1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
|
/*
* kexec.c - kexec system call
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#include <linux/capability.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/kexec.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/syscalls.h>
#include <linux/reboot.h>
#include <linux/ioport.h>
#include <linux/hardirq.h>
#include <linux/elf.h>
#include <linux/elfcore.h>
#include <generated/utsrelease.h>
#include <linux/utsname.h>
#include <linux/numa.h>
#include <linux/suspend.h>
#include <linux/device.h>
#include <linux/freezer.h>
#include <linux/pm.h>
#include <linux/cpu.h>
#include <linux/console.h>
#include <linux/vmalloc.h>
#include <linux/swap.h>
#include <linux/syscore_ops.h>
#include <asm/page.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/sections.h>
/* Per cpu memory for storing cpu states in case of system crash. */
note_buf_t __percpu *crash_notes;
/* vmcoreinfo stuff */
static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
size_t vmcoreinfo_size;
size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
/* Location of the reserved area for the crash kernel */
struct resource crashk_res = {
.name = "Crash kernel",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
int kexec_should_crash(struct task_struct *p)
{
if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
return 1;
return 0;
}
/*
* When kexec transitions to the new kernel there is a one-to-one
* mapping between physical and virtual addresses. On processors
* where you can disable the MMU this is trivial, and easy. For
* others it is still a simple predictable page table to setup.
*
* In that environment kexec copies the new kernel to its final
* resting place. This means I can only support memory whose
* physical address can fit in an unsigned long. In particular
* addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
* If the assembly stub has more restrictive requirements
* KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
* defined more restrictively in <asm/kexec.h>.
*
* The code for the transition from the current kernel to the
* the new kernel is placed in the control_code_buffer, whose size
* is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
* page of memory is necessary, but some architectures require more.
* Because this memory must be identity mapped in the transition from
* virtual to physical addresses it must live in the range
* 0 - TASK_SIZE, as only the user space mappings are arbitrarily
* modifiable.
*
* The assembly stub in the control code buffer is passed a linked list
* of descriptor pages detailing the source pages of the new kernel,
* and the destination addresses of those source pages. As this data
* structure is not used in the context of the current OS, it must
* be self-contained.
*
* The code has been made to work with highmem pages and will use a
* destination page in its final resting place (if it happens
* to allocate it). The end product of this is that most of the
* physical address space, and most of RAM can be used.
*
* Future directions include:
* - allocating a page table with the control code buffer identity
* mapped, to simplify machine_kexec and make kexec_on_panic more
* reliable.
*/
/*
* KIMAGE_NO_DEST is an impossible destination address..., for
* allocating pages whose destination address we do not care about.
*/
#define KIMAGE_NO_DEST (-1UL)
static int kimage_is_destination_range(struct kimage *image,
unsigned long start, unsigned long end);
static struct page *kimage_alloc_page(struct kimage *image,
gfp_t gfp_mask,
unsigned long dest);
static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
unsigned long nr_segments,
struct kexec_segment __user *segments)
{
size_t segment_bytes;
struct kimage *image;
unsigned long i;
int result;
/* Allocate a controlling structure */
result = -ENOMEM;
image = kzalloc(sizeof(*image), GFP_KERNEL);
if (!image)
goto out;
image->head = 0;
image->entry = &image->head;
image->last_entry = &image->head;
image->control_page = ~0; /* By default this does not apply */
image->start = entry;
image->type = KEXEC_TYPE_DEFAULT;
/* Initialize the list of control pages */
INIT_LIST_HEAD(&image->control_pages);
/* Initialize the list of destination pages */
INIT_LIST_HEAD(&image->dest_pages);
/* Initialize the list of unusable pages */
INIT_LIST_HEAD(&image->unuseable_pages);
/* Read in the segments */
image->nr_segments = nr_segments;
segment_bytes = nr_segments * sizeof(*segments);
result = copy_from_user(image->segment, segments, segment_bytes);
if (result) {
result = -EFAULT;
goto out;
}
/*
* Verify we have good destination addresses. The caller is
* responsible for making certain we don't attempt to load
* the new image into invalid or reserved areas of RAM. This
* just verifies it is an address we can use.
*
* Since the kernel does everything in page size chunks ensure
* the destination addresses are page aligned. Too many
* special cases crop of when we don't do this. The most
* insidious is getting overlapping destination addresses
* simply because addresses are changed to page size
* granularity.
*/
result = -EADDRNOTAVAIL;
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
goto out;
if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
goto out;
}
/* Verify our destination addresses do not overlap.
* If we alloed overlapping destination addresses
* through very weird things can happen with no
* easy explanation as one segment stops on another.
*/
result = -EINVAL;
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
unsigned long j;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
for (j = 0; j < i; j++) {
unsigned long pstart, pend;
pstart = image->segment[j].mem;
pend = pstart + image->segment[j].memsz;
/* Do the segments overlap ? */
if ((mend > pstart) && (mstart < pend))
goto out;
}
}
/* Ensure our buffer sizes are strictly less than
* our memory sizes. This should always be the case,
* and it is easier to check up front than to be surprised
* later on.
*/
result = -EINVAL;
for (i = 0; i < nr_segments; i++) {
if (image->segment[i].bufsz > image->segment[i].memsz)
goto out;
}
result = 0;
out:
if (result == 0)
*rimage = image;
else
kfree(image);
return result;
}
static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
unsigned long nr_segments,
struct kexec_segment __user *segments)
{
int result;
struct kimage *image;
/* Allocate and initialize a controlling structure */
image = NULL;
result = do_kimage_alloc(&image, entry, nr_segments, segments);
if (result)
goto out;
*rimage = image;
/*
* Find a location for the control code buffer, and add it
* the vector of segments so that it's pages will also be
* counted as destination pages.
*/
result = -ENOMEM;
image->control_code_page = kimage_alloc_control_pages(image,
get_order(KEXEC_CONTROL_PAGE_SIZE));
if (!image->control_code_page) {
printk(KERN_ERR "Could not allocate control_code_buffer\n");
goto out;
}
image->swap_page = kimage_alloc_control_pages(image, 0);
if (!image->swap_page) {
printk(KERN_ERR "Could not allocate swap buffer\n");
goto out;
}
result = 0;
out:
if (result == 0)
*rimage = image;
else
kfree(image);
return result;
}
static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
unsigned long nr_segments,
struct kexec_segment __user *segments)
{
int result;
struct kimage *image;
unsigned long i;
image = NULL;
/* Verify we have a valid entry point */
if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
result = -EADDRNOTAVAIL;
goto out;
}
/* Allocate and initialize a controlling structure */
result = do_kimage_alloc(&image, entry, nr_segments, segments);
if (result)
goto out;
/* Enable the special crash kernel control page
* allocation policy.
*/
image->control_page = crashk_res.start;
image->type = KEXEC_TYPE_CRASH;
/*
* Verify we have good destination addresses. Normally
* the caller is responsible for making certain we don't
* attempt to load the new image into invalid or reserved
* areas of RAM. But crash kernels are preloaded into a
* reserved area of ram. We must ensure the addresses
* are in the reserved area otherwise preloading the
* kernel could corrupt things.
*/
result = -EADDRNOTAVAIL;
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz - 1;
/* Ensure we are within the crash kernel limits */
if ((mstart < crashk_res.start) || (mend > crashk_res.end))
goto out;
}
/*
* Find a location for the control code buffer, and add
* the vector of segments so that it's pages will also be
* counted as destination pages.
*/
result = -ENOMEM;
image->control_code_page = kimage_alloc_control_pages(image,
get_order(KEXEC_CONTROL_PAGE_SIZE));
if (!image->control_code_page) {
printk(KERN_ERR "Could not allocate control_code_buffer\n");
goto out;
}
result = 0;
out:
if (result == 0)
*rimage = image;
else
kfree(image);
return result;
}
static int kimage_is_destination_range(struct kimage *image,
unsigned long start,
unsigned long end)
{
unsigned long i;
for (i = 0; i < image->nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
if ((end > mstart) && (start < mend))
return 1;
}
return 0;
}
static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
{
struct page *pages;
pages = alloc_pages(gfp_mask, order);
if (pages) {
unsigned int count, i;
pages->mapping = NULL;
set_page_private(pages, order);
count = 1 << order;
for (i = 0; i < count; i++)
SetPageReserved(pages + i);
}
return pages;
}
static void kimage_free_pages(struct page *page)
{
unsigned int order, count, i;
order = page_private(page);
count = 1 << order;
for (i = 0; i < count; i++)
ClearPageReserved(page + i);
__free_pages(page, order);
}
static void kimage_free_page_list(struct list_head *list)
{
struct list_head *pos, *next;
list_for_each_safe(pos, next, list) {
struct page *page;
page = list_entry(pos, struct page, lru);
list_del(&page->lru);
kimage_free_pages(page);
}
}
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
unsigned int order)
{
/* Control pages are special, they are the intermediaries
* that are needed while we copy the rest of the pages
* to their final resting place. As such they must
* not conflict with either the destination addresses
* or memory the kernel is already using.
*
* The only case where we really need more than one of
* these are for architectures where we cannot disable
* the MMU and must instead generate an identity mapped
* page table for all of the memory.
*
* At worst this runs in O(N) of the image size.
*/
struct list_head extra_pages;
struct page *pages;
unsigned int count;
count = 1 << order;
INIT_LIST_HEAD(&extra_pages);
/* Loop while I can allocate a page and the page allocated
* is a destination page.
*/
do {
unsigned long pfn, epfn, addr, eaddr;
pages = kimage_alloc_pages(GFP_KERNEL, order);
if (!pages)
break;
pfn = page_to_pfn(pages);
epfn = pfn + count;
addr = pfn << PAGE_SHIFT;
eaddr = epfn << PAGE_SHIFT;
if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
kimage_is_destination_range(image, addr, eaddr)) {
list_add(&pages->lru, &extra_pages);
pages = NULL;
}
} while (!pages);
if (pages) {
/* Remember the allocated page... */
list_add(&pages->lru, &image->control_pages);
/* Because the page is already in it's destination
* location we will never allocate another page at
* that address. Therefore kimage_alloc_pages
* will not return it (again) and we don't need
* to give it an entry in image->segment[].
*/
}
/* Deal with the destination pages I have inadvertently allocated.
*
* Ideally I would convert multi-page allocations into single
* page allocations, and add everything to image->dest_pages.
*
* For now it is simpler to just free the pages.
*/
kimage_free_page_list(&extra_pages);
return pages;
}
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
unsigned int order)
{
/* Control pages are special, they are the intermediaries
* that are needed while we copy the rest of the pages
* to their final resting place. As such they must
* not conflict with either the destination addresses
* or memory the kernel is already using.
*
* Control pages are also the only pags we must allocate
* when loading a crash kernel. All of the other pages
* are specified by the segments and we just memcpy
* into them directly.
*
* The only case where we really need more than one of
* these are for architectures where we cannot disable
* the MMU and must instead generate an identity mapped
* page table for all of the memory.
*
* Given the low demand this implements a very simple
* allocator that finds the first hole of the appropriate
* size in the reserved memory region, and allocates all
* of the memory up to and including the hole.
*/
unsigned long hole_start, hole_end, size;
struct page *pages;
pages = NULL;
size = (1 << order) << PAGE_SHIFT;
hole_start = (image->control_page + (size - 1)) & ~(size - 1);
hole_end = hole_start + size - 1;
while (hole_end <= crashk_res.end) {
unsigned long i;
if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
break;
if (hole_end > crashk_res.end)
break;
/* See if I overlap any of the segments */
for (i = 0; i < image->nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz - 1;
if ((hole_end >= mstart) && (hole_start <= mend)) {
/* Advance the hole to the end of the segment */
hole_start = (mend + (size - 1)) & ~(size - 1);
hole_end = hole_start + size - 1;
break;
}
}
/* If I don't overlap any segments I have found my hole! */
if (i == image->nr_segments) {
pages = pfn_to_page(hole_start >> PAGE_SHIFT);
break;
}
}
if (pages)
image->control_page = hole_end;
return pages;
}
struct page *kimage_alloc_control_pages(struct kimage *image,
unsigned int order)
{
struct page *pages = NULL;
switch (image->type) {
case KEXEC_TYPE_DEFAULT:
pages = kimage_alloc_normal_control_pages(image, order);
break;
case KEXEC_TYPE_CRASH:
pages = kimage_alloc_crash_control_pages(image, order);
break;
}
return pages;
}
static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
{
if (*image->entry != 0)
image->entry++;
if (image->entry == image->last_entry) {
kimage_entry_t *ind_page;
struct page *page;
page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
if (!page)
return -ENOMEM;
ind_page = page_address(page);
*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
image->entry = ind_page;
image->last_entry = ind_page +
((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
}
*image->entry = entry;
image->entry++;
*image->entry = 0;
return 0;
}
static int kimage_set_destination(struct kimage *image,
unsigned long destination)
{
int result;
destination &= PAGE_MASK;
result = kimage_add_entry(image, destination | IND_DESTINATION);
if (result == 0)
image->destination = destination;
return result;
}
static int kimage_add_page(struct kimage *image, unsigned long page)
{
int result;
page &= PAGE_MASK;
result = kimage_add_entry(image, page | IND_SOURCE);
if (result == 0)
image->destination += PAGE_SIZE;
return result;
}
static void kimage_free_extra_pages(struct kimage *image)
{
/* Walk through and free any extra destination pages I may have */
kimage_free_page_list(&image->dest_pages);
/* Walk through and free any unusable pages I have cached */
kimage_free_page_list(&image->unuseable_pages);
}
static void kimage_terminate(struct kimage *image)
{
if (*image->entry != 0)
image->entry++;
*image->entry = IND_DONE;
}
#define for_each_kimage_entry(image, ptr, entry) \
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
ptr = (entry & IND_INDIRECTION)? \
phys_to_virt((entry & PAGE_MASK)): ptr +1)
static void kimage_free_entry(kimage_entry_t entry)
{
struct page *page;
page = pfn_to_page(entry >> PAGE_SHIFT);
kimage_free_pages(page);
}
static void kimage_free(struct kimage *image)
{
kimage_entry_t *ptr, entry;
kimage_entry_t ind = 0;
if (!image)
return;
kimage_free_extra_pages(image);
for_each_kimage_entry(image, ptr, entry) {
if (entry & IND_INDIRECTION) {
/* Free the previous indirection page */
if (ind & IND_INDIRECTION)
kimage_free_entry(ind);
/* Save this indirection page until we are
* done with it.
*/
ind = entry;
}
else if (entry & IND_SOURCE)
kimage_free_entry(entry);
}
/* Free the final indirection page */
if (ind & IND_INDIRECTION)
kimage_free_entry(ind);
/* Handle any machine specific cleanup */
machine_kexec_cleanup(image);
/* Free the kexec control pages... */
kimage_free_page_list(&image->control_pages);
kfree(image);
}
static kimage_entry_t *kimage_dst_used(struct kimage *image,
unsigned long page)
{
kimage_entry_t *ptr, entry;
unsigned long destination = 0;
for_each_kimage_entry(image, ptr, entry) {
if (entry & IND_DESTINATION)
destination = entry & PAGE_MASK;
else if (entry & IND_SOURCE) {
if (page == destination)
return ptr;
destination += PAGE_SIZE;
}
}
return NULL;
}
static struct page *kimage_alloc_page(struct kimage *image,
gfp_t gfp_mask,
unsigned long destination)
{
/*
* Here we implement safeguards to ensure that a source page
* is not copied to its destination page before the data on
* the destination page is no longer useful.
*
* To do this we maintain the invariant that a source page is
* either its own destination page, or it is not a
* destination page at all.
*
* That is slightly stronger than required, but the proof
* that no problems will not occur is trivial, and the
* implementation is simply to verify.
*
* When allocating all pages normally this algorithm will run
* in O(N) time, but in the worst case it will run in O(N^2)
* time. If the runtime is a problem the data structures can
* be fixed.
*/
struct page *page;
unsigned long addr;
/*
* Walk through the list of destination pages, and see if I
* have a match.
*/
list_for_each_entry(page, &image->dest_pages, lru) {
addr = page_to_pfn(page) << PAGE_SHIFT;
if (addr == destination) {
list_del(&page->lru);
return page;
}
}
page = NULL;
while (1) {
kimage_entry_t *old;
/* Allocate a page, if we run out of memory give up */
page = kimage_alloc_pages(gfp_mask, 0);
if (!page)
return NULL;
/* If the page cannot be used file it away */
if (page_to_pfn(page) >
(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
list_add(&page->lru, &image->unuseable_pages);
continue;
}
addr = page_to_pfn(page) << PAGE_SHIFT;
/* If it is the destination page we want use it */
if (addr == destination)
break;
/* If the page is not a destination page use it */
if (!kimage_is_destination_range(image, addr,
addr + PAGE_SIZE))
break;
/*
* I know that the page is someones destination page.
* See if there is already a source page for this
* destination page. And if so swap the source pages.
*/
old = kimage_dst_used(image, addr);
if (old) {
/* If so move it */
unsigned long old_addr;
struct page *old_page;
old_addr = *old & PAGE_MASK;
old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
copy_highpage(page, old_page);
*old = addr | (*old & ~PAGE_MASK);
/* The old page I have found cannot be a
* destination page, so return it if it's
* gfp_flags honor the ones passed in.
*/
if (!(gfp_mask & __GFP_HIGHMEM) &&
PageHighMem(old_page)) {
kimage_free_pages(old_page);
continue;
}
addr = old_addr;
page = old_page;
break;
}
else {
/* Place the page on the destination list I
* will use it later.
*/
list_add(&page->lru, &image->dest_pages);
}
}
return page;
}
static int kimage_load_normal_segment(struct kimage *image,
struct kexec_segment *segment)
{
unsigned long maddr;
unsigned long ubytes, mbytes;
int result;
unsigned char __user *buf;
result = 0;
buf = segment->buf;
ubytes = segment->bufsz;
mbytes = segment->memsz;
maddr = segment->mem;
result = kimage_set_destination(image, maddr);
if (result < 0)
goto out;
while (mbytes) {
struct page *page;
char *ptr;
size_t uchunk, mchunk;
page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
if (!page) {
result = -ENOMEM;
goto out;
}
result = kimage_add_page(image, page_to_pfn(page)
<< PAGE_SHIFT);
if (result < 0)
goto out;
ptr = kmap(page);
/* Start with a clear page */
clear_page(ptr);
ptr += maddr & ~PAGE_MASK;
mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
if (mchunk > mbytes)
mchunk = mbytes;
uchunk = mchunk;
if (uchunk > ubytes)
uchunk = ubytes;
result = copy_from_user(ptr, buf, uchunk);
kunmap(page);
if (result) {
result = -EFAULT;
goto out;
}
ubytes -= uchunk;
maddr += mchunk;
buf += mchunk;
mbytes -= mchunk;
}
out:
return result;
}
static int kimage_load_crash_segment(struct kimage *image,
struct kexec_segment *segment)
{
/* For crash dumps kernels we simply copy the data from
* user space to it's destination.
* We do things a page at a time for the sake of kmap.
*/
unsigned long maddr;
unsigned long ubytes, mbytes;
int result;
unsigned char __user *buf;
result = 0;
buf = segment->buf;
ubytes = segment->bufsz;
mbytes = segment->memsz;
maddr = segment->mem;
while (mbytes) {
struct page *page;
char *ptr;
size_t uchunk, mchunk;
page = pfn_to_page(maddr >> PAGE_SHIFT);
if (!page) {
result = -ENOMEM;
goto out;
}
ptr = kmap(page);
ptr += maddr & ~PAGE_MASK;
mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
if (mchunk > mbytes)
mchunk = mbytes;
uchunk = mchunk;
if (uchunk > ubytes) {
uchunk = ubytes;
/* Zero the trailing part of the page */
memset(ptr + uchunk, 0, mchunk - uchunk);
}
result = copy_from_user(ptr, buf, uchunk);
kexec_flush_icache_page(page);
kunmap(page);
if (result) {
result = -EFAULT;
goto out;
}
ubytes -= uchunk;
maddr += mchunk;
buf += mchunk;
mbytes -= mchunk;
}
out:
return result;
}
static int kimage_load_segment(struct kimage *image,
struct kexec_segment *segment)
{
int result = -ENOMEM;
switch (image->type) {
case KEXEC_TYPE_DEFAULT:
result = kimage_load_normal_segment(image, segment);
break;
case KEXEC_TYPE_CRASH:
result = kimage_load_crash_segment(image, segment);
break;
}
return result;
}
/*
* Exec Kernel system call: for obvious reasons only root may call it.
*
* This call breaks up into three pieces.
* - A generic part which loads the new kernel from the current
* address space, and very carefully places the data in the
* allocated pages.
*
* - A generic part that interacts with the kernel and tells all of
* the devices to shut down. Preventing on-going dmas, and placing
* the devices in a consistent state so a later kernel can
* reinitialize them.
*
* - A machine specific part that includes the syscall number
* and the copies the image to it's final destination. And
* jumps into the image at entry.
*
* kexec does not sync, or unmount filesystems so if you need
* that to happen you need to do that yourself.
*/
struct kimage *kexec_image;
struct kimage *kexec_crash_image;
static DEFINE_MUTEX(kexec_mutex);
SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
struct kexec_segment __user *, segments, unsigned long, flags)
{
struct kimage **dest_image, *image;
int result;
/* We only trust the superuser with rebooting the system. */
if (!capable(CAP_SYS_BOOT))
return -EPERM;
/*
* Verify we have a legal set of flags
* This leaves us room for future extensions.
*/
if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
return -EINVAL;
/* Verify we are on the appropriate architecture */
if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
return -EINVAL;
/* Put an artificial cap on the number
* of segments passed to kexec_load.
*/
if (nr_segments > KEXEC_SEGMENT_MAX)
return -EINVAL;
image = NULL;
result = 0;
/* Because we write directly to the reserved memory
* region when loading crash kernels we need a mutex here to
* prevent multiple crash kernels from attempting to load
* simultaneously, and to prevent a crash kernel from loading
* over the top of a in use crash kernel.
*
* KISS: always take the mutex.
*/
if (!mutex_trylock(&kexec_mutex))
return -EBUSY;
dest_image = &kexec_image;
if (flags & KEXEC_ON_CRASH)
dest_image = &kexec_crash_image;
if (nr_segments > 0) {
unsigned long i;
/* Loading another kernel to reboot into */
if ((flags & KEXEC_ON_CRASH) == 0)
result = kimage_normal_alloc(&image, entry,
nr_segments, segments);
/* Loading another kernel to switch to if this one crashes */
else if (flags & KEXEC_ON_CRASH) {
/* Free any current crash dump kernel before
* we corrupt it.
*/
kimage_free(xchg(&kexec_crash_image, NULL));
result = kimage_crash_alloc(&image, entry,
nr_segments, segments);
crash_map_reserved_pages();
}
if (result)
goto out;
if (flags & KEXEC_PRESERVE_CONTEXT)
image->preserve_context = 1;
result = machine_kexec_prepare(image);
if (result)
goto out;
for (i = 0; i < nr_segments; i++) {
result = kimage_load_segment(image, &image->segment[i]);
if (result)
goto out;
}
kimage_terminate(image);
if (flags & KEXEC_ON_CRASH)
crash_unmap_reserved_pages();
}
/* Install the new kernel, and Uninstall the old */
image = xchg(dest_image, image);
out:
mutex_unlock(&kexec_mutex);
kimage_free(image);
return result;
}
/*
* Add and remove page tables for crashkernel memory
*
* Provide an empty default implementation here -- architecture
* code may override this
*/
void __weak crash_map_reserved_pages(void)
{}
void __weak crash_unmap_reserved_pages(void)
{}
#ifdef CONFIG_COMPAT
asmlinkage long compat_sys_kexec_load(unsigned long entry,
unsigned long nr_segments,
struct compat_kexec_segment __user *segments,
unsigned long flags)
{
struct compat_kexec_segment in;
struct kexec_segment out, __user *ksegments;
unsigned long i, result;
/* Don't allow clients that don't understand the native
* architecture to do anything.
*/
if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
return -EINVAL;
if (nr_segments > KEXEC_SEGMENT_MAX)
return -EINVAL;
ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
for (i=0; i < nr_segments; i++) {
result = copy_from_user(&in, &segments[i], sizeof(in));
if (result)
return -EFAULT;
out.buf = compat_ptr(in.buf);
out.bufsz = in.bufsz;
out.mem = in.mem;
out.memsz = in.memsz;
result = copy_to_user(&ksegments[i], &out, sizeof(out));
if (result)
return -EFAULT;
}
return sys_kexec_load(entry, nr_segments, ksegments, flags);
}
#endif
void crash_kexec(struct pt_regs *regs)
{
/* Take the kexec_mutex here to prevent sys_kexec_load
* running on one cpu from replacing the crash kernel
* we are using after a panic on a different cpu.
*
* If the crash kernel was not located in a fixed area
* of memory the xchg(&kexec_crash_image) would be
* sufficient. But since I reuse the memory...
*/
if (mutex_trylock(&kexec_mutex)) {
if (kexec_crash_image) {
struct pt_regs fixed_regs;
crash_setup_regs(&fixed_regs, regs);
crash_save_vmcoreinfo();
machine_crash_shutdown(&fixed_regs);
machine_kexec(kexec_crash_image);
}
mutex_unlock(&kexec_mutex);
}
}
size_t crash_get_memory_size(void)
{
size_t size = 0;
mutex_lock(&kexec_mutex);
if (crashk_res.end != crashk_res.start)
size = resource_size(&crashk_res);
mutex_unlock(&kexec_mutex);
return size;
}
void __weak crash_free_reserved_phys_range(unsigned long begin,
unsigned long end)
{
unsigned long addr;
for (addr = begin; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
free_page((unsigned long)__va(addr));
totalram_pages++;
}
}
int crash_shrink_memory(unsigned long new_size)
{
int ret = 0;
unsigned long start, end;
unsigned long old_size;
struct resource *ram_res;
mutex_lock(&kexec_mutex);
if (kexec_crash_image) {
ret = -ENOENT;
goto unlock;
}
start = crashk_res.start;
end = crashk_res.end;
old_size = (end == 0) ? 0 : end - start + 1;
if (new_size >= old_size) {
ret = (new_size == old_size) ? 0 : -EINVAL;
goto unlock;
}
ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
if (!ram_res) {
ret = -ENOMEM;
goto unlock;
}
start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
crash_map_reserved_pages();
crash_free_reserved_phys_range(end, crashk_res.end);
if ((start == end) && (crashk_res.parent != NULL))
release_resource(&crashk_res);
ram_res->start = end;
ram_res->end = crashk_res.end;
ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
ram_res->name = "System RAM";
crashk_res.end = end - 1;
insert_resource(&iomem_resource, ram_res);
crash_unmap_reserved_pages();
unlock:
mutex_unlock(&kexec_mutex);
return ret;
}
static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
size_t data_len)
{
struct elf_note note;
note.n_namesz = strlen(name) + 1;
note.n_descsz = data_len;
note.n_type = type;
memcpy(buf, ¬e, sizeof(note));
buf += (sizeof(note) + 3)/4;
memcpy(buf, name, note.n_namesz);
buf += (note.n_namesz + 3)/4;
memcpy(buf, data, note.n_descsz);
buf += (note.n_descsz + 3)/4;
return buf;
}
static void final_note(u32 *buf)
{
struct elf_note note;
note.n_namesz = 0;
note.n_descsz = 0;
note.n_type = 0;
memcpy(buf, ¬e, sizeof(note));
}
void crash_save_cpu(struct pt_regs *regs, int cpu)
{
struct elf_prstatus prstatus;
u32 *buf;
if ((cpu < 0) || (cpu >= nr_cpu_ids))
return;
/* Using ELF notes here is opportunistic.
* I need a well defined structure format
* for the data I pass, and I need tags
* on the data to indicate what information I have
* squirrelled away. ELF notes happen to provide
* all of that, so there is no need to invent something new.
*/
buf = (u32*)per_cpu_ptr(crash_notes, cpu);
if (!buf)
return;
memset(&prstatus, 0, sizeof(prstatus));
prstatus.pr_pid = current->pid;
elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
&prstatus, sizeof(prstatus));
final_note(buf);
}
static int __init crash_notes_memory_init(void)
{
/* Allocate memory for saving cpu registers. */
crash_notes = alloc_percpu(note_buf_t);
if (!crash_notes) {
printk("Kexec: Memory allocation for saving cpu register"
" states failed\n");
return -ENOMEM;
}
return 0;
}
module_init(crash_notes_memory_init)
/*
* parsing the "crashkernel" commandline
*
* this code is intended to be called from architecture specific code
*/
/*
* This function parses command lines in the format
*
* crashkernel=ramsize-range:size[,...][@offset]
*
* The function returns 0 on success and -EINVAL on failure.
*/
static int __init parse_crashkernel_mem(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
char *cur = cmdline, *tmp;
/* for each entry of the comma-separated list */
do {
unsigned long long start, end = ULLONG_MAX, size;
/* get the start of the range */
start = memparse(cur, &tmp);
if (cur == tmp) {
pr_warning("crashkernel: Memory value expected\n");
return -EINVAL;
}
cur = tmp;
if (*cur != '-') {
pr_warning("crashkernel: '-' expected\n");
return -EINVAL;
}
cur++;
/* if no ':' is here, than we read the end */
if (*cur != ':') {
end = memparse(cur, &tmp);
if (cur == tmp) {
pr_warning("crashkernel: Memory "
"value expected\n");
return -EINVAL;
}
cur = tmp;
if (end <= start) {
pr_warning("crashkernel: end <= start\n");
return -EINVAL;
}
}
if (*cur != ':') {
pr_warning("crashkernel: ':' expected\n");
return -EINVAL;
}
cur++;
size = memparse(cur, &tmp);
if (cur == tmp) {
pr_warning("Memory value expected\n");
return -EINVAL;
}
cur = tmp;
if (size >= system_ram) {
pr_warning("crashkernel: invalid size\n");
return -EINVAL;
}
/* match ? */
if (system_ram >= start && system_ram < end) {
*crash_size = size;
break;
}
} while (*cur++ == ',');
if (*crash_size > 0) {
while (*cur && *cur != ' ' && *cur != '@')
cur++;
if (*cur == '@') {
cur++;
*crash_base = memparse(cur, &tmp);
if (cur == tmp) {
pr_warning("Memory value expected "
"after '@'\n");
return -EINVAL;
}
}
}
return 0;
}
/*
* That function parses "simple" (old) crashkernel command lines like
*
* crashkernel=size[@offset]
*
* It returns 0 on success and -EINVAL on failure.
*/
static int __init parse_crashkernel_simple(char *cmdline,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
char *cur = cmdline;
*crash_size = memparse(cmdline, &cur);
if (cmdline == cur) {
pr_warning("crashkernel: memory value expected\n");
return -EINVAL;
}
if (*cur == '@')
*crash_base = memparse(cur+1, &cur);
return 0;
}
/*
* That function is the entry point for command line parsing and should be
* called from the arch-specific code.
*/
int __init parse_crashkernel(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
char *p = cmdline, *ck_cmdline = NULL;
char *first_colon, *first_space;
BUG_ON(!crash_size || !crash_base);
*crash_size = 0;
*crash_base = 0;
/* find crashkernel and use the last one if there are more */
p = strstr(p, "crashkernel=");
while (p) {
ck_cmdline = p;
p = strstr(p+1, "crashkernel=");
}
if (!ck_cmdline)
return -EINVAL;
ck_cmdline += 12; /* strlen("crashkernel=") */
/*
* if the commandline contains a ':', then that's the extended
* syntax -- if not, it must be the classic syntax
*/
first_colon = strchr(ck_cmdline, ':');
first_space = strchr(ck_cmdline, ' ');
if (first_colon && (!first_space || first_colon < first_space))
return parse_crashkernel_mem(ck_cmdline, system_ram,
crash_size, crash_base);
else
return parse_crashkernel_simple(ck_cmdline, crash_size,
crash_base);
return 0;
}
static void update_vmcoreinfo_note(void)
{
u32 *buf = vmcoreinfo_note;
if (!vmcoreinfo_size)
return;
buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
vmcoreinfo_size);
final_note(buf);
}
void crash_save_vmcoreinfo(void)
{
vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
update_vmcoreinfo_note();
}
void vmcoreinfo_append_str(const char *fmt, ...)
{
va_list args;
char buf[0x50];
int r;
va_start(args, fmt);
r = vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
if (r + vmcoreinfo_size > vmcoreinfo_max_size)
r = vmcoreinfo_max_size - vmcoreinfo_size;
memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
vmcoreinfo_size += r;
}
/*
* provide an empty default implementation here -- architecture
* code may override this
*/
void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
{}
unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
{
return __pa((unsigned long)(char *)&vmcoreinfo_note);
}
static int __init crash_save_vmcoreinfo_init(void)
{
VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
VMCOREINFO_PAGESIZE(PAGE_SIZE);
VMCOREINFO_SYMBOL(init_uts_ns);
VMCOREINFO_SYMBOL(node_online_map);
VMCOREINFO_SYMBOL(swapper_pg_dir);
VMCOREINFO_SYMBOL(_stext);
VMCOREINFO_SYMBOL(vmlist);
#ifndef CONFIG_NEED_MULTIPLE_NODES
VMCOREINFO_SYMBOL(mem_map);
VMCOREINFO_SYMBOL(contig_page_data);
#endif
#ifdef CONFIG_SPARSEMEM
VMCOREINFO_SYMBOL(mem_section);
VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
VMCOREINFO_STRUCT_SIZE(mem_section);
VMCOREINFO_OFFSET(mem_section, section_mem_map);
#endif
VMCOREINFO_STRUCT_SIZE(page);
VMCOREINFO_STRUCT_SIZE(pglist_data);
VMCOREINFO_STRUCT_SIZE(zone);
VMCOREINFO_STRUCT_SIZE(free_area);
VMCOREINFO_STRUCT_SIZE(list_head);
VMCOREINFO_SIZE(nodemask_t);
VMCOREINFO_OFFSET(page, flags);
VMCOREINFO_OFFSET(page, _count);
VMCOREINFO_OFFSET(page, mapping);
VMCOREINFO_OFFSET(page, lru);
VMCOREINFO_OFFSET(pglist_data, node_zones);
VMCOREINFO_OFFSET(pglist_data, nr_zones);
#ifdef CONFIG_FLAT_NODE_MEM_MAP
VMCOREINFO_OFFSET(pglist_data, node_mem_map);
#endif
VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
VMCOREINFO_OFFSET(pglist_data, node_id);
VMCOREINFO_OFFSET(zone, free_area);
VMCOREINFO_OFFSET(zone, vm_stat);
VMCOREINFO_OFFSET(zone, spanned_pages);
VMCOREINFO_OFFSET(free_area, free_list);
VMCOREINFO_OFFSET(list_head, next);
VMCOREINFO_OFFSET(list_head, prev);
VMCOREINFO_OFFSET(vm_struct, addr);
VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
log_buf_kexec_setup();
VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
VMCOREINFO_NUMBER(NR_FREE_PAGES);
VMCOREINFO_NUMBER(PG_lru);
VMCOREINFO_NUMBER(PG_private);
VMCOREINFO_NUMBER(PG_swapcache);
arch_crash_save_vmcoreinfo();
update_vmcoreinfo_note();
return 0;
}
module_init(crash_save_vmcoreinfo_init)
/*
* Move into place and start executing a preloaded standalone
* executable. If nothing was preloaded return an error.
*/
int kernel_kexec(void)
{
int error = 0;
if (!mutex_trylock(&kexec_mutex))
return -EBUSY;
if (!kexec_image) {
error = -EINVAL;
goto Unlock;
}
#ifdef CONFIG_KEXEC_JUMP
if (kexec_image->preserve_context) {
lock_system_sleep();
pm_prepare_console();
error = freeze_processes();
if (error) {
error = -EBUSY;
goto Restore_console;
}
suspend_console();
error = dpm_suspend_start(PMSG_FREEZE);
if (error)
goto Resume_console;
/* At this point, dpm_suspend_start() has been called,
* but *not* dpm_suspend_end(). We *must* call
* dpm_suspend_end() now. Otherwise, drivers for
* some devices (e.g. interrupt controllers) become
* desynchronized with the actual state of the
* hardware at resume time, and evil weirdness ensues.
*/
error = dpm_suspend_end(PMSG_FREEZE);
if (error)
goto Resume_devices;
error = disable_nonboot_cpus();
if (error)
goto Enable_cpus;
local_irq_disable();
error = syscore_suspend();
if (error)
goto Enable_irqs;
} else
#endif
{
kernel_restart_prepare(NULL);
printk(KERN_EMERG "Starting new kernel\n");
machine_shutdown();
}
machine_kexec(kexec_image);
#ifdef CONFIG_KEXEC_JUMP
if (kexec_image->preserve_context) {
syscore_resume();
Enable_irqs:
local_irq_enable();
Enable_cpus:
enable_nonboot_cpus();
dpm_resume_start(PMSG_RESTORE);
Resume_devices:
dpm_resume_end(PMSG_RESTORE);
Resume_console:
resume_console();
thaw_processes();
Restore_console:
pm_restore_console();
unlock_system_sleep();
}
#endif
Unlock:
mutex_unlock(&kexec_mutex);
return error;
}
|