1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* User-mode machine state access
*
* Copyright (C) 2007 Red Hat, Inc. All rights reserved.
*
* Red Hat Author: Roland McGrath.
*/
#ifndef _LINUX_REGSET_H
#define _LINUX_REGSET_H 1
#include <linux/compiler.h>
#include <linux/types.h>
#include <linux/bug.h>
#include <linux/uaccess.h>
struct task_struct;
struct user_regset;
struct membuf {
void *p;
size_t left;
};
static inline int membuf_zero(struct membuf *s, size_t size)
{
if (s->left) {
if (size > s->left)
size = s->left;
memset(s->p, 0, size);
s->p += size;
s->left -= size;
}
return s->left;
}
static inline int membuf_write(struct membuf *s, const void *v, size_t size)
{
if (s->left) {
if (size > s->left)
size = s->left;
memcpy(s->p, v, size);
s->p += size;
s->left -= size;
}
return s->left;
}
/* current s->p must be aligned for v; v must be a scalar */
#define membuf_store(s, v) \
({ \
struct membuf *__s = (s); \
if (__s->left) { \
typeof(v) __v = (v); \
size_t __size = sizeof(__v); \
if (unlikely(__size > __s->left)) { \
__size = __s->left; \
memcpy(__s->p, &__v, __size); \
} else { \
*(typeof(__v + 0) *)__s->p = __v; \
} \
__s->p += __size; \
__s->left -= __size; \
} \
__s->left;})
/**
* user_regset_active_fn - type of @active function in &struct user_regset
* @target: thread being examined
* @regset: regset being examined
*
* Return -%ENODEV if not available on the hardware found.
* Return %0 if no interesting state in this thread.
* Return >%0 number of @size units of interesting state.
* Any get call fetching state beyond that number will
* see the default initialization state for this data,
* so a caller that knows what the default state is need
* not copy it all out.
* This call is optional; the pointer is %NULL if there
* is no inexpensive check to yield a value < @n.
*/
typedef int user_regset_active_fn(struct task_struct *target,
const struct user_regset *regset);
typedef int user_regset_get2_fn(struct task_struct *target,
const struct user_regset *regset,
struct membuf to);
/**
* user_regset_set_fn - type of @set function in &struct user_regset
* @target: thread being examined
* @regset: regset being examined
* @pos: offset into the regset data to access, in bytes
* @count: amount of data to copy, in bytes
* @kbuf: if not %NULL, a kernel-space pointer to copy from
* @ubuf: if @kbuf is %NULL, a user-space pointer to copy from
*
* Store register values. Return %0 on success; -%EIO or -%ENODEV
* are usual failure returns. The @pos and @count values are in
* bytes, but must be properly aligned. If @kbuf is non-null, that
* buffer is used and @ubuf is ignored. If @kbuf is %NULL, then
* ubuf gives a userland pointer to access directly, and an -%EFAULT
* return value is possible.
*/
typedef int user_regset_set_fn(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf);
/**
* user_regset_writeback_fn - type of @writeback function in &struct user_regset
* @target: thread being examined
* @regset: regset being examined
* @immediate: zero if writeback at completion of next context switch is OK
*
* This call is optional; usually the pointer is %NULL. When
* provided, there is some user memory associated with this regset's
* hardware, such as memory backing cached register data on register
* window machines; the regset's data controls what user memory is
* used (e.g. via the stack pointer value).
*
* Write register data back to user memory. If the @immediate flag
* is nonzero, it must be written to the user memory so uaccess or
* access_process_vm() can see it when this call returns; if zero,
* then it must be written back by the time the task completes a
* context switch (as synchronized with wait_task_inactive()).
* Return %0 on success or if there was nothing to do, -%EFAULT for
* a memory problem (bad stack pointer or whatever), or -%EIO for a
* hardware problem.
*/
typedef int user_regset_writeback_fn(struct task_struct *target,
const struct user_regset *regset,
int immediate);
/**
* user_regset_get_size_fn - type of @get_size function in &struct user_regset
* @target: thread being examined
* @regset: regset being examined
*
* This call is optional; usually the pointer is %NULL.
*
* When provided, this function must return the current size of regset
* data, as observed by the @get function in &struct user_regset. The
* value returned must be a multiple of @size. The returned size is
* required to be valid only until the next time (if any) @regset is
* modified for @target.
*
* This function is intended for dynamically sized regsets. A regset
* that is statically sized does not need to implement it.
*
* This function should not be called directly: instead, callers should
* call regset_size() to determine the current size of a regset.
*/
typedef unsigned int user_regset_get_size_fn(struct task_struct *target,
const struct user_regset *regset);
/**
* struct user_regset - accessible thread CPU state
* @n: Number of slots (registers).
* @size: Size in bytes of a slot (register).
* @align: Required alignment, in bytes.
* @bias: Bias from natural indexing.
* @core_note_type: ELF note @n_type value used in core dumps.
* @get: Function to fetch values.
* @set: Function to store values.
* @active: Function to report if regset is active, or %NULL.
* @writeback: Function to write data back to user memory, or %NULL.
* @get_size: Function to return the regset's size, or %NULL.
*
* This data structure describes a machine resource we call a register set.
* This is part of the state of an individual thread, not necessarily
* actual CPU registers per se. A register set consists of a number of
* similar slots, given by @n. Each slot is @size bytes, and aligned to
* @align bytes (which is at least @size). For dynamically-sized
* regsets, @n must contain the maximum possible number of slots for the
* regset, and @get_size must point to a function that returns the
* current regset size.
*
* Callers that need to know only the current size of the regset and do
* not care about its internal structure should call regset_size()
* instead of inspecting @n or calling @get_size.
*
* For backward compatibility, the @get and @set methods must pad to, or
* accept, @n * @size bytes, even if the current regset size is smaller.
* The precise semantics of these operations depend on the regset being
* accessed.
*
* The functions to which &struct user_regset members point must be
* called only on the current thread or on a thread that is in
* %TASK_STOPPED or %TASK_TRACED state, that we are guaranteed will not
* be woken up and return to user mode, and that we have called
* wait_task_inactive() on. (The target thread always might wake up for
* SIGKILL while these functions are working, in which case that
* thread's user_regset state might be scrambled.)
*
* The @pos argument must be aligned according to @align; the @count
* argument must be a multiple of @size. These functions are not
* responsible for checking for invalid arguments.
*
* When there is a natural value to use as an index, @bias gives the
* difference between the natural index and the slot index for the
* register set. For example, x86 GDT segment descriptors form a regset;
* the segment selector produces a natural index, but only a subset of
* that index space is available as a regset (the TLS slots); subtracting
* @bias from a segment selector index value computes the regset slot.
*
* If nonzero, @core_note_type gives the n_type field (NT_* value)
* of the core file note in which this regset's data appears.
* NT_PRSTATUS is a special case in that the regset data starts at
* offsetof(struct elf_prstatus, pr_reg) into the note data; that is
* part of the per-machine ELF formats userland knows about. In
* other cases, the core file note contains exactly the whole regset
* (@n * @size) and nothing else. The core file note is normally
* omitted when there is an @active function and it returns zero.
*/
struct user_regset {
user_regset_get2_fn *regset_get;
user_regset_set_fn *set;
user_regset_active_fn *active;
user_regset_writeback_fn *writeback;
user_regset_get_size_fn *get_size;
unsigned int n;
unsigned int size;
unsigned int align;
unsigned int bias;
unsigned int core_note_type;
};
/**
* struct user_regset_view - available regsets
* @name: Identifier, e.g. UTS_MACHINE string.
* @regsets: Array of @n regsets available in this view.
* @n: Number of elements in @regsets.
* @e_machine: ELF header @e_machine %EM_* value written in core dumps.
* @e_flags: ELF header @e_flags value written in core dumps.
* @ei_osabi: ELF header @e_ident[%EI_OSABI] value written in core dumps.
*
* A regset view is a collection of regsets (&struct user_regset,
* above). This describes all the state of a thread that can be seen
* from a given architecture/ABI environment. More than one view might
* refer to the same &struct user_regset, or more than one regset
* might refer to the same machine-specific state in the thread. For
* example, a 32-bit thread's state could be examined from the 32-bit
* view or from the 64-bit view. Either method reaches the same thread
* register state, doing appropriate widening or truncation.
*/
struct user_regset_view {
const char *name;
const struct user_regset *regsets;
unsigned int n;
u32 e_flags;
u16 e_machine;
u8 ei_osabi;
};
/*
* This is documented here rather than at the definition sites because its
* implementation is machine-dependent but its interface is universal.
*/
/**
* task_user_regset_view - Return the process's native regset view.
* @tsk: a thread of the process in question
*
* Return the &struct user_regset_view that is native for the given process.
* For example, what it would access when it called ptrace().
* Throughout the life of the process, this only changes at exec.
*/
const struct user_regset_view *task_user_regset_view(struct task_struct *tsk);
/*
* These are helpers for writing regset get/set functions in arch code.
* Because @start_pos and @end_pos are always compile-time constants,
* these are inlined into very little code though they look large.
*
* Use one or more calls sequentially for each chunk of regset data stored
* contiguously in memory. Call with constants for @start_pos and @end_pos,
* giving the range of byte positions in the regset that data corresponds
* to; @end_pos can be -1 if this chunk is at the end of the regset layout.
* Each call updates the arguments to point past its chunk.
*/
static inline int user_regset_copyout(unsigned int *pos, unsigned int *count,
void **kbuf,
void __user **ubuf, const void *data,
const int start_pos, const int end_pos)
{
if (*count == 0)
return 0;
BUG_ON(*pos < start_pos);
if (end_pos < 0 || *pos < end_pos) {
unsigned int copy = (end_pos < 0 ? *count
: min(*count, end_pos - *pos));
data += *pos - start_pos;
if (*kbuf) {
memcpy(*kbuf, data, copy);
*kbuf += copy;
} else if (__copy_to_user(*ubuf, data, copy))
return -EFAULT;
else
*ubuf += copy;
*pos += copy;
*count -= copy;
}
return 0;
}
static inline int user_regset_copyin(unsigned int *pos, unsigned int *count,
const void **kbuf,
const void __user **ubuf, void *data,
const int start_pos, const int end_pos)
{
if (*count == 0)
return 0;
BUG_ON(*pos < start_pos);
if (end_pos < 0 || *pos < end_pos) {
unsigned int copy = (end_pos < 0 ? *count
: min(*count, end_pos - *pos));
data += *pos - start_pos;
if (*kbuf) {
memcpy(data, *kbuf, copy);
*kbuf += copy;
} else if (__copy_from_user(data, *ubuf, copy))
return -EFAULT;
else
*ubuf += copy;
*pos += copy;
*count -= copy;
}
return 0;
}
/*
* These two parallel the two above, but for portions of a regset layout
* that always read as all-zero or for which writes are ignored.
*/
static inline int user_regset_copyout_zero(unsigned int *pos,
unsigned int *count,
void **kbuf, void __user **ubuf,
const int start_pos,
const int end_pos)
{
if (*count == 0)
return 0;
BUG_ON(*pos < start_pos);
if (end_pos < 0 || *pos < end_pos) {
unsigned int copy = (end_pos < 0 ? *count
: min(*count, end_pos - *pos));
if (*kbuf) {
memset(*kbuf, 0, copy);
*kbuf += copy;
} else if (clear_user(*ubuf, copy))
return -EFAULT;
else
*ubuf += copy;
*pos += copy;
*count -= copy;
}
return 0;
}
static inline int user_regset_copyin_ignore(unsigned int *pos,
unsigned int *count,
const void **kbuf,
const void __user **ubuf,
const int start_pos,
const int end_pos)
{
if (*count == 0)
return 0;
BUG_ON(*pos < start_pos);
if (end_pos < 0 || *pos < end_pos) {
unsigned int copy = (end_pos < 0 ? *count
: min(*count, end_pos - *pos));
if (*kbuf)
*kbuf += copy;
else
*ubuf += copy;
*pos += copy;
*count -= copy;
}
return 0;
}
extern int regset_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int size, void *data);
extern int regset_get_alloc(struct task_struct *target,
const struct user_regset *regset,
unsigned int size,
void **data);
extern int copy_regset_to_user(struct task_struct *target,
const struct user_regset_view *view,
unsigned int setno, unsigned int offset,
unsigned int size, void __user *data);
/**
* copy_regset_from_user - store into thread's user_regset data from user memory
* @target: thread to be examined
* @view: &struct user_regset_view describing user thread machine state
* @setno: index in @view->regsets
* @offset: offset into the regset data, in bytes
* @size: amount of data to copy, in bytes
* @data: user-mode pointer to copy from
*/
static inline int copy_regset_from_user(struct task_struct *target,
const struct user_regset_view *view,
unsigned int setno,
unsigned int offset, unsigned int size,
const void __user *data)
{
const struct user_regset *regset = &view->regsets[setno];
if (!regset->set)
return -EOPNOTSUPP;
if (!access_ok(data, size))
return -EFAULT;
return regset->set(target, regset, offset, size, NULL, data);
}
/**
* regset_size - determine the current size of a regset
* @target: thread to be examined
* @regset: regset to be examined
*
* Note that the returned size is valid only until the next time
* (if any) @regset is modified for @target.
*/
static inline unsigned int regset_size(struct task_struct *target,
const struct user_regset *regset)
{
if (!regset->get_size)
return regset->n * regset->size;
else
return regset->get_size(target, regset);
}
#endif /* <linux/regset.h> */
|