cpu_read(rcu_data.core_needs_qs) &&
	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
	    !t->rcu_read_unlock_special.b.need_qs &&
	    time_after(jiffies, rcu_state.gp_start + HZ))
		t->rcu_read_unlock_special.b.need_qs = true;
}

/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings, as
 * debug_check_no_locks_held() already does this if lockdep is enabled.
 * Besides, if this function does anything other than just immediately
 * return, there was a bug of some sort.  Spewing warnings from this
 * function is like as not to simply obscure important prior warnings.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (unlikely(!list_empty(&current->rcu_node_entry))) {
		rcu_preempt_depth_set(1);
		barrier();
		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
	} else if (unlikely(rcu_preempt_depth())) {
		rcu_preempt_depth_set(1);
	} else {
		return;
	}
	__rcu_read_unlock();
	rcu_preempt_deferred_qs(current);
}

/*
 * Dump the blocked-tasks state, but limit the list dump to the
 * specified number of elements.
 */
static void
dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
{
	int cpu;
	int i;
	struct list_head *lhp;
	bool onl;
	struct rcu_data *rdp;
	struct rcu_node *rnp1;

	raw_lockdep_assert_held_rcu_node(rnp);
	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
		__func__, rnp->grplo, rnp->grphi, rnp->level,
		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
		READ_ONCE(rnp->exp_tasks));
	pr_info("%s: ->blkd_tasks", __func__);
	i = 0;
	list_for_each(lhp, &rnp->blkd_tasks) {
		pr_cont(" %p", lhp);
		if (++i >= ncheck)
			break;
	}
	pr_cont("\n");
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
		rdp = per_cpu_ptr(&rcu_data, cpu);
		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
			cpu, ".o"[onl],
			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
	}
}

#else /* #ifdef CONFIG_PREEMPT_RCU */

/*
 * If strict grace periods are enabled, and if the calling
 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
 * report that quiescent state and, if requested, spin for a bit.
 */
void rcu_read_unlock_strict(void)
{
	struct rcu_data *rdp;

	if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
		return;
	rdp = this_cpu_ptr(&rcu_data);
	rcu_report_qs_rdp(rdp);
	udelay(rcu_unlock_delay);
}
EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);

/*
 * Tell them what RCU they are running.
 */
static void __init rcu_bootup_announce(void)
{
	pr_info("Hierarchical RCU implementation.\n");
	rcu_bootup_announce_oddness();
}

/*
 * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
 * how many quiescent states passed, just if there was at least one since
 * the start of the grace period, this just sets a flag.  The caller must
 * have disabled preemption.
 */
static void rcu_qs(void)
{
	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
		return;
	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
}

/*
 * Register an urgently needed quiescent state.  If there is an
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs, which will in
 * some cases serve for expedited as well as normal grace periods.
 * Either way, register a lightweight quiescent state.
 */
void rcu_all_qs(void)
{
	unsigned long flags;

	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
		return;
	preempt_disable();
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
		preempt_enable();
		return;
	}
	this_cpu_write(rcu_data.rcu_urgent_qs, false);
	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
		local_irq_save(flags);
		rcu_momentary_dyntick_idle();
		local_irq_restore(flags);
	}
	rcu_qs();
	preempt_enable();
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

/*
 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
 */
void rcu_note_context_switch(bool preempt)
{
	trace_rcu_utilization(TPS("Start context switch"));
	rcu_qs();
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
		goto out;
	this_cpu_write(rcu_data.rcu_urgent_qs, false);
	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
		rcu_momentary_dyntick_idle();
	rcu_tasks_qs(current, preempt);
out:
	trace_rcu_utilization(TPS("End context switch"));
}
EXPORT_SYMBOL_GPL(rcu_note_context_switch);

/*
 * Because preemptible RCU does not exist, there are never any preempted
 * RCU readers.
 */
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
	return 0;
}

/*
 * Because there is no preemptible RCU, there can be no readers blocked.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return false;
}

/*
 * Because there is no preemptible RCU, there can be no deferred quiescent
 * states.
 */
static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
{
	return false;
}
static void rcu_preempt_deferred_qs(struct task_struct *t) { }

/*
 * Because there is no preemptible RCU, there can be no readers blocked,
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
	WARN_ON_ONCE(rnp->qsmask);
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state,
 * namely user mode and idle loop.
 */
static void rcu_flavor_sched_clock_irq(int user)
{
	if (user || rcu_is_cpu_rrupt_from_idle()) {

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
		 * a quiescent state, so note it.
		 *
		 * No memory barrier is required here because rcu_qs()
		 * references only CPU-local variables that other CPUs
		 * neither access nor modify, at least not while the
		 * corresponding CPU is online.
		 */

		rcu_qs();
	}
}

/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

/*
 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
 */
static void
dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
{
	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
}

#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

/*
 * If boosting, set rcuc kthreads to realtime priority.
 */
static void rcu_cpu_kthread_setup(unsigned int cpu)
{
#ifdef CONFIG_RCU_BOOST
	struct sched_param sp;

	sp.sched_priority = kthread_prio;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
#endif /* #ifdef CONFIG_RCU_BOOST */
}

#ifdef CONFIG_RCU_BOOST

/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

	if (READ_ONCE(rnp->exp_tasks) == NULL &&
	    READ_ONCE(rnp->boost_tasks) == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave_rcu_node(rnp, flags);

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
	if (rnp->exp_tasks != NULL)
		tb = rnp->exp_tasks;
	else
		tb = rnp->boost_tasks;

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
	rnp->n_boosts++;

	return READ_ONCE(rnp->exp_tasks) != NULL ||
	       READ_ONCE(rnp->boost_tasks) != NULL;
}

/*
 * Priority-boosting kthread, one per leaf rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

	trace_rcu_utilization(TPS("Start boost kthread@init"));
	for (;;) {
		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
			 READ_ONCE(rnp->exp_tasks));
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
			schedule_timeout_idle(2);
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
			spincnt = 0;
		}
	}
	/* NOTREACHED */
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
 */
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
	raw_lockdep_assert_held_rcu_node(rnp);
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
		return;
	}
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
		if (rnp->exp_tasks == NULL)
			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
		rcu_wake_cond(rnp->boost_kthread_task,
			      READ_ONCE(rnp->boost_kthread_status));
	} else {
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
}

/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
}

#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
{
	unsigned long flags;
	int rnp_index = rnp - rcu_get_root();
	struct sched_param sp;
	struct task_struct *t;

	if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
		return;

	rcu_state.boost = 1;

	t = kthread_create(rcu_boost_kthread, (void *)rnp,
			   "rcub/%d", rnp_index);
	if (WARN_ON_ONCE(IS_ERR(t)))
		return;

	raw_spin_lock_irqsave_rcu_node(rnp, flags);
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	sp.sched_priority = kthread_prio;
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
	struct task_struct *t = rnp->boost_kthread_task;
	unsigned long mask = rcu_rnp_online_cpus(rnp);
	cpumask_var_t cm;
	int cpu;

	if (!t)
		return;
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
		return;
	for_each_leaf_node_possible_cpu(rnp, cpu)
		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
		    cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0)
		cpumask_setall(cm);
	set_cpus_allowed_ptr(t, cm);
	free_cpumask_var(cm);
}

/*
 * Spawn boost kthreads -- called as soon as the scheduler is running.
 */
static void __init rcu_spawn_boost_kthreads(void)
{
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rnp)
		if (rcu_rnp_online_cpus(rnp))
			rcu_spawn_one_boost_kthread(rnp);
}

#else /* #ifdef CONFIG_RCU_BOOST */

static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}

static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
{
}

static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
}

static void __init rcu_spawn_boost_kthreads(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_BOOST */

#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future non-offloaded RCU-related work will need
 * to be done by the current CPU, even if none need be done immediately,
 * returning 1 if so.  This function is part of the RCU implementation;
 * it is -not- an exported member of the RCU API.
 *
 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
 * CPU has RCU callbacks queued.
 */
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
{
	*nextevt = KTIME_MAX;
	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(void)
{
}

/*
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
 * is nothing.
 */
static void rcu_prepare_for_idle(void)
{
}

#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.
 *
 * The following preprocessor symbol controls this:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
 *
 * The value below works well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */

static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);

/*
 * Try to advance callbacks on the current CPU, but only if it has been
 * awhile since the last time we did so.  Afterwards, if there are any
 * callbacks ready for immediate invocation, return true.
 */
static bool __maybe_unused rcu_try_advance_all_cbs(void)
{
	bool cbs_ready = false;
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
	struct rcu_node *rnp;

	/* Exit early if we advanced recently. */
	if (jiffies == rdp->last_advance_all)
		return false;
	rdp->last_advance_all = jiffies;

	rnp = rdp->mynode;

	/*
	 * Don't bother checking unless a grace period has
	 * completed since we last checked and there are
	 * callbacks not yet ready to invoke.
	 */
	if ((rcu_seq_completed_gp(rdp->gp_seq,
				  rcu_seq_current(&rnp->gp_seq)) ||
	     unlikely(READ_ONCE(rdp->gpwrap))) &&
	    rcu_segcblist_pend_cbs(&rdp->cblist))
		note_gp_changes(rdp);

	if (rcu_segcblist_ready_cbs(&rdp->cblist))
		cbs_ready = true;
	return cbs_ready;
}

/*
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller about what to set the timeout.
 *
 * The caller must have disabled interrupts.
 */
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
	unsigned long dj;

	lockdep_assert_irqs_disabled();

	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
	if (rcu_segcblist_empty(&rdp->cblist) ||
	    rcu_rdp_is_offloaded(rdp)) {
		*nextevt = KTIME_MAX;
		return 0;
	}

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
		return 1;
	}
	rdp->last_accelerate = jiffies;

	/* Request timer and round. */
	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;

	*nextevt = basemono + dj * TICK_NSEC;
	return 0;
}

/*
 * Prepare a CPU for idle from an RCU perspective.  The first major task is to
 * sense whether nohz mode has been enabled or disabled via sysfs.  The second
 * major task is to accelerate (that is, assign grace-period numbers to) any
 * recently arrived callbacks.
 *
 * The caller must have disabled interrupts.
 */
static void rcu_prepare_for_idle(void)
{
	bool needwake;
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
	struct rcu_node *rnp;
	int tne;

	lockdep_assert_irqs_disabled();
	if (rcu_rdp_is_offloaded(rdp))
		return;

	/* Handle nohz enablement switches conservatively. */
	tne = READ_ONCE(tick_nohz_active);
	if (tne != rdp->tick_nohz_enabled_snap) {
		if (!rcu_segcblist_empty(&rdp->cblist))
			invoke_rcu_core(); /* force nohz to see update. */
		rdp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;

	/*
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
	 */
	if (rdp->last_accelerate == jiffies)
		return;
	rdp->last_accelerate = jiffies;
	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
		rnp = rdp->mynode;
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
		needwake = rcu_accelerate_cbs(rnp, rdp);
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
		if (needwake)
			rcu_gp_kthread_wake();
	}
}

/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
static void rcu_cleanup_after_idle(void)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);

	lockdep_assert_irqs_disabled();
	if (rcu_rdp_is_offloaded(rdp))
		return;
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
}

#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
 * CONFIG_RCU_NOCB_CPU CPUs.
 */
static bool rcu_nohz_full_cpu(void)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress() ||
	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
		return true;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
	return false;
}

/*
 * Bind the RCU grace-period kthreads to the housekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
	if (!tick_nohz_full_enabled())
		return;
	housekeeping_affine(current, HK_FLAG_RCU);
}

/* Record the current task on dyntick-idle entry. */
static __always_inline void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Record no current task on dyntick-idle exit. */
static __always_inline void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
static __always_inline void rcu_dynticks_task_trace_enter(void)
{
#ifdef CONFIG_TASKS_TRACE_RCU
	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
		current->trc_reader_special.b.need_mb = true;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}

/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
static __always_inline void rcu_dynticks_task_trace_exit(void)
{
#ifdef CONFIG_TASKS_TRACE_RCU
	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
		current->trc_reader_special.b.need_mb = false;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}