summaryrefslogtreecommitdiff
path: root/include/net/sock.h
blob: 3e3a5da2ce5aedbcfaca1880eb7c2e239c86b5ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Definitions for the AF_INET socket handler.
 *
 * Version:	@(#)sock.h	1.0.4	05/13/93
 *
 * Authors:	Ross Biro
 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 *		Florian La Roche <flla@stud.uni-sb.de>
 *
 * Fixes:
 *		Alan Cox	:	Volatiles in skbuff pointers. See
 *					skbuff comments. May be overdone,
 *					better to prove they can be removed
 *					than the reverse.
 *		Alan Cox	:	Added a zapped field for tcp to note
 *					a socket is reset and must stay shut up
 *		Alan Cox	:	New fields for options
 *	Pauline Middelink	:	identd support
 *		Alan Cox	:	Eliminate low level recv/recvfrom
 *		David S. Miller	:	New socket lookup architecture.
 *              Steve Whitehouse:       Default routines for sock_ops
 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
 *              			protinfo be just a void pointer, as the
 *              			protocol specific parts were moved to
 *              			respective headers and ipv4/v6, etc now
 *              			use private slabcaches for its socks
 *              Pedro Hortas	:	New flags field for socket options
 */
#ifndef _SOCK_H
#define _SOCK_H

#include <linux/hardirq.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/list_nulls.h>
#include <linux/timer.h>
#include <linux/cache.h>
#include <linux/bitops.h>
#include <linux/lockdep.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>	/* struct sk_buff */
#include <linux/mm.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/page_counter.h>
#include <linux/memcontrol.h>
#include <linux/static_key.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/cgroup-defs.h>
#include <linux/rbtree.h>
#include <linux/filter.h>
#include <linux/rculist_nulls.h>
#include <linux/poll.h>
#include <linux/sockptr.h>
#include <linux/indirect_call_wrapper.h>
#include <linux/atomic.h>
#include <linux/refcount.h>
#include <net/dst.h>
#include <net/checksum.h>
#include <net/tcp_states.h>
#include <linux/net_tstamp.h>
#include <net/l3mdev.h>

/*
 * This structure really needs to be cleaned up.
 * Most of it is for TCP, and not used by any of
 * the other protocols.
 */

/* Define this to get the SOCK_DBG debugging facility. */
#define SOCK_DEBUGGING
#ifdef SOCK_DEBUGGING
#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
					printk(KERN_DEBUG msg); } while (0)
#else
/* Validate arguments and do nothing */
static inline __printf(2, 3)
void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
{
}
#endif

/* This is the per-socket lock.  The spinlock provides a synchronization
 * between user contexts and software interrupt processing, whereas the
 * mini-semaphore synchronizes multiple users amongst themselves.
 */
typedef struct {
	spinlock_t		slock;
	int			owned;
	wait_queue_head_t	wq;
	/*
	 * We express the mutex-alike socket_lock semantics
	 * to the lock validator by explicitly managing
	 * the slock as a lock variant (in addition to
	 * the slock itself):
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	struct lockdep_map dep_map;
#endif
} socket_lock_t;

struct sock;
struct proto;
struct net;

typedef __u32 __bitwise __portpair;
typedef __u64 __bitwise __addrpair;

/**
 *	struct sock_common - minimal network layer representation of sockets
 *	@skc_daddr: Foreign IPv4 addr
 *	@skc_rcv_saddr: Bound local IPv4 addr
 *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 *	@skc_hash: hash value used with various protocol lookup tables
 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 *	@skc_dport: placeholder for inet_dport/tw_dport
 *	@skc_num: placeholder for inet_num/tw_num
 *	@skc_portpair: __u32 union of @skc_dport & @skc_num
 *	@skc_family: network address family
 *	@skc_state: Connection state
 *	@skc_reuse: %SO_REUSEADDR setting
 *	@skc_reuseport: %SO_REUSEPORT setting
 *	@skc_ipv6only: socket is IPV6 only
 *	@skc_net_refcnt: socket is using net ref counting
 *	@skc_bound_dev_if: bound device index if != 0
 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 *	@skc_prot: protocol handlers inside a network family
 *	@skc_net: reference to the network namespace of this socket
 *	@skc_v6_daddr: IPV6 destination address
 *	@skc_v6_rcv_saddr: IPV6 source address
 *	@skc_cookie: socket's cookie value
 *	@skc_node: main hash linkage for various protocol lookup tables
 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 *	@skc_tx_queue_mapping: tx queue number for this connection
 *	@skc_rx_queue_mapping: rx queue number for this connection
 *	@skc_flags: place holder for sk_flags
 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 *	@skc_listener: connection request listener socket (aka rsk_listener)
 *		[union with @skc_flags]
 *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 *		[union with @skc_flags]
 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 *		[union with @skc_incoming_cpu]
 *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 *		[union with @skc_incoming_cpu]
 *	@skc_refcnt: reference count
 *
 *	This is the minimal network layer representation of sockets, the header
 *	for struct sock and struct inet_timewait_sock.
 */
struct sock_common {
	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
	 * address on 64bit arches : cf INET_MATCH()
	 */
	union {
		__addrpair	skc_addrpair;
		struct {
			__be32	skc_daddr;
			__be32	skc_rcv_saddr;
		};
	};
	union  {
		unsigned int	skc_hash;
		__u16		skc_u16hashes[2];
	};
	/* skc_dport && skc_num must be grouped as well */
	union {
		__portpair	skc_portpair;
		struct {
			__be16	skc_dport;
			__u16	skc_num;
		};
	};

	unsigned short		skc_family;
	volatile unsigned char	skc_state;
	unsigned char		skc_reuse:4;
	unsigned char		skc_reuseport:1;
	unsigned char		skc_ipv6only:1;
	unsigned char		skc_net_refcnt:1;
	int			skc_bound_dev_if;
	union {
		struct hlist_node	skc_bind_node;
		struct hlist_node	skc_portaddr_node;
	};
	struct proto		*skc_prot;
	possible_net_t		skc_net;

#if IS_ENABLED(CONFIG_IPV6)
	struct in6_addr		skc_v6_daddr;
	struct in6_addr		skc_v6_rcv_saddr;
#endif

	atomic64_t		skc_cookie;

	/* following fields are padding to force
	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
	 * assuming IPV6 is enabled. We use this padding differently
	 * for different kind of 'sockets'
	 */
	union {
		unsigned long	skc_flags;
		struct sock	*skc_listener; /* request_sock */
		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
	};
	/*
	 * fields between dontcopy_begin/dontcopy_end
	 * are not copied in sock_copy()
	 */
	/* private: */
	int			skc_dontcopy_begin[0];
	/* public: */
	union {
		struct hlist_node	skc_node;
		struct hlist_nulls_node skc_nulls_node;
	};
	unsigned short		skc_tx_queue_mapping;
#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
	unsigned short		skc_rx_queue_mapping;
#endif
	union {
		int		skc_incoming_cpu;
		u32		skc_rcv_wnd;
		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
	};

	refcount_t		skc_refcnt;
	/* private: */
	int                     skc_dontcopy_end[0];
	union {
		u32		skc_rxhash;
		u32		skc_window_clamp;
		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
	};
	/* public: */
};

struct bpf_local_storage;

/**
  *	struct sock - network layer representation of sockets
  *	@__sk_common: shared layout with inet_timewait_sock
  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
  *	@sk_lock:	synchronizer
  *	@sk_kern_sock: True if sock is using kernel lock classes
  *	@sk_rcvbuf: size of receive buffer in bytes
  *	@sk_wq: sock wait queue and async head
  *	@sk_rx_dst: receive input route used by early demux
  *	@sk_dst_cache: destination cache
  *	@sk_dst_pending_confirm: need to confirm neighbour
  *	@sk_policy: flow policy
  *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
  *	@sk_receive_queue: incoming packets
  *	@sk_wmem_alloc: transmit queue bytes committed
  *	@sk_tsq_flags: TCP Small Queues flags
  *	@sk_write_queue: Packet sending queue
  *	@sk_omem_alloc: "o" is "option" or "other"
  *	@sk_wmem_queued: persistent queue size
  *	@sk_forward_alloc: space allocated forward
  *	@sk_napi_id: id of the last napi context to receive data for sk
  *	@sk_ll_usec: usecs to busypoll when there is no data
  *	@sk_allocation: allocation mode
  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
  *	@sk_sndbuf: size of send buffer in bytes
  *	@__sk_flags_offset: empty field used to determine location of bitfield
  *	@sk_padding: unused element for alignment
  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
  *	@sk_no_check_rx: allow zero checksum in RX packets
  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
  *	@sk_route_forced_caps: static, forced route capabilities
  *		(set in tcp_init_sock())
  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
  *	@sk_gso_max_size: Maximum GSO segment size to build
  *	@sk_gso_max_segs: Maximum number of GSO segments
  *	@sk_pacing_shift: scaling factor for TCP Small Queues
  *	@sk_lingertime: %SO_LINGER l_linger setting
  *	@sk_backlog: always used with the per-socket spinlock held
  *	@sk_callback_lock: used with the callbacks in the end of this struct
  *	@sk_error_queue: rarely used
  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
  *			  IPV6_ADDRFORM for instance)
  *	@sk_err: last error
  *	@sk_err_soft: errors that don't cause failure but are the cause of a
  *		      persistent failure not just 'timed out'
  *	@sk_drops: raw/udp drops counter
  *	@sk_ack_backlog: current listen backlog
  *	@sk_max_ack_backlog: listen backlog set in listen()
  *	@sk_uid: user id of owner
  *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
  *	@sk_busy_poll_budget: napi processing budget when busypolling
  *	@sk_priority: %SO_PRIORITY setting
  *	@sk_type: socket type (%SOCK_STREAM, etc)
  *	@sk_protocol: which protocol this socket belongs in this network family
  *	@sk_peer_pid: &struct pid for this socket's peer
  *	@sk_peer_cred: %SO_PEERCRED setting
  *	@sk_rcvlowat: %SO_RCVLOWAT setting
  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
  *	@sk_sndtimeo: %SO_SNDTIMEO setting
  *	@sk_txhash: computed flow hash for use on transmit
  *	@sk_filter: socket filtering instructions
  *	@sk_timer: sock cleanup timer
  *	@sk_stamp: time stamp of last packet received
  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
  *	@sk_tsflags: SO_TIMESTAMPING socket options
  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
  *	@sk_socket: Identd and reporting IO signals
  *	@sk_user_data: RPC layer private data
  *	@sk_frag: cached page frag
  *	@sk_peek_off: current peek_offset value
  *	@sk_send_head: front of stuff to transmit
  *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
  *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
  *	@sk_security: used by security modules
  *	@sk_mark: generic packet mark
  *	@sk_cgrp_data: cgroup data for this cgroup
  *	@sk_memcg: this socket's memory cgroup association
  *	@sk_write_pending: a write to stream socket waits to start
  *	@sk_state_change: callback to indicate change in the state of the sock
  *	@sk_data_ready: callback to indicate there is data to be processed
  *	@sk_write_space: callback to indicate there is bf sending space available
  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
  *	@sk_backlog_rcv: callback to process the backlog
  *	@sk_validate_xmit_skb: ptr to an optional validate function
  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
  *	@sk_reuseport_cb: reuseport group container
  *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
  *	@sk_rcu: used during RCU grace period
  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
  *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
  *	@sk_txtime_unused: unused txtime flags
  */
struct sock {
	/*
	 * Now struct inet_timewait_sock also uses sock_common, so please just
	 * don't add nothing before this first member (__sk_common) --acme
	 */
	struct sock_common	__sk_common;
#define sk_node			__sk_common.skc_node
#define sk_nulls_node		__sk_common.skc_nulls_node
#define sk_refcnt		__sk_common.skc_refcnt
#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
#endif

#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
#define sk_hash			__sk_common.skc_hash
#define sk_portpair		__sk_common.skc_portpair
#define sk_num			__sk_common.skc_num
#define sk_dport		__sk_common.skc_dport
#define sk_addrpair		__sk_common.skc_addrpair
#define sk_daddr		__sk_common.skc_daddr
#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
#define sk_family		__sk_common.skc_family
#define sk_state		__sk_common.skc_state
#define sk_reuse		__sk_common.skc_reuse
#define sk_reuseport		__sk_common.skc_reuseport
#define sk_ipv6only		__sk_common.skc_ipv6only
#define sk_net_refcnt		__sk_common.skc_net_refcnt
#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
#define sk_bind_node		__sk_common.skc_bind_node
#define sk_prot			__sk_common.skc_prot
#define sk_net			__sk_common.skc_net
#define sk_v6_daddr		__sk_common.skc_v6_daddr
#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
#define sk_cookie		__sk_common.skc_cookie
#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
#define sk_flags		__sk_common.skc_flags
#define sk_rxhash		__sk_common.skc_rxhash

	socket_lock_t		sk_lock;
	atomic_t		sk_drops;
	int			sk_rcvlowat;
	struct sk_buff_head	sk_error_queue;
	struct sk_buff		*sk_rx_skb_cache;
	struct sk_buff_head	sk_receive_queue;
	/*
	 * The backlog queue is special, it is always used with
	 * the per-socket spinlock held and requires low latency
	 * access. Therefore we special case it's implementation.
	 * Note : rmem_alloc is in this structure to fill a hole
	 * on 64bit arches, not because its logically part of
	 * backlog.
	 */
	struct {
		atomic_t	rmem_alloc;
		int		len;
		struct sk_buff	*head;
		struct sk_buff	*tail;
	} sk_backlog;
#define sk_rmem_alloc sk_backlog.rmem_alloc

	int			sk_forward_alloc;
#ifdef CONFIG_NET_RX_BUSY_POLL
	unsigned int		sk_ll_usec;
	/* ===== mostly read cache line ===== */
	unsigned int		sk_napi_id;
#endif
	int			sk_rcvbuf;

	struct sk_filter __rcu	*sk_filter;
	union {
		struct socket_wq __rcu	*sk_wq;
		/* private: */
		struct socket_wq	*sk_wq_raw;
		/* public: */
	};
#ifdef CONFIG_XFRM
	struct xfrm_policy __rcu *sk_policy[2];
#endif
	struct dst_entry	*sk_rx_dst;
	struct dst_entry __rcu	*sk_dst_cache;
	atomic_t		sk_omem_alloc;
	int			sk_sndbuf;

	/* ===== cache line for TX ===== */
	int			sk_wmem_queued;
	refcount_t		sk_wmem_alloc;
	unsigned long		sk_tsq_flags;
	union {
		struct sk_buff	*sk_send_head;
		struct rb_root	tcp_rtx_queue;
	};
	struct sk_buff		*sk_tx_skb_cache;
	struct sk_buff_head	sk_write_queue;
	__s32			sk_peek_off;
	int			sk_write_pending;
	__u32			sk_dst_pending_confirm;
	u32			sk_pacing_status; /* see enum sk_pacing */
	long			sk_sndtimeo;
	struct timer_list	sk_timer;
	__u32			sk_priority;
	__u32			sk_mark;
	unsigned long		sk_pacing_rate; /* bytes per second */
	unsigned long		sk_max_pacing_rate;
	struct page_frag	sk_frag;
	netdev_features_t	sk_route_caps;
	netdev_features_t	sk_route_nocaps;
	netdev_features_t	sk_route_forced_caps;
	int			sk_gso_type;
	unsigned int		sk_gso_max_size;
	gfp_t			sk_allocation;
	__u32			sk_txhash;

	/*
	 * Because of non atomicity rules, all
	 * changes are protected by socket lock.
	 */
	u8			sk_padding : 1,
				sk_kern_sock : 1,
				sk_no_check_tx : 1,
				sk_no_check_rx : 1,
				sk_userlocks : 4;
	u8			sk_pacing_shift;
	u16			sk_type;
	u16			sk_protocol;
	u16			sk_gso_max_segs;
	unsigned long	        sk_lingertime;
	struct proto		*sk_prot_creator;
	rwlock_t		sk_callback_lock;
	int			sk_err,
				sk_err_soft;
	u32			sk_ack_backlog;
	u32			sk_max_ack_backlog;
	kuid_t			sk_uid;
#ifdef CONFIG_NET_RX_BUSY_POLL
	u8			sk_prefer_busy_poll;
	u16			sk_busy_poll_budget;
#endif
	struct pid		*sk_peer_pid;
	const struct cred	*sk_peer_cred;
	long			sk_rcvtimeo;
	ktime_t			sk_stamp;
#if BITS_PER_LONG==32
	seqlock_t		sk_stamp_seq;
#endif
	u16			sk_tsflags;
	u8			sk_shutdown;
	u32			sk_tskey;
	atomic_t		sk_zckey;

	u8			sk_clockid;
	u8			sk_txtime_deadline_mode : 1,
				sk_txtime_report_errors : 1,
				sk_txtime_unused : 6;

	struct socket		*sk_socket;
	void			*sk_user_data;
#ifdef CONFIG_SECURITY
	void			*sk_security;
#endif
	struct sock_cgroup_data	sk_cgrp_data;
	struct mem_cgroup	*sk_memcg;
	void			(*sk_state_change)(struct sock *sk);
	void			(*sk_data_ready)(struct sock *sk);
	void			(*sk_write_space)(struct sock *sk);
	void			(*sk_error_report)(struct sock *sk);
	int			(*sk_backlog_rcv)(struct sock *sk,
						  struct sk_buff *skb);
#ifdef CONFIG_SOCK_VALIDATE_XMIT
	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
							struct net_device *dev,
							struct sk_buff *skb);
#endif
	void                    (*sk_destruct)(struct sock *sk);
	struct sock_reuseport __rcu	*sk_reuseport_cb;
#ifdef CONFIG_BPF_SYSCALL
	struct bpf_local_storage __rcu	*sk_bpf_storage;
#endif
	struct rcu_head		sk_rcu;
};

enum sk_pacing {
	SK_PACING_NONE		= 0,
	SK_PACING_NEEDED	= 1,
	SK_PACING_FQ		= 2,
};

/* Pointer stored in sk_user_data might not be suitable for copying
 * when cloning the socket. For instance, it can point to a reference
 * counted object. sk_user_data bottom bit is set if pointer must not
 * be copied.
 */
#define SK_USER_DATA_NOCOPY	1UL
#define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
#define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)

/**
 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 * @sk: socket
 */
static inline bool sk_user_data_is_nocopy(const struct sock *sk)
{
	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
}

#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))

#define rcu_dereference_sk_user_data(sk)				\
({									\
	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
})
#define rcu_assign_sk_user_data(sk, ptr)				\
({									\
	uintptr_t __tmp = (uintptr_t)(ptr);				\
	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
})
#define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
({									\
	uintptr_t __tmp = (uintptr_t)(ptr);				\
	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
	rcu_assign_pointer(__sk_user_data((sk)),			\
			   __tmp | SK_USER_DATA_NOCOPY);		\
})

/*
 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 * on a socket means that the socket will reuse everybody else's port
 * without looking at the other's sk_reuse value.
 */

#define SK_NO_REUSE	0
#define SK_CAN_REUSE	1
#define SK_FORCE_REUSE	2

int sk_set_peek_off(struct sock *sk, int val);

static inline int sk_peek_offset(struct sock *sk, int flags)
{
	if (unlikely(flags & MSG_PEEK)) {
		return READ_ONCE(sk->sk_peek_off);
	}

	return 0;
}

static inline void sk_peek_offset_bwd(struct sock *sk, int val)
{
	s32 off = READ_ONCE(sk->sk_peek_off);

	if (unlikely(off >= 0)) {
		off = max_t(s32, off - val, 0);
		WRITE_ONCE(sk->sk_peek_off, off);
	}
}

static inline void sk_peek_offset_fwd(struct sock *sk, int val)
{
	sk_peek_offset_bwd(sk, -val);
}

/*
 * Hashed lists helper routines
 */
static inline struct sock *sk_entry(const struct hlist_node *node)
{
	return hlist_entry(node, struct sock, sk_node);
}

static inline struct sock *__sk_head(const struct hlist_head *head)
{
	return hlist_entry(head->first, struct sock, sk_node);
}

static inline struct sock *sk_head(const struct hlist_head *head)
{
	return hlist_empty(head) ? NULL : __sk_head(head);
}

static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
{
	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
}

static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
{
	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
}

static inline struct sock *sk_next(const struct sock *sk)
{
	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
}

static inline struct sock *sk_nulls_next(const struct sock *sk)
{
	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
		hlist_nulls_entry(sk->sk_nulls_node.next,
				  struct sock, sk_nulls_node) :
		NULL;
}

static inline bool sk_unhashed(const struct sock *sk)
{
	return hlist_unhashed(&sk->sk_node);
}

static inline bool sk_hashed(const struct sock *sk)
{
	return !sk_unhashed(sk);
}

static inline void sk_node_init(struct hlist_node *node)
{
	node->pprev = NULL;
}

static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
{
	node->pprev = NULL;
}

static inline void __sk_del_node(struct sock *sk)
{
	__hlist_del(&sk->sk_node);
}

/* NB: equivalent to hlist_del_init_rcu */
static inline bool __sk_del_node_init(struct sock *sk)
{
	if (sk_hashed(sk)) {
		__sk_del_node(sk);
		sk_node_init(&sk->sk_node);
		return true;
	}
	return false;
}

/* Grab socket reference count. This operation is valid only
   when sk is ALREADY grabbed f.e. it is found in hash table
   or a list and the lookup is made under lock preventing hash table
   modifications.
 */

static __always_inline void sock_hold(struct sock *sk)
{
	refcount_inc(&sk->sk_refcnt);
}

/* Ungrab socket in the context, which assumes that socket refcnt
   cannot hit zero, f.e. it is true in context of any socketcall.
 */
static __always_inline void __sock_put(struct sock *sk)
{
	refcount_dec(&sk->sk_refcnt);
}

static inline bool sk_del_node_init(struct sock *sk)
{
	bool rc = __sk_del_node_init(sk);

	if (rc) {
		/* paranoid for a while -acme */
		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
		__sock_put(sk);
	}
	return rc;
}
#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)

static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
{
	if (sk_hashed(sk)) {
		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
		return true;
	}
	return false;
}

static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
{
	bool rc = __sk_nulls_del_node_init_rcu(sk);

	if (rc) {
		/* paranoid for a while -acme */
		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
		__sock_put(sk);
	}
	return rc;
}

static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
{
	hlist_add_head(&sk->sk_node, list);
}

static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
{
	sock_hold(sk);
	__sk_add_node(sk, list);
}

static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
{
	sock_hold(sk);
	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
	    sk->sk_family == AF_INET6)
		hlist_add_tail_rcu(&sk->sk_node, list);
	else
		hlist_add_head_rcu(&sk->sk_node, list);
}

static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
{
	sock_hold(sk);
	hlist_add_tail_rcu(&sk->sk_node, list);
}

static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
{
	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
}

static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
{
	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
}

static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
{
	sock_hold(sk);
	__sk_nulls_add_node_rcu(sk, list);
}

static inline void __sk_del_bind_node(struct sock *sk)
{
	__hlist_del(&sk->sk_bind_node);
}

static inline void sk_add_bind_node(struct sock *sk,
					struct hlist_head *list)
{
	hlist_add_head(&sk->sk_bind_node, list);
}

#define sk_for_each(__sk, list) \
	hlist_for_each_entry(__sk, list, sk_node)
#define sk_for_each_rcu(__sk, list) \
	hlist_for_each_entry_rcu(__sk, list, sk_node)
#define sk_nulls_for_each(__sk, node, list) \
	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
#define sk_nulls_for_each_rcu(__sk, node, list) \
	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
#define sk_for_each_from(__sk) \
	hlist_for_each_entry_from(__sk, sk_node)
#define sk_nulls_for_each_from(__sk, node) \
	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
#define sk_for_each_safe(__sk, tmp, list) \
	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
#define sk_for_each_bound(__sk, list) \
	hlist_for_each_entry(__sk, list, sk_bind_node)

/**
 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 * @tpos:	the type * to use as a loop cursor.
 * @pos:	the &struct hlist_node to use as a loop cursor.
 * @head:	the head for your list.
 * @offset:	offset of hlist_node within the struct.
 *
 */
#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
	     pos != NULL &&						       \
		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
	     pos = rcu_dereference(hlist_next_rcu(pos)))

static inline struct user_namespace *sk_user_ns(struct sock *sk)
{
	/* Careful only use this in a context where these parameters
	 * can not change and must all be valid, such as recvmsg from
	 * userspace.
	 */
	return sk->sk_socket->file->f_cred->user_ns;
}

/* Sock flags */
enum sock_flags {
	SOCK_DEAD,
	SOCK_DONE,
	SOCK_URGINLINE,
	SOCK_KEEPOPEN,
	SOCK_LINGER,
	SOCK_DESTROY,
	SOCK_BROADCAST,
	SOCK_TIMESTAMP,
	SOCK_ZAPPED,
	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
	SOCK_DBG, /* %SO_DEBUG setting */
	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
	SOCK_FASYNC, /* fasync() active */
	SOCK_RXQ_OVFL,
	SOCK_ZEROCOPY, /* buffers from userspace */
	SOCK_WIFI_STATUS, /* push wifi status to userspace */
	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
		     * Will use last 4 bytes of packet sent from
		     * user-space instead.
		     */
	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
	SOCK_TXTIME,
	SOCK_XDP, /* XDP is attached */
	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
};

#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))

static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
{
	nsk->sk_flags = osk->sk_flags;
}

static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
{
	__set_bit(flag, &sk->sk_flags);
}

static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
{
	__clear_bit(flag, &sk->sk_flags);
}

static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
				     int valbool)
{
	if (valbool)
		sock_set_flag(sk, bit);
	else
		sock_reset_flag(sk, bit);
}

static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
{
	return test_bit(flag, &sk->sk_flags);
}

#ifdef CONFIG_NET
DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
static inline int sk_memalloc_socks(void)
{
	return static_branch_unlikely(&memalloc_socks_key);
}

void __receive_sock(struct file *file);
#else

static inline int sk_memalloc_socks(void)
{
	return 0;
}

static inline void __receive_sock(struct file *file)
{ }
#endif

static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
{
	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
}

static inline void sk_acceptq_removed(struct sock *sk)
{
	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
}

static inline void sk_acceptq_added(struct sock *sk)
{
	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
}

static inline bool sk_acceptq_is_full(const struct sock *sk)
{
	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
}

/*
 * Compute minimal free write space needed to queue new packets.
 */
static inline int sk_stream_min_wspace(const struct sock *sk)
{
	return READ_ONCE(sk->sk_wmem_queued) >> 1;
}

static inline int sk_stream_wspace(const struct sock *sk)
{
	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
}

static inline void sk_wmem_queued_add(struct sock *sk, int val)
{
	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
}

void sk_stream_write_space(struct sock *sk);

/* OOB backlog add */
static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
{
	/* dont let skb dst not refcounted, we are going to leave rcu lock */
	skb_dst_force(skb);

	if (!sk->sk_backlog.tail)
		WRITE_ONCE(sk->sk_backlog.head, skb);
	else
		sk->sk_backlog.tail->next = skb;

	WRITE_ONCE(sk->sk_backlog.tail, skb);
	skb->next = NULL;
}

/*
 * Take into account size of receive queue and backlog queue
 * Do not take into account this skb truesize,
 * to allow even a single big packet to come.
 */
static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
{
	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);

	return qsize > limit;
}

/* The per-socket spinlock must be held here. */
static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
					      unsigned int limit)
{
	if (sk_rcvqueues_full(sk, limit))
		return -ENOBUFS;

	/*
	 * If the skb was allocated from pfmemalloc reserves, only
	 * allow SOCK_MEMALLOC sockets to use it as this socket is
	 * helping free memory
	 */
	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
		return -ENOMEM;

	__sk_add_backlog(sk, skb);
	sk->sk_backlog.len += skb->truesize;
	return 0;
}

int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);

static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
{
	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
		return __sk_backlog_rcv(sk, skb);

	return sk->sk_backlog_rcv(sk, skb);
}

static inline void sk_incoming_cpu_update(struct sock *sk)
{
	int cpu = raw_smp_processor_id();

	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
}

static inline void sock_rps_record_flow_hash(__u32 hash)
{
#ifdef CONFIG_RPS
	struct rps_sock_flow_table *sock_flow_table;

	rcu_read_lock();
	sock_flow_table = rcu_dereference(rps_sock_flow_table);
	rps_record_sock_flow(sock_flow_table, hash);
	rcu_read_unlock();
#endif
}

static inline void sock_rps_record_flow(const struct sock *sk)
{
#ifdef CONFIG_RPS
	if (static_branch_unlikely(&rfs_needed)) {
		/* Reading sk->sk_rxhash might incur an expensive cache line
		 * miss.
		 *
		 * TCP_ESTABLISHED does cover almost all states where RFS
		 * might be useful, and is cheaper [1] than testing :
		 *	IPv4: inet_sk(sk)->inet_daddr
		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
		 * OR	an additional socket flag
		 * [1] : sk_state and sk_prot are in the same cache line.
		 */
		if (sk->sk_state == TCP_ESTABLISHED)
			sock_rps_record_flow_hash(sk->sk_rxhash);
	}
#endif
}

static inline void sock_rps_save_rxhash(struct sock *sk,
					const struct sk_buff *skb)
{
#ifdef CONFIG_RPS
	if (unlikely(sk->sk_rxhash != skb->hash))
		sk->sk_rxhash = skb->hash;
#endif
}

static inline void sock_rps_reset_rxhash(struct sock *sk)
{
#ifdef CONFIG_RPS
	sk->sk_rxhash = 0;
#endif
}

#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
	({	int __rc;						\
		release_sock(__sk);					\
		__rc = __condition;					\
		if (!__rc) {						\
			*(__timeo) = wait_woken(__wait,			\
						TASK_INTERRUPTIBLE,	\
						*(__timeo));		\
		}							\
		sched_annotate_sleep();					\
		lock_sock(__sk);					\
		__rc = __condition;					\
		__rc;							\
	})

int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
void sk_stream_wait_close(struct sock *sk, long timeo_p);
int sk_stream_error(struct sock *sk, int flags, int err);
void sk_stream_kill_queues(struct sock *sk);
void sk_set_memalloc(struct sock *sk);
void sk_clear_memalloc(struct sock *sk);

void __sk_flush_backlog(struct sock *sk);

static inline bool sk_flush_backlog(struct sock *sk)
{
	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
		__sk_flush_backlog(sk);
		return true;
	}
	return false;
}

int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);

struct request_sock_ops;
struct timewait_sock_ops;
struct inet_hashinfo;
struct raw_hashinfo;
struct smc_hashinfo;
struct module;

/*
 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
 * un-modified. Special care is taken when initializing object to zero.
 */
static inline void sk_prot_clear_nulls(struct sock *sk, int size)
{
	if (offsetof(struct sock, sk_node.next) != 0)
		memset(sk, 0, offsetof(struct sock, sk_node.next));
	memset(&sk->sk_node.pprev, 0,
	       size - offsetof(struct sock, sk_node.pprev));
}

/* Networking protocol blocks we attach to sockets.
 * socket layer -> transport layer interface
 */
struct proto {
	void			(*close)(struct sock *sk,
					long timeout);
	int			(*pre_connect)(struct sock *sk,
					struct sockaddr *uaddr,
					int addr_len);
	int			(*connect)(struct sock *sk,
					struct sockaddr *uaddr,
					int addr_len);
	int			(*disconnect)(struct sock *sk, int flags);

	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
					  bool kern);

	int			(*ioctl)(struct sock *sk, int cmd,
					 unsigned long arg);
	int			(*init)(struct sock *sk);
	void			(*destroy)(struct sock *sk);
	void			(*shutdown)(struct sock *sk, int how);
	int			(*setsockopt)(struct sock *sk, int level,
					int optname, sockptr_t optval,
					unsigned int optlen);
	int			(*getsockopt)(struct sock *sk, int level,
					int optname, char __user *optval,
					int __user *option);
	void			(*keepalive)(struct sock *sk, int valbool);
#ifdef CONFIG_COMPAT
	int			(*compat_ioctl)(struct sock *sk,
					unsigned int cmd, unsigned long arg);
#endif
	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
					   size_t len);
	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
					   size_t len, int noblock, int flags,
					   int *addr_len);
	int			(*sendpage)(struct sock *sk, struct page *page,
					int offset, size_t size, int flags);
	int			(*bind)(struct sock *sk,
					struct sockaddr *addr, int addr_len);
	int			(*bind_add)(struct sock *sk,
					struct sockaddr *addr, int addr_len);

	int			(*backlog_rcv) (struct sock *sk,
						struct sk_buff *skb);
	bool			(*bpf_bypass_getsockopt)(int level,
							 int optname);

	void		(*release_cb)(struct sock *sk);

	/* Keeping track of sk's, looking them up, and port selection methods. */
	int			(*hash)(struct sock *sk);
	void			(*unhash)(struct sock *sk);
	void			(*rehash)(struct sock *sk);
	int			(*get_port)(struct sock *sk, unsigned short snum);

	/* Keeping track of sockets in use */
#ifdef CONFIG_PROC_FS
	unsigned int		inuse_idx;
#endif

	bool			(*stream_memory_free)(const struct sock *sk, int wake);
	bool			(*stream_memory_read)(const struct sock *sk);
	/* Memory pressure */
	void			(*enter_memory_pressure)(struct sock *sk);
	void			(*leave_memory_pressure)(struct sock *sk);
	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
	/*
	 * Pressure flag: try to collapse.
	 * Technical note: it is used by multiple contexts non atomically.
	 * All the __sk_mem_schedule() is of this nature: accounting
	 * is strict, actions are advisory and have some latency.
	 */
	unsigned long		*memory_pressure;
	long			*sysctl_mem;

	int			*sysctl_wmem;
	int			*sysctl_rmem;
	u32			sysctl_wmem_offset;
	u32			sysctl_rmem_offset;

	int			max_header;
	bool			no_autobind;

	struct kmem_cache	*slab;
	unsigned int		obj_size;
	slab_flags_t		slab_flags;
	unsigned int		useroffset;	/* Usercopy region offset */
	unsigned int		usersize;	/* Usercopy region size */

	struct percpu_counter	*orphan_count;

	struct request_sock_ops	*rsk_prot;
	struct timewait_sock_ops *twsk_prot;

	union {
		struct inet_hashinfo	*hashinfo;
		struct udp_table	*udp_table;
		struct raw_hashinfo	*raw_hash;
		struct smc_hashinfo	*smc_hash;
	} h;

	struct module		*owner;

	char			name[32];

	struct list_head	node;
#ifdef SOCK_REFCNT_DEBUG
	atomic_t		socks;
#endif
	int			(*diag_destroy)(struct sock *sk, int err);
} __randomize_layout;

int proto_register(struct proto *prot, int alloc_slab);
void proto_unregister(struct proto *prot);
int sock_load_diag_module(int family, int protocol);

#ifdef SOCK_REFCNT_DEBUG
static inline void sk_refcnt_debug_inc(struct sock *sk)
{
	atomic_inc(&sk->sk_prot->socks);
}

static inline void sk_refcnt_debug_dec(struct sock *sk)
{
	atomic_dec(&sk->sk_prot->socks);
	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
}

static inline void sk_refcnt_debug_release(const struct sock *sk)
{
	if (refcount_read(&sk->sk_refcnt) != 1)
		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
}
#else /* SOCK_REFCNT_DEBUG */
#define sk_refcnt_debug_inc(sk) do { } while (0)
#define sk_refcnt_debug_dec(sk) do { } while (0)
#define sk_refcnt_debug_release(sk) do { } while (0)
#endif /* SOCK_REFCNT_DEBUG */

INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));

static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
{
	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
		return false;

#ifdef CONFIG_INET
	return sk->sk_prot->stream_memory_free ?
		INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
			        tcp_stream_memory_free,
				sk, wake) : true;
#else
	return sk->sk_prot->stream_memory_free ?
		sk->sk_prot->stream_memory_free(sk, wake) : true;
#endif
}

static inline bool sk_stream_memory_free(const struct sock *sk)
{
	return __sk_stream_memory_free(sk, 0);
}

static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
{
	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
	       __sk_stream_memory_free(sk, wake);
}

static inline bool sk_stream_is_writeable(const struct sock *sk)
{
	return __sk_stream_is_writeable(sk, 0);
}

static inline int sk_under_cgroup_hierarchy(struct sock *sk,
					    struct cgroup *ancestor)
{
#ifdef CONFIG_SOCK_CGROUP_DATA
	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
				    ancestor);
#else
	return -ENOTSUPP;
#endif
}

static inline bool sk_has_memory_pressure(const struct sock *sk)
{
	return sk->sk_prot->memory_pressure != NULL;
}

static inline bool sk_under_memory_pressure(const struct sock *sk)
{
	if (!sk->sk_prot->memory_pressure)
		return false;

	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
		return true;

	return !!*sk->sk_prot->memory_pressure;
}

static inline long
sk_memory_allocated(const struct sock *sk)
{
	return atomic_long_read(sk->sk_prot->memory_allocated);
}

static inline long
sk_memory_allocated_add(struct sock *sk, int amt)
{
	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
}

static inline void
sk_memory_allocated_sub(struct sock *sk, int amt)
{
	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
}

#define SK_ALLOC_PERCPU_COUNTER_BATCH 16

static inline void sk_sockets_allocated_dec(struct sock *sk)
{
	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
				 SK_ALLOC_PERCPU_COUNTER_BATCH);
}

static inline void sk_sockets_allocated_inc(struct sock *sk)
{
	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
				 SK_ALLOC_PERCPU_COUNTER_BATCH);
}

static inline u64
sk_sockets_allocated_read_positive(struct sock *sk)
{
	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
}

static inline int
proto_sockets_allocated_sum_positive(struct proto *prot)
{
	return percpu_counter_sum_positive(prot->sockets_allocated);
}

static inline long
proto_memory_allocated(struct proto *prot)
{
	return atomic_long_read(prot->memory_allocated);
}

static inline bool
proto_memory_pressure(struct proto *prot)
{
	if (!prot->memory_pressure)
		return false;
	return !!*prot->memory_pressure;
}


#ifdef CONFIG_PROC_FS
/* Called with local bh disabled */
void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
int sock_prot_inuse_get(struct net *net, struct proto *proto);
int sock_inuse_get(struct net *net);
#else
static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
		int inc)
{
}
#endif


/* With per-bucket locks this operation is not-atomic, so that
 * this version is not worse.
 */
static inline int __sk_prot_rehash(struct sock *sk)
{
	sk->sk_prot->unhash(sk);
	return sk->sk_prot->hash(sk);
}

/* About 10 seconds */
#define SOCK_DESTROY_TIME (10*HZ)

/* Sockets 0-1023 can't be bound to unless you are superuser */
#define PROT_SOCK	1024

#define SHUTDOWN_MASK	3
#define RCV_SHUTDOWN	1
#define SEND_SHUTDOWN	2

#define SOCK_SNDBUF_LOCK	1
#define SOCK_RCVBUF_LOCK	2
#define SOCK_BINDADDR_LOCK	4
#define SOCK_BINDPORT_LOCK	8

struct socket_alloc {
	struct socket socket;
	struct inode vfs_inode;
};

static inline struct socket *SOCKET_I(struct inode *inode)
{
	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
}

static inline struct inode *SOCK_INODE(struct socket *socket)
{
	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
}

/*
 * Functions for memory accounting
 */
int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
int __sk_mem_schedule(struct sock *sk, int size, int kind);
void __sk_mem_reduce_allocated(struct sock *sk, int amount);
void __sk_mem_reclaim(struct sock *sk, int amount);

/* We used to have PAGE_SIZE here, but systems with 64KB pages
 * do not necessarily have 16x time more memory than 4KB ones.
 */
#define SK_MEM_QUANTUM 4096
#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
#define SK_MEM_SEND	0
#define SK_MEM_RECV	1

/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
static inline long sk_prot_mem_limits(const struct sock *sk, int index)
{
	long val = sk->sk_prot->sysctl_mem[index];

#if PAGE_SIZE > SK_MEM_QUANTUM
	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
#elif PAGE_SIZE < SK_MEM_QUANTUM
	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
#endif
	return val;
}

static inline int sk_mem_pages(int amt)
{
	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
}

static inline bool sk_has_account(struct sock *sk)
{
	/* return true if protocol supports memory accounting */
	return !!sk->sk_prot->memory_allocated;
}

static inline bool sk_wmem_schedule(struct sock *sk, int size)
{
	if (!sk_has_account(sk))
		return true;
	return size <= sk->sk_forward_alloc ||
		__sk_mem_schedule(sk, size, SK_MEM_SEND);
}

static inline bool
sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
{
	if (!sk_has_account(sk))
		return true;
	return size <= sk->sk_forward_alloc ||
		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
		skb_pfmemalloc(skb);
}

static inline void sk_mem_reclaim(struct sock *sk)
{
	if (!sk_has_account(sk))
		return;
	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
}

static inline void sk_mem_reclaim_partial(struct sock *sk)
{
	if (!sk_has_account(sk))
		return;
	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
}

static inline void sk_mem_charge(struct sock *sk, int size)
{
	if (!sk_has_account(sk))
		return;
	sk->sk_forward_alloc -= size;
}

static inline void sk_mem_uncharge(struct sock *sk, int size)
{
	if (!sk_has_account(sk))
		return;
	sk->sk_forward_alloc += size;

	/* Avoid a possible overflow.
	 * TCP send queues can make this happen, if sk_mem_reclaim()
	 * is not called and more than 2 GBytes are released at once.
	 *
	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
	 * no need to hold that much forward allocation anyway.
	 */
	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
		__sk_mem_reclaim(sk, 1 << 20);
}

DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
{
	sk_wmem_queued_add(sk, -skb->truesize);
	sk_mem_uncharge(sk, skb->truesize);
	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
		skb_ext_reset(skb);
		skb_zcopy_clear(skb, true);
		sk->sk_tx_skb_cache = skb;
		return;
	}
	__kfree_skb(skb);
}

static inline void sock_release_ownership(struct sock *sk)
{
	if (sk->sk_lock.owned) {
		sk->sk_lock.owned = 0;

		/* The sk_lock has mutex_unlock() semantics: */
		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
	}
}

/*
 * Macro so as to not evaluate some arguments when
 * lockdep is not enabled.
 *
 * Mark both the sk_lock and the sk_lock.slock as a
 * per-address-family lock class.
 */
#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
do {									\
	sk->sk_lock.owned = 0;						\
	init_waitqueue_head(&sk->sk_lock.wq);				\
	spin_lock_init(&(sk)->sk_lock.slock);				\
	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
			sizeof((sk)->sk_lock));				\
	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
				(skey), (sname));				\
	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
} while (0)

static inline bool lockdep_sock_is_held(const struct sock *sk)
{
	return lockdep_is_held(&sk->sk_lock) ||
	       lockdep_is_held(&sk->sk_lock.slock);
}

void lock_sock_nested(struct sock *sk, int subclass);

static inline void lock_sock(struct sock *sk)
{
	lock_sock_nested(sk, 0);
}

void __lock_sock(struct sock *sk);
void __release_sock(struct sock *sk);
void release_sock(struct sock *sk);

/* BH context may only use the following locking interface. */
#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
#define bh_lock_sock_nested(__sk) \
				spin_lock_nested(&((__sk)->sk_lock.slock), \
				SINGLE_DEPTH_NESTING)
#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))

bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);

/**
 * unlock_sock_fast - complement of lock_sock_fast
 * @sk: socket
 * @slow: slow mode
 *
 * fast unlock socket for user context.
 * If slow mode is on, we call regular release_sock()
 */
static inline void unlock_sock_fast(struct sock *sk, bool slow)
	__releases(&sk->sk_lock.slock)
{
	if (slow) {
		release_sock(sk);
		__release(&sk->sk_lock.slock);
	} else {
		spin_unlock_bh(&sk->sk_lock.slock);
	}
}

/* Used by processes to "lock" a socket state, so that
 * interrupts and bottom half handlers won't change it
 * from under us. It essentially blocks any incoming
 * packets, so that we won't get any new data or any
 * packets that change the state of the socket.
 *
 * While locked, BH processing will add new packets to
 * the backlog queue.  This queue is processed by the
 * owner of the socket lock right before it is released.
 *
 * Since ~2.3.5 it is also exclusive sleep lock serializing
 * accesses from user process context.
 */

static inline void sock_owned_by_me(const struct sock *sk)
{
#ifdef CONFIG_LOCKDEP
	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
#endif
}

static inline bool sock_owned_by_user(const struct sock *sk)
{
	sock_owned_by_me(sk);
	return sk->sk_lock.owned;
}

static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
{
	return sk->sk_lock.owned;
}

/* no reclassification while locks are held */
static inline bool sock_allow_reclassification(const struct sock *csk)
{
	struct sock *sk = (struct sock *)csk;

	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
}

struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
		      struct proto *prot, int kern);
void sk_free(struct sock *sk);
void sk_destruct(struct sock *sk);
struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
void sk_free_unlock_clone(struct sock *sk);

struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
			     gfp_t priority);
void __sock_wfree(struct sk_buff *skb);
void sock_wfree(struct sk_buff *skb);
struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
			     gfp_t priority);
void skb_orphan_partial(struct sk_buff *skb);
void sock_rfree(struct sk_buff *skb);
void sock_efree(struct sk_buff *skb);
#ifdef CONFIG_INET
void sock_edemux(struct sk_buff *skb);
void sock_pfree(struct sk_buff *skb);
#else
#define sock_edemux sock_efree
#endif

int sock_setsockopt(struct socket *sock, int level, int op,
		    sockptr_t optval, unsigned int optlen);

int sock_getsockopt(struct socket *sock, int level, int op,
		    char __user *optval, int __user *optlen);
int sock_gettstamp(struct socket *sock, void __user *userstamp,
		   bool timeval, bool time32);
struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
				    int noblock, int *errcode);
struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
				     unsigned long data_len, int noblock,
				     int *errcode, int max_page_order);
void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
void sock_kfree_s(struct sock *sk, void *mem, int size);
void sock_kzfree_s(struct sock *sk, void *mem, int size);
void sk_send_sigurg(struct sock *sk);

struct sockcm_cookie {
	u64 transmit_time;
	u32 mark;
	u16 tsflags;
};

static inline void sockcm_init(struct sockcm_cookie *sockc,
			       const struct sock *sk)
{
	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
}

int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
		     struct sockcm_cookie *sockc);
int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
		   struct sockcm_cookie *sockc);

/*
 * Functions to fill in entries in struct proto_ops when a protocol
 * does not implement a particular function.
 */
int sock_no_bind(struct socket *, struct sockaddr *, int);
int sock_no_connect(struct socket *, struct sockaddr *, int, int);
int sock_no_socketpair(struct socket *, struct socket *);
int sock_no_accept(struct socket *, struct socket *, int, bool);
int sock_no_getname(struct socket *, struct sockaddr *, int);
int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
int sock_no_listen(struct socket *, int);
int sock_no_shutdown(struct socket *, int);
int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
int sock_no_mmap(struct file *file, struct socket *sock,
		 struct vm_area_struct *vma);
ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
			 size_t size, int flags);
ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
				int offset, size_t size, int flags);

/*
 * Functions to fill in entries in struct proto_ops when a protocol
 * uses the inet style.
 */
int sock_common_getsockopt(struct socket *sock, int level, int optname,
				  char __user *optval, int __user *optlen);
int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
			int flags);
int sock_common_setsockopt(struct socket *sock, int level, int optname,
			   sockptr_t optval, unsigned int optlen);

void sk_common_release(struct sock *sk);

/*
 *	Default socket callbacks and setup code
 */

/* Initialise core socket variables */
void sock_init_data(struct socket *sock, struct sock *sk);

/*
 * Socket reference counting postulates.
 *
 * * Each user of socket SHOULD hold a reference count.
 * * Each access point to socket (an hash table bucket, reference from a list,
 *   running timer, skb in flight MUST hold a reference count.
 * * When reference count hits 0, it means it will never increase back.
 * * When reference count hits 0, it means that no references from
 *   outside exist to this socket and current process on current CPU
 *   is last user and may/should destroy this socket.
 * * sk_free is called from any context: process, BH, IRQ. When
 *   it is called, socket has no references from outside -> sk_free
 *   may release descendant resources allocated by the socket, but
 *   to the time when it is called, socket is NOT referenced by any
 *   hash tables, lists etc.
 * * Packets, delivered from outside (from network or from another process)
 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
 *   when they sit in queue. Otherwise, packets will leak to hole, when
 *   socket is looked up by one cpu and unhasing is made by another CPU.
 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
 *   (leak to backlog). Packet socket does all the processing inside
 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
 *   use separate SMP lock, so that they are prone too.
 */

/* Ungrab socket and destroy it, if it was the last reference. */
static inline void sock_put(struct sock *sk)
{
	if (refcount_dec_and_test(&sk->sk_refcnt))
		sk_free(sk);
}
/* Generic version of sock_put(), dealing with all sockets
 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
 */
void sock_gen_put(struct sock *sk);

int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
		     unsigned int trim_cap, bool refcounted);
static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
				 const int nested)
{
	return __sk_receive_skb(sk, skb, nested, 1, true);
}

static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
{
	/* sk_tx_queue_mapping accept only upto a 16-bit value */
	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
		return;
	sk->sk_tx_queue_mapping = tx_queue;
}

#define NO_QUEUE_MAPPING	USHRT_MAX

static inline void sk_tx_queue_clear(struct sock *sk)
{
	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
}

static inline int sk_tx_queue_get(const struct sock *sk)
{
	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
		return sk->sk_tx_queue_mapping;

	return -1;
}

static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
{
#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
	if (skb_rx_queue_recorded(skb)) {
		u16 rx_queue = skb_get_rx_queue(skb);

		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
			return;

		sk->sk_rx_queue_mapping = rx_queue;
	}
#endif
}

static inline void sk_rx_queue_clear(struct sock *sk)
{
#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
#endif
}

static inline int sk_rx_queue_get(const struct sock *sk)
{
#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
		return sk->sk_rx_queue_mapping;
#endif

	return -1;
}

static inline void sk_set_socket(struct sock *sk, struct socket *sock)
{
	sk->sk_socket = sock;
}

static inline wait_queue_head_t *sk_sleep(struct sock *sk)
{
	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
	return &rcu_dereference_raw(sk->sk_wq)->wait;
}
/* Detach socket from process context.
 * Announce socket dead, detach it from wait queue and inode.
 * Note that parent inode held reference count on this struct sock,
 * we do not release it in this function, because protocol
 * probably wants some additional cleanups or even continuing
 * to work with this socket (TCP).
 */
static inline void sock_orphan(struct sock *sk)
{
	write_lock_bh(&sk->sk_callback_lock);
	sock_set_flag(sk, SOCK_DEAD);
	sk_set_socket(sk, NULL);
	sk->sk_wq  = NULL;
	write_unlock_bh(&sk->sk_callback_lock);
}

static inline void sock_graft(struct sock *sk, struct socket *parent)
{
	WARN_ON(parent->sk);
	write_lock_bh(&sk->sk_callback_lock);
	rcu_assign_pointer(sk->sk_wq, &parent->wq);
	parent->sk = sk;
	sk_set_socket(sk, parent);
	sk->sk_uid = SOCK_INODE(parent)->i_uid;
	security_sock_graft(sk, parent);
	write_unlock_bh(&sk->sk_callback_lock);
}

kuid_t sock_i_uid(struct sock *sk);
unsigned long sock_i_ino(struct sock *sk);

static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
{
	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
}

static inline u32 net_tx_rndhash(void)
{
	u32 v = prandom_u32();

	return v ?: 1;
}

static inline void sk_set_txhash(struct sock *sk)
{
	sk->sk_txhash = net_tx_rndhash();
}

static inline bool sk_rethink_txhash(struct sock *sk)
{
	if (sk->sk_txhash) {
		sk_set_txhash(sk);
		return true;
	}
	return false;
}

static inline struct dst_entry *
__sk_dst_get(struct sock *sk)
{
	return rcu_dereference_check(sk->sk_dst_cache,
				     lockdep_sock_is_held(sk));
}

static inline struct dst_entry *
sk_dst_get(struct sock *sk)
{
	struct dst_entry *dst;

	rcu_read_lock();
	dst = rcu_dereference(sk->sk_dst_cache);
	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
		dst = NULL;
	rcu_read_unlock();
	return dst;
}

static inline void __dst_negative_advice(struct sock *sk)
{
	struct dst_entry *ndst, *dst = __sk_dst_get(sk);

	if (dst && dst->ops->negative_advice) {
		ndst = dst->ops->negative_advice(dst);

		if (ndst != dst) {
			rcu_assign_pointer(sk->sk_dst_cache, ndst);
			sk_tx_queue_clear(sk);
			sk->sk_dst_pending_confirm = 0;
		}
	}
}

static inline void dst_negative_advice(struct sock *sk)
{
	sk_rethink_txhash(sk);
	__dst_negative_advice(sk);
}

static inline void
__sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
	struct dst_entry *old_dst;

	sk_tx_queue_clear(sk);
	sk->sk_dst_pending_confirm = 0;
	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
					    lockdep_sock_is_held(sk));
	rcu_assign_pointer(sk->sk_dst_cache, dst);
	dst_release(old_dst);
}

static inline void
sk_dst_set(struct sock *sk, struct dst_entry *dst)
{
	struct dst_entry *old_dst;

	sk_tx_queue_clear(sk);
	sk->sk_dst_pending_confirm = 0;
	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
	dst_release(old_dst);
}

static inline void
__sk_dst_reset(struct sock *sk)
{
	__sk_dst_set(sk, NULL);
}

static inline void
sk_dst_reset(struct sock *sk)
{
	sk_dst_set(sk, NULL);
}

struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);

struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);

static inline void sk_dst_confirm(struct sock *sk)
{
	if (!READ_ONCE(sk->sk_dst_pending_confirm))
		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
}

static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
{
	if (skb_get_dst_pending_confirm(skb)) {
		struct sock *sk = skb->sk;
		unsigned long now = jiffies;

		/* avoid dirtying neighbour */
		if (READ_ONCE(n->confirmed) != now)
			WRITE_ONCE(n->confirmed, now);
		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
	}
}

bool sk_mc_loop(struct sock *sk);

static inline bool sk_can_gso(const struct sock *sk)
{
	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
}

void sk_setup_caps(struct sock *sk, struct dst_entry *dst);

static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
{
	sk->sk_route_nocaps |= flags;
	sk->sk_route_caps &= ~flags;
}

static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
					   struct iov_iter *from, char *to,
					   int copy, int offset)
{
	if (skb->ip_summed == CHECKSUM_NONE) {
		__wsum csum = 0;
		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
			return -EFAULT;
		skb->csum = csum_block_add(skb->csum, csum, offset);
	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
		if (!copy_from_iter_full_nocache(to, copy, from))
			return -EFAULT;
	} else if (!copy_from_iter_full(to, copy, from))
		return -EFAULT;

	return 0;
}

static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
				       struct iov_iter *from, int copy)
{
	int err, offset = skb->len;

	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
				       copy, offset);
	if (err)
		__skb_trim(skb, offset);

	return err;
}

static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
					   struct sk_buff *skb,
					   struct page *page,
					   int off, int copy)
{
	int err;

	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
				       copy, skb->len);
	if (err)
		return err;

	skb->len	     += copy;
	skb->data_len	     += copy;
	skb->truesize	     += copy;
	sk_wmem_queued_add(sk, copy);
	sk_mem_charge(sk, copy);
	return 0;
}

/**
 * sk_wmem_alloc_get - returns write allocations
 * @sk: socket
 *
 * Return: sk_wmem_alloc minus initial offset of one
 */
static inline int sk_wmem_alloc_get(const struct sock *sk)
{
	return refcount_read(&sk->sk_wmem_alloc) - 1;
}

/**
 * sk_rmem_alloc_get - returns read allocations
 * @sk: socket
 *
 * Return: sk_rmem_alloc
 */
static inline int sk_rmem_alloc_get(const struct sock *sk)
{
	return atomic_read(&sk->sk_rmem_alloc);
}

/**
 * sk_has_allocations - check if allocations are outstanding
 * @sk: socket
 *
 * Return: true if socket has write or read allocations
 */
static inline bool sk_has_allocations(const struct sock *sk)
{
	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
}

/**
 * skwq_has_sleeper - check if there are any waiting processes
 * @wq: struct socket_wq
 *
 * Return: true if socket_wq has waiting processes
 *
 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
 * barrier call. They were added due to the race found within the tcp code.
 *
 * Consider following tcp code paths::
 *
 *   CPU1                CPU2
 *   sys_select          receive packet
 *   ...                 ...
 *   __add_wait_queue    update tp->rcv_nxt
 *   ...                 ...
 *   tp->rcv_nxt check   sock_def_readable
 *   ...                 {
 *   schedule               rcu_read_lock();
 *                          wq = rcu_dereference(sk->sk_wq);
 *                          if (wq && waitqueue_active(&wq->wait))
 *                              wake_up_interruptible(&wq->wait)
 *                          ...
 *                       }
 *
 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
 * could then endup calling schedule and sleep forever if there are no more
 * data on the socket.
 *
 */
static inline bool skwq_has_sleeper(struct socket_wq *wq)
{
	return wq && wq_has_sleeper(&wq->wait);
}

/**
 * sock_poll_wait - place memory barrier behind the poll_wait call.
 * @filp:           file
 * @sock:           socket to wait on
 * @p:              poll_table
 *
 * See the comments in the wq_has_sleeper function.
 */
static inline void sock_poll_wait(struct file *filp, struct socket *sock,
				  poll_table *p)
{
	if (!poll_does_not_wait(p)) {
		poll_wait(filp, &sock->wq.wait, p);
		/* We need to be sure we are in sync with the
		 * socket flags modification.
		 *
		 * This memory barrier is paired in the wq_has_sleeper.
		 */
		smp_mb();
	}
}

static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
{
	if (sk->sk_txhash) {
		skb->l4_hash = 1;
		skb->hash = sk->sk_txhash;
	}
}

void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);

/*
 *	Queue a received datagram if it will fit. Stream and sequenced
 *	protocols can't normally use this as they need to fit buffers in
 *	and play with them.
 *
 *	Inlined as it's very short and called for pretty much every
 *	packet ever received.
 */
static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
{
	skb_orphan(skb);
	skb->sk = sk;
	skb->destructor = sock_rfree;
	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
	sk_mem_charge(sk, skb->truesize);
}

static inline void skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
{
	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
		skb_orphan(skb);
		skb->destructor = sock_efree;
		skb->sk = sk;
	}
}

void sk_reset_timer(struct sock *sk, struct timer_list *timer,
		    unsigned long expires);

void sk_stop_timer(struct sock *sk, struct timer_list *timer);

void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);

int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
			struct sk_buff *skb, unsigned int flags,
			void (*destructor)(struct sock *sk,
					   struct sk_buff *skb));
int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);

int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
struct sk_buff *sock_dequeue_err_skb(struct sock *sk);

/*
 *	Recover an error report and clear atomically
 */

static inline int sock_error(struct sock *sk)
{
	int err;
	if (likely(!sk->sk_err))
		return 0;
	err = xchg(&sk->sk_err, 0);
	return -err;
}

static inline unsigned long sock_wspace(struct sock *sk)
{
	int amt = 0;

	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
		if (amt < 0)
			amt = 0;
	}
	return amt;
}

/* Note:
 *  We use sk->sk_wq_raw, from contexts knowing this
 *  pointer is not NULL and cannot disappear/change.
 */
static inline void sk_set_bit(int nr, struct sock *sk)
{
	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
	    !sock_flag(sk, SOCK_FASYNC))
		return;

	set_bit(nr, &sk->sk_wq_raw->flags);
}

static inline void sk_clear_bit(int nr, struct sock *sk)
{
	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
	    !sock_flag(sk, SOCK_FASYNC))
		return;

	clear_bit(nr, &sk->sk_wq_raw->flags);
}

static inline void sk_wake_async(const struct sock *sk, int how, int band)
{
	if (sock_flag(sk, SOCK_FASYNC)) {
		rcu_read_lock();
		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
		rcu_read_unlock();
	}
}

/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
 * Note: for send buffers, TCP works better if we can build two skbs at
 * minimum.
 */
#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))

#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE

static inline void sk_stream_moderate_sndbuf(struct sock *sk)
{
	u32 val;

	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
		return;

	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);

	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
}

struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
				    bool force_schedule);

/**
 * sk_page_frag - return an appropriate page_frag
 * @sk: socket
 *
 * Use the per task page_frag instead of the per socket one for
 * optimization when we know that we're in the normal context and owns
 * everything that's associated with %current.
 *
 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
 * inside other socket operations and end up recursing into sk_page_frag()
 * while it's already in use.
 *
 * Return: a per task page_frag if context allows that,
 * otherwise a per socket one.
 */
static inline struct page_frag *sk_page_frag(struct sock *sk)
{
	if (gfpflags_normal_context(sk->sk_allocation))
		return &current->task_frag;

	return &sk->sk_frag;
}

bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);

/*
 *	Default write policy as shown to user space via poll/select/SIGIO
 */
static inline bool sock_writeable(const struct sock *sk)
{
	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
}

static inline gfp_t gfp_any(void)
{
	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
}

static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
{
	return noblock ? 0 : sk->sk_rcvtimeo;
}

static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
{
	return noblock ? 0 : sk->sk_sndtimeo;
}

static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
{
	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);

	return v ?: 1;
}

/* Alas, with timeout socket operations are not restartable.
 * Compare this to poll().
 */
static inline int sock_intr_errno(long timeo)
{
	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
}

struct sock_skb_cb {
	u32 dropcount;
};

/* Store sock_skb_cb at the end of skb->cb[] so protocol families
 * using skb->cb[] would keep using it directly and utilize its
 * alignement guarantee.
 */
#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
			    sizeof(struct sock_skb_cb)))

#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
			    SOCK_SKB_CB_OFFSET))

#define sock_skb_cb_check_size(size) \
	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)

static inline void
sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
{
	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
						atomic_read(&sk->sk_drops) : 0;
}

static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
{
	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);

	atomic_add(segs, &sk->sk_drops);
}

static inline ktime_t sock_read_timestamp(struct sock *sk)
{
#if BITS_PER_LONG==32
	unsigned int seq;
	ktime_t kt;

	do {
		seq = read_seqbegin(&sk->sk_stamp_seq);
		kt = sk->sk_stamp;
	} while (read_seqretry(&sk->sk_stamp_seq, seq));

	return kt;
#else
	return READ_ONCE(sk->sk_stamp);
#endif
}

static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
{
#if BITS_PER_LONG==32
	write_seqlock(&sk->sk_stamp_seq);
	sk->sk_stamp = kt;
	write_sequnlock(&sk->sk_stamp_seq);
#else
	WRITE_ONCE(sk->sk_stamp, kt);
#endif
}

void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
			   struct sk_buff *skb);
void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
			     struct sk_buff *skb);

static inline void
sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
{
	ktime_t kt = skb->tstamp;
	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);

	/*
	 * generate control messages if
	 * - receive time stamping in software requested
	 * - software time stamp available and wanted
	 * - hardware time stamps available and wanted
	 */
	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
	    (hwtstamps->hwtstamp &&
	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
		__sock_recv_timestamp(msg, sk, skb);
	else
		sock_write_timestamp(sk, kt);

	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
		__sock_recv_wifi_status(msg, sk, skb);
}

void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
			      struct sk_buff *skb);

#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
					  struct sk_buff *skb)
{
#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
			   (1UL << SOCK_RCVTSTAMP))
#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
			   SOF_TIMESTAMPING_RAW_HARDWARE)

	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
		__sock_recv_ts_and_drops(msg, sk, skb);
	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
		sock_write_timestamp(sk, skb->tstamp);
	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
		sock_write_timestamp(sk, 0);
}

void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);

/**
 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
 * @sk:		socket sending this packet
 * @tsflags:	timestamping flags to use
 * @tx_flags:	completed with instructions for time stamping
 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
 *
 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
 */
static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
				      __u8 *tx_flags, __u32 *tskey)
{
	if (unlikely(tsflags)) {
		__sock_tx_timestamp(tsflags, tx_flags);
		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
			*tskey = sk->sk_tskey++;
	}
	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
		*tx_flags |= SKBTX_WIFI_STATUS;
}

static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
				     __u8 *tx_flags)
{
	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
}

static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
{
	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
			   &skb_shinfo(skb)->tskey);
}

DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
/**
 * sk_eat_skb - Release a skb if it is no longer needed
 * @sk: socket to eat this skb from
 * @skb: socket buffer to eat
 *
 * This routine must be called with interrupts disabled or with the socket
 * locked so that the sk_buff queue operation is ok.
*/
static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
{
	__skb_unlink(skb, &sk->sk_receive_queue);
	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
	    !sk->sk_rx_skb_cache) {
		sk->sk_rx_skb_cache = skb;
		skb_orphan(skb);
		return;
	}
	__kfree_skb(skb);
}

static inline
struct net *sock_net(const struct sock *sk)
{
	return read_pnet(&sk->sk_net);
}

static inline
void sock_net_set(struct sock *sk, struct net *net)
{
	write_pnet(&sk->sk_net, net);
}

static inline bool
skb_sk_is_prefetched(struct sk_buff *skb)
{
#ifdef CONFIG_INET
	return skb->destructor == sock_pfree;
#else
	return false;
#endif /* CONFIG_INET */
}

/* This helper checks if a socket is a full socket,
 * ie _not_ a timewait or request socket.
 */
static inline bool sk_fullsock(const struct sock *sk)
{
	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
}

static inline bool
sk_is_refcounted(struct sock *sk)
{
	/* Only full sockets have sk->sk_flags. */
	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
}

/**
 * skb_steal_sock - steal a socket from an sk_buff
 * @skb: sk_buff to steal the socket from
 * @refcounted: is set to true if the socket is reference-counted
 */
static inline struct sock *
skb_steal_sock(struct sk_buff *skb, bool *refcounted)
{
	if (skb->sk) {
		struct sock *sk = skb->sk;

		*refcounted = true;
		if (skb_sk_is_prefetched(skb))
			*refcounted = sk_is_refcounted(sk);
		skb->destructor = NULL;
		skb->sk = NULL;
		return sk;
	}
	*refcounted = false;
	return NULL;
}

/* Checks if this SKB belongs to an HW offloaded socket
 * and whether any SW fallbacks are required based on dev.
 * Check decrypted mark in case skb_orphan() cleared socket.
 */
static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
						   struct net_device *dev)
{
#ifdef CONFIG_SOCK_VALIDATE_XMIT
	struct sock *sk = skb->sk;

	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
#ifdef CONFIG_TLS_DEVICE
	} else if (unlikely(skb->decrypted)) {
		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
		kfree_skb(skb);
		skb = NULL;
#endif
	}
#endif

	return skb;
}

/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
 */
static inline bool sk_listener(const struct sock *sk)
{
	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
}

void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
		       int type);

bool sk_ns_capable(const struct sock *sk,
		   struct user_namespace *user_ns, int cap);
bool sk_capable(const struct sock *sk, int cap);
bool sk_net_capable(const struct sock *sk, int cap);

void sk_get_meminfo(const struct sock *sk, u32 *meminfo);

/* Take into consideration the size of the struct sk_buff overhead in the
 * determination of these values, since that is non-constant across
 * platforms.  This makes socket queueing behavior and performance
 * not depend upon such differences.
 */
#define _SK_MEM_PACKETS		256
#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)

extern __u32 sysctl_wmem_max;
extern __u32 sysctl_rmem_max;

extern int sysctl_tstamp_allow_data;
extern int sysctl_optmem_max;

extern __u32 sysctl_wmem_default;
extern __u32 sysctl_rmem_default;

DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);

static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
{
	/* Does this proto have per netns sysctl_wmem ? */
	if (proto->sysctl_wmem_offset)
		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);

	return *proto->sysctl_wmem;
}

static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
{
	/* Does this proto have per netns sysctl_rmem ? */
	if (proto->sysctl_rmem_offset)
		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);

	return *proto->sysctl_rmem;
}

/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
 * Some wifi drivers need to tweak it to get more chunks.
 * They can use this helper from their ndo_start_xmit()
 */
static inline void sk_pacing_shift_update(struct sock *sk, int val)
{
	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
		return;
	WRITE_ONCE(sk->sk_pacing_shift, val);
}

/* if a socket is bound to a device, check that the given device
 * index is either the same or that the socket is bound to an L3
 * master device and the given device index is also enslaved to
 * that L3 master
 */
static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
{
	int mdif;

	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
		return true;

	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
	if (mdif && mdif == sk->sk_bound_dev_if)
		return true;

	return false;
}

void sock_def_readable(struct sock *sk);

int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
void sock_enable_timestamps(struct sock *sk);
void sock_no_linger(struct sock *sk);
void sock_set_keepalive(struct sock *sk);
void sock_set_priority(struct sock *sk, u32 priority);
void sock_set_rcvbuf(struct sock *sk, int val);
void sock_set_mark(struct sock *sk, u32 val);
void sock_set_reuseaddr(struct sock *sk);
void sock_set_reuseport(struct sock *sk);
void sock_set_sndtimeo(struct sock *sk, s64 secs);

int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);

#endif	/* _SOCK_H */