summaryrefslogtreecommitdiff
path: root/kernel/bpf/tnum.c
blob: 3d7127f439a142848c9c392c75dcb967d005a0f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// SPDX-License-Identifier: GPL-2.0-only
/* tnum: tracked (or tristate) numbers
 *
 * A tnum tracks knowledge about the bits of a value.  Each bit can be either
 * known (0 or 1), or unknown (x).  Arithmetic operations on tnums will
 * propagate the unknown bits such that the tnum result represents all the
 * possible results for possible values of the operands.
 */
#include <linux/kernel.h>
#include <linux/tnum.h>

#define TNUM(_v, _m)	(struct tnum){.value = _v, .mask = _m}
/* A completely unknown value */
const struct tnum tnum_unknown = { .value = 0, .mask = -1 };

struct tnum tnum_const(u64 value)
{
	return TNUM(value, 0);
}

struct tnum tnum_range(u64 min, u64 max)
{
	u64 chi = min ^ max, delta;
	u8 bits = fls64(chi);

	/* special case, needed because 1ULL << 64 is undefined */
	if (bits > 63)
		return tnum_unknown;
	/* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
	 * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
	 *  constant min (since min == max).
	 */
	delta = (1ULL << bits) - 1;
	return TNUM(min & ~delta, delta);
}

struct tnum tnum_lshift(struct tnum a, u8 shift)
{
	return TNUM(a.value << shift, a.mask << shift);
}

struct tnum tnum_rshift(struct tnum a, u8 shift)
{
	return TNUM(a.value >> shift, a.mask >> shift);
}

struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness)
{
	/* if a.value is negative, arithmetic shifting by minimum shift
	 * will have larger negative offset compared to more shifting.
	 * If a.value is nonnegative, arithmetic shifting by minimum shift
	 * will have larger positive offset compare to more shifting.
	 */
	if (insn_bitness == 32)
		return TNUM((u32)(((s32)a.value) >> min_shift),
			    (u32)(((s32)a.mask)  >> min_shift));
	else
		return TNUM((s64)a.value >> min_shift,
			    (s64)a.mask  >> min_shift);
}

struct tnum tnum_add(struct tnum a, struct tnum b)
{
	u64 sm, sv, sigma, chi, mu;

	sm = a.mask + b.mask;
	sv = a.value + b.value;
	sigma = sm + sv;
	chi = sigma ^ sv;
	mu = chi | a.mask | b.mask;
	return TNUM(sv & ~mu, mu);
}

struct tnum tnum_sub(struct tnum a, struct tnum b)
{
	u64 dv, alpha, beta, chi, mu;

	dv = a.value - b.value;
	alpha = dv + a.mask;
	beta = dv - b.mask;
	chi = alpha ^ beta;
	mu = chi | a.mask | b.mask;
	return TNUM(dv & ~mu, mu);
}

struct tnum tnum_and(struct tnum a, struct tnum b)
{
	u64 alpha, beta, v;

	alpha = a.value | a.mask;
	beta = b.value | b.mask;
	v = a.value & b.value;
	return TNUM(v, alpha & beta & ~v);
}

struct tnum tnum_or(struct tnum a, struct tnum b)
{
	u64 v, mu;

	v = a.value | b.value;
	mu = a.mask | b.mask;
	return TNUM(v, mu & ~v);
}

struct tnum tnum_xor(struct tnum a, struct tnum b)
{
	u64 v, mu;

	v = a.value ^ b.value;
	mu = a.mask | b.mask;
	return TNUM(v & ~mu, mu);
}

/* Generate partial products by multiplying each bit in the multiplier (tnum a)
 * with the multiplicand (tnum b), and add the partial products after
 * appropriately bit-shifting them. Instead of directly performing tnum addition
 * on the generated partial products, equivalenty, decompose each partial
 * product into two tnums, consisting of the value-sum (acc_v) and the
 * mask-sum (acc_m) and then perform tnum addition on them. The following paper
 * explains the algorithm in more detail: https://arxiv.org/abs/2105.05398.
 */
struct tnum tnum_mul(struct tnum a, struct tnum b)
{
	u64 acc_v = a.value * b.value;
	struct tnum acc_m = TNUM(0, 0);

	while (a.value || a.mask) {
		/* LSB of tnum a is a certain 1 */
		if (a.value & 1)
			acc_m = tnum_add(acc_m, TNUM(0, b.mask));
		/* LSB of tnum a is uncertain */
		else if (a.mask & 1)
			acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask));
		/* Note: no case for LSB is certain 0 */
		a = tnum_rshift(a, 1);
		b = tnum_lshift(b, 1);
	}
	return tnum_add(TNUM(acc_v, 0), acc_m);
}

/* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
 * a 'known 0' - this will return a 'known 1' for that bit.
 */
struct tnum tnum_intersect(struct tnum a, struct tnum b)
{
	u64 v, mu;

	v = a.value | b.value;
	mu = a.mask & b.mask;
	return TNUM(v & ~mu, mu);
}

struct tnum tnum_cast(struct tnum a, u8 size)
{
	a.value &= (1ULL << (size * 8)) - 1;
	a.mask &= (1ULL << (size * 8)) - 1;
	return a;
}

bool tnum_is_aligned(struct tnum a, u64 size)
{
	if (!size)
		return true;
	return !((a.value | a.mask) & (size - 1));
}

bool tnum_in(struct tnum a, struct tnum b)
{
	if (b.mask & ~a.mask)
		return false;
	b.value &= ~a.mask;
	return a.value == b.value;
}

int tnum_strn(char *str, size_t size, struct tnum a)
{
	return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
}
EXPORT_SYMBOL_GPL(tnum_strn);

int tnum_sbin(char *str, size_t size, struct tnum a)
{
	size_t n;

	for (n = 64; n; n--) {
		if (n < size) {
			if (a.mask & 1)
				str[n - 1] = 'x';
			else if (a.value & 1)
				str[n - 1] = '1';
			else
				str[n - 1] = '0';
		}
		a.mask >>= 1;
		a.value >>= 1;
	}
	str[min(size - 1, (size_t)64)] = 0;
	return 64;
}

struct tnum tnum_subreg(struct tnum a)
{
	return tnum_cast(a, 4);
}

struct tnum tnum_clear_subreg(struct tnum a)
{
	return tnum_lshift(tnum_rshift(a, 32), 32);
}

struct tnum tnum_const_subreg(struct tnum a, u32 value)
{
	return tnum_or(tnum_clear_subreg(a), tnum_const(value));
}