summaryrefslogtreecommitdiff
path: root/include/linux/power_supply.h
blob: aa2c4a7c4826da06d8ebce07a78d6c6fbc858e0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
/* SPDX-License-Identifier: GPL-2.0-only */
/*
 *  Universal power supply monitor class
 *
 *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
 *  Copyright © 2004  Szabolcs Gyurko
 *  Copyright © 2003  Ian Molton <spyro@f2s.com>
 *
 *  Modified: 2004, Oct     Szabolcs Gyurko
 */

#ifndef __LINUX_POWER_SUPPLY_H__
#define __LINUX_POWER_SUPPLY_H__

#include <linux/device.h>
#include <linux/workqueue.h>
#include <linux/leds.h>
#include <linux/spinlock.h>
#include <linux/notifier.h>

/*
 * All voltages, currents, charges, energies, time and temperatures in uV,
 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
 * stated. It's driver's job to convert its raw values to units in which
 * this class operates.
 */

/*
 * For systems where the charger determines the maximum battery capacity
 * the min and max fields should be used to present these values to user
 * space. Unused/unknown fields will not appear in sysfs.
 */

enum {
	POWER_SUPPLY_STATUS_UNKNOWN = 0,
	POWER_SUPPLY_STATUS_CHARGING,
	POWER_SUPPLY_STATUS_DISCHARGING,
	POWER_SUPPLY_STATUS_NOT_CHARGING,
	POWER_SUPPLY_STATUS_FULL,
};

/* What algorithm is the charger using? */
enum {
	POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
	POWER_SUPPLY_CHARGE_TYPE_NONE,
	POWER_SUPPLY_CHARGE_TYPE_TRICKLE,	/* slow speed */
	POWER_SUPPLY_CHARGE_TYPE_FAST,		/* fast speed */
	POWER_SUPPLY_CHARGE_TYPE_STANDARD,	/* normal speed */
	POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE,	/* dynamically adjusted speed */
	POWER_SUPPLY_CHARGE_TYPE_CUSTOM,	/* use CHARGE_CONTROL_* props */
	POWER_SUPPLY_CHARGE_TYPE_LONGLIFE,	/* slow speed, longer life */
	POWER_SUPPLY_CHARGE_TYPE_BYPASS,	/* bypassing the charger */
};

enum {
	POWER_SUPPLY_HEALTH_UNKNOWN = 0,
	POWER_SUPPLY_HEALTH_GOOD,
	POWER_SUPPLY_HEALTH_OVERHEAT,
	POWER_SUPPLY_HEALTH_DEAD,
	POWER_SUPPLY_HEALTH_OVERVOLTAGE,
	POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
	POWER_SUPPLY_HEALTH_COLD,
	POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
	POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
	POWER_SUPPLY_HEALTH_OVERCURRENT,
	POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
	POWER_SUPPLY_HEALTH_WARM,
	POWER_SUPPLY_HEALTH_COOL,
	POWER_SUPPLY_HEALTH_HOT,
	POWER_SUPPLY_HEALTH_NO_BATTERY,
};

enum {
	POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
	POWER_SUPPLY_TECHNOLOGY_NiMH,
	POWER_SUPPLY_TECHNOLOGY_LION,
	POWER_SUPPLY_TECHNOLOGY_LIPO,
	POWER_SUPPLY_TECHNOLOGY_LiFe,
	POWER_SUPPLY_TECHNOLOGY_NiCd,
	POWER_SUPPLY_TECHNOLOGY_LiMn,
};

enum {
	POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
	POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
	POWER_SUPPLY_CAPACITY_LEVEL_LOW,
	POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
	POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
	POWER_SUPPLY_CAPACITY_LEVEL_FULL,
};

enum {
	POWER_SUPPLY_SCOPE_UNKNOWN = 0,
	POWER_SUPPLY_SCOPE_SYSTEM,
	POWER_SUPPLY_SCOPE_DEVICE,
};

enum power_supply_property {
	/* Properties of type `int' */
	POWER_SUPPLY_PROP_STATUS = 0,
	POWER_SUPPLY_PROP_CHARGE_TYPE,
	POWER_SUPPLY_PROP_HEALTH,
	POWER_SUPPLY_PROP_PRESENT,
	POWER_SUPPLY_PROP_ONLINE,
	POWER_SUPPLY_PROP_AUTHENTIC,
	POWER_SUPPLY_PROP_TECHNOLOGY,
	POWER_SUPPLY_PROP_CYCLE_COUNT,
	POWER_SUPPLY_PROP_VOLTAGE_MAX,
	POWER_SUPPLY_PROP_VOLTAGE_MIN,
	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
	POWER_SUPPLY_PROP_VOLTAGE_NOW,
	POWER_SUPPLY_PROP_VOLTAGE_AVG,
	POWER_SUPPLY_PROP_VOLTAGE_OCV,
	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
	POWER_SUPPLY_PROP_CURRENT_MAX,
	POWER_SUPPLY_PROP_CURRENT_NOW,
	POWER_SUPPLY_PROP_CURRENT_AVG,
	POWER_SUPPLY_PROP_CURRENT_BOOT,
	POWER_SUPPLY_PROP_POWER_NOW,
	POWER_SUPPLY_PROP_POWER_AVG,
	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
	POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
	POWER_SUPPLY_PROP_CHARGE_FULL,
	POWER_SUPPLY_PROP_CHARGE_EMPTY,
	POWER_SUPPLY_PROP_CHARGE_NOW,
	POWER_SUPPLY_PROP_CHARGE_AVG,
	POWER_SUPPLY_PROP_CHARGE_COUNTER,
	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
	POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
	POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
	POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
	POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
	POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
	POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
	POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
	POWER_SUPPLY_PROP_ENERGY_FULL,
	POWER_SUPPLY_PROP_ENERGY_EMPTY,
	POWER_SUPPLY_PROP_ENERGY_NOW,
	POWER_SUPPLY_PROP_ENERGY_AVG,
	POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
	POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
	POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
	POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
	POWER_SUPPLY_PROP_TEMP,
	POWER_SUPPLY_PROP_TEMP_MAX,
	POWER_SUPPLY_PROP_TEMP_MIN,
	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
	POWER_SUPPLY_PROP_TEMP_AMBIENT,
	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
	POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
	POWER_SUPPLY_PROP_USB_TYPE,
	POWER_SUPPLY_PROP_SCOPE,
	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
	POWER_SUPPLY_PROP_CALIBRATE,
	POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
	POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
	POWER_SUPPLY_PROP_MANUFACTURE_DAY,
	/* Properties of type `const char *' */
	POWER_SUPPLY_PROP_MODEL_NAME,
	POWER_SUPPLY_PROP_MANUFACTURER,
	POWER_SUPPLY_PROP_SERIAL_NUMBER,
};

enum power_supply_type {
	POWER_SUPPLY_TYPE_UNKNOWN = 0,
	POWER_SUPPLY_TYPE_BATTERY,
	POWER_SUPPLY_TYPE_UPS,
	POWER_SUPPLY_TYPE_MAINS,
	POWER_SUPPLY_TYPE_USB,			/* Standard Downstream Port */
	POWER_SUPPLY_TYPE_USB_DCP,		/* Dedicated Charging Port */
	POWER_SUPPLY_TYPE_USB_CDP,		/* Charging Downstream Port */
	POWER_SUPPLY_TYPE_USB_ACA,		/* Accessory Charger Adapters */
	POWER_SUPPLY_TYPE_USB_TYPE_C,		/* Type C Port */
	POWER_SUPPLY_TYPE_USB_PD,		/* Power Delivery Port */
	POWER_SUPPLY_TYPE_USB_PD_DRP,		/* PD Dual Role Port */
	POWER_SUPPLY_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
	POWER_SUPPLY_TYPE_WIRELESS,		/* Wireless */
};

enum power_supply_usb_type {
	POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
	POWER_SUPPLY_USB_TYPE_SDP,		/* Standard Downstream Port */
	POWER_SUPPLY_USB_TYPE_DCP,		/* Dedicated Charging Port */
	POWER_SUPPLY_USB_TYPE_CDP,		/* Charging Downstream Port */
	POWER_SUPPLY_USB_TYPE_ACA,		/* Accessory Charger Adapters */
	POWER_SUPPLY_USB_TYPE_C,		/* Type C Port */
	POWER_SUPPLY_USB_TYPE_PD,		/* Power Delivery Port */
	POWER_SUPPLY_USB_TYPE_PD_DRP,		/* PD Dual Role Port */
	POWER_SUPPLY_USB_TYPE_PD_PPS,		/* PD Programmable Power Supply */
	POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
};

enum power_supply_charge_behaviour {
	POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
	POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
};

enum power_supply_notifier_events {
	PSY_EVENT_PROP_CHANGED,
};

union power_supply_propval {
	int intval;
	const char *strval;
};

struct device_node;
struct power_supply;

/* Run-time specific power supply configuration */
struct power_supply_config {
	struct device_node *of_node;
	struct fwnode_handle *fwnode;

	/* Driver private data */
	void *drv_data;

	/* Device specific sysfs attributes */
	const struct attribute_group **attr_grp;

	char **supplied_to;
	size_t num_supplicants;
};

/* Description of power supply */
struct power_supply_desc {
	const char *name;
	enum power_supply_type type;
	const enum power_supply_usb_type *usb_types;
	size_t num_usb_types;
	const enum power_supply_property *properties;
	size_t num_properties;

	/*
	 * Functions for drivers implementing power supply class.
	 * These shouldn't be called directly by other drivers for accessing
	 * this power supply. Instead use power_supply_*() functions (for
	 * example power_supply_get_property()).
	 */
	int (*get_property)(struct power_supply *psy,
			    enum power_supply_property psp,
			    union power_supply_propval *val);
	int (*set_property)(struct power_supply *psy,
			    enum power_supply_property psp,
			    const union power_supply_propval *val);
	/*
	 * property_is_writeable() will be called during registration
	 * of power supply. If this happens during device probe then it must
	 * not access internal data of device (because probe did not end).
	 */
	int (*property_is_writeable)(struct power_supply *psy,
				     enum power_supply_property psp);
	void (*external_power_changed)(struct power_supply *psy);
	void (*set_charged)(struct power_supply *psy);

	/*
	 * Set if thermal zone should not be created for this power supply.
	 * For example for virtual supplies forwarding calls to actual
	 * sensors or other supplies.
	 */
	bool no_thermal;
	/* For APM emulation, think legacy userspace. */
	int use_for_apm;
};

struct power_supply {
	const struct power_supply_desc *desc;

	char **supplied_to;
	size_t num_supplicants;

	char **supplied_from;
	size_t num_supplies;
	struct device_node *of_node;

	/* Driver private data */
	void *drv_data;

	/* private */
	struct device dev;
	struct work_struct changed_work;
	struct delayed_work deferred_register_work;
	spinlock_t changed_lock;
	bool changed;
	bool initialized;
	bool removing;
	atomic_t use_cnt;
#ifdef CONFIG_THERMAL
	struct thermal_zone_device *tzd;
	struct thermal_cooling_device *tcd;
#endif

#ifdef CONFIG_LEDS_TRIGGERS
	struct led_trigger *charging_full_trig;
	char *charging_full_trig_name;
	struct led_trigger *charging_trig;
	char *charging_trig_name;
	struct led_trigger *full_trig;
	char *full_trig_name;
	struct led_trigger *online_trig;
	char *online_trig_name;
	struct led_trigger *charging_blink_full_solid_trig;
	char *charging_blink_full_solid_trig_name;
#endif
};

/*
 * This is recommended structure to specify static power supply parameters.
 * Generic one, parametrizable for different power supplies. Power supply
 * class itself does not use it, but that's what implementing most platform
 * drivers, should try reuse for consistency.
 */

struct power_supply_info {
	const char *name;
	int technology;
	int voltage_max_design;
	int voltage_min_design;
	int charge_full_design;
	int charge_empty_design;
	int energy_full_design;
	int energy_empty_design;
	int use_for_apm;
};

struct power_supply_battery_ocv_table {
	int ocv;	/* microVolts */
	int capacity;	/* percent */
};

struct power_supply_resistance_temp_table {
	int temp;	/* celsius */
	int resistance;	/* internal resistance percent */
};

struct power_supply_vbat_ri_table {
	int vbat_uv;	/* Battery voltage in microvolt */
	int ri_uohm;	/* Internal resistance in microohm */
};

/**
 * struct power_supply_maintenance_charge_table - setting for maintenace charging
 * @charge_current_max_ua: maintenance charging current that is used to keep
 *   the charge of the battery full as current is consumed after full charging.
 *   The corresponding charge_voltage_max_uv is used as a safeguard: when we
 *   reach this voltage the maintenance charging current is turned off. It is
 *   turned back on if we fall below this voltage.
 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
 *   lower than the constant_charge_voltage_max_uv. We can apply this settings
 *   charge_current_max_ua until we get back up to this voltage.
 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
 *   time in minutes. We will only use maintenance charging in this setting
 *   for a certain amount of time, then we will first move to the next
 *   maintenance charge current and voltage pair in respective array and wait
 *   for the next safety timer timeout, or, if we reached the last maintencance
 *   charging setting, disable charging until we reach
 *   charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
 *   These timers should be chosen to align with the typical discharge curve
 *   for the battery.
 *
 * Ordinary CC/CV charging will stop charging when the charge current goes
 * below charge_term_current_ua, and then restart it (if the device is still
 * plugged into the charger) at charge_restart_voltage_uv. This happens in most
 * consumer products because the power usage while connected to a charger is
 * not zero, and devices are not manufactured to draw power directly from the
 * charger: instead they will at all times dissipate the battery a little, like
 * the power used in standby mode. This will over time give a charge graph
 * such as this:
 *
 * Energy
 *  ^      ...        ...      ...      ...      ...      ...      ...
 *  |    .   .       .  .     .  .     .  .     .  .     .  .     .
 *  |  ..     .   ..     .  ..    .  ..    .  ..    .  ..    .  ..
 *  |.          ..        ..       ..       ..       ..       ..
 *  +-------------------------------------------------------------------> t
 *
 * Practically this means that the Li-ions are wandering back and forth in the
 * battery and this causes degeneration of the battery anode and cathode.
 * To prolong the life of the battery, maintenance charging is applied after
 * reaching charge_term_current_ua to hold up the charge in the battery while
 * consuming power, thus lowering the wear on the battery:
 *
 * Energy
 *  ^      .......................................
 *  |    .                                        ......................
 *  |  ..
 *  |.
 *  +-------------------------------------------------------------------> t
 *
 * Maintenance charging uses the voltages from this table: a table of settings
 * is traversed using a slightly lower current and voltage than what is used for
 * CC/CV charging. The maintenance charging will for safety reasons not go on
 * indefinately: we lower the current and voltage with successive maintenance
 * settings, then disable charging completely after we reach the last one,
 * and after that we do not restart charging until we reach
 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
 * ordinary CC/CV charging from there.
 *
 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
 * After this the charge cycle is restarted waiting for
 * charge_restart_voltage_uv.
 *
 * For most mobile electronics this type of maintenance charging is enough for
 * the user to disconnect the device and make use of it before both maintenance
 * charging cycles are complete, if the current and voltage has been chosen
 * appropriately. These need to be determined from battery discharge curves
 * and expected standby current.
 *
 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
 * charging, ordinary CC/CV charging is restarted. This can happen if the
 * device is e.g. actively used during charging, so more current is drawn than
 * the expected stand-by current. Also overvoltage protection will be applied
 * as usual.
 */
struct power_supply_maintenance_charge_table {
	int charge_current_max_ua;
	int charge_voltage_max_uv;
	int charge_safety_timer_minutes;
};

#define POWER_SUPPLY_OCV_TEMP_MAX 20

/**
 * struct power_supply_battery_info - information about batteries
 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
 * @energy_full_design_uwh: energy content when fully charged in microwatt
 *   hours
 * @charge_full_design_uah: charge content when fully charged in microampere
 *   hours
 * @voltage_min_design_uv: minimum voltage across the poles when the battery
 *   is at minimum voltage level in microvolts. If the voltage drops below this
 *   level the battery will need precharging when using CC/CV charging.
 * @voltage_max_design_uv: voltage across the poles when the battery is fully
 *   charged in microvolts. This is the "nominal voltage" i.e. the voltage
 *   printed on the label of the battery.
 * @tricklecharge_current_ua: the tricklecharge current used when trickle
 *   charging the battery in microamperes. This is the charging phase when the
 *   battery is completely empty and we need to carefully trickle in some
 *   charge until we reach the precharging voltage.
 * @precharge_current_ua: current to use in the precharge phase in microamperes,
 *   the precharge rate is limited by limiting the current to this value.
 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
 *   microvolts. When we pass this voltage we will nominally switch over to the
 *   CC (constant current) charging phase defined by constant_charge_current_ua
 *   and constant_charge_voltage_max_uv.
 * @charge_term_current_ua: when the current in the CV (constant voltage)
 *   charging phase drops below this value in microamperes the charging will
 *   terminate completely and not restart until the voltage over the battery
 *   poles reach charge_restart_voltage_uv unless we use maintenance charging.
 * @charge_restart_voltage_uv: when the battery has been fully charged by
 *   CC/CV charging and charging has been disabled, and the voltage subsequently
 *   drops below this value in microvolts, the charging will be restarted
 *   (typically using CV charging).
 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
 *   voltage_max_design_uv and we reach this voltage level, all charging must
 *   stop and emergency procedures take place, such as shutting down the system
 *   in some cases.
 * @constant_charge_current_max_ua: current in microamperes to use in the CC
 *   (constant current) charging phase. The charging rate is limited
 *   by this current. This is the main charging phase and as the current is
 *   constant into the battery the voltage slowly ascends to
 *   constant_charge_voltage_max_uv.
 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
 *   the CC (constant current) charging phase and the beginning of the CV
 *   (constant voltage) charging phase.
 * @maintenance_charge: an array of maintenance charging settings to be used
 *   after the main CC/CV charging phase is complete.
 * @maintenance_charge_size: the number of maintenance charging settings in
 *   maintenance_charge.
 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
 *   enters low alert temperature, i.e. if the internal temperature is between
 *   temp_alert_min and temp_min. No matter the charging phase, this
 *   and alert_high_temp_charge_voltage_uv will be applied.
 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
 *   but for the charging voltage.
 * @alert_high_temp_charge_current_ua: The charging current to use if the
 *   battery enters high alert temperature, i.e. if the internal temperature is
 *   between temp_alert_max and temp_max. No matter the charging phase, this
 *   and alert_high_temp_charge_voltage_uv will be applied, usually lowering
 *   the charging current as an evasive manouver.
 * @alert_high_temp_charge_voltage_uv: Same as
 *   alert_high_temp_charge_current_ua, but for the charging voltage.
 * @factory_internal_resistance_uohm: the internal resistance of the battery
 *   at fabrication time, expressed in microohms. This resistance will vary
 *   depending on the lifetime and charge of the battery, so this is just a
 *   nominal ballpark figure. This internal resistance is given for the state
 *   when the battery is discharging.
 * @factory_internal_resistance_charging_uohm: the internal resistance of the
 *   battery at fabrication time while charging, expressed in microohms.
 *   The charging process will affect the internal resistance of the battery
 *   so this value provides a better resistance under these circumstances.
 *   This resistance will vary depending on the lifetime and charge of the
 *   battery, so this is just a nominal ballpark figure.
 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
 *   temperature indices. This is an array of temperatures in degrees Celsius
 *   indicating which capacity table to use for a certain temperature, since
 *   the capacity for reasons of chemistry will be different at different
 *   temperatures. Determining capacity is a multivariate problem and the
 *   temperature is the first variable we determine.
 * @temp_ambient_alert_min: the battery will go outside of operating conditions
 *   when the ambient temperature goes below this temperature in degrees
 *   Celsius.
 * @temp_ambient_alert_max: the battery will go outside of operating conditions
 *   when the ambient temperature goes above this temperature in degrees
 *   Celsius.
 * @temp_alert_min: the battery should issue an alert if the internal
 *   temperature goes below this temperature in degrees Celsius.
 * @temp_alert_max: the battery should issue an alert if the internal
 *   temperature goes above this temperature in degrees Celsius.
 * @temp_min: the battery will go outside of operating conditions when
 *   the internal temperature goes below this temperature in degrees Celsius.
 *   Normally this means the system should shut down.
 * @temp_max: the battery will go outside of operating conditions when
 *   the internal temperature goes above this temperature in degrees Celsius.
 *   Normally this means the system should shut down.
 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
 *   ocv_table and a size for each entry in ocv_table_size. These arrays
 *   determine the capacity in percent in relation to the voltage in microvolts
 *   at the indexed temperature.
 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
 *   each entry in the array of capacity arrays in ocv_table.
 * @resist_table: this is a table that correlates a battery temperature to the
 *   expected internal resistance at this temperature. The resistance is given
 *   as a percentage of factory_internal_resistance_uohm. Knowing the
 *   resistance of the battery is usually necessary for calculating the open
 *   circuit voltage (OCV) that is then used with the ocv_table to calculate
 *   the capacity of the battery. The resist_table must be ordered descending
 *   by temperature: highest temperature with lowest resistance first, lowest
 *   temperature with highest resistance last.
 * @resist_table_size: the number of items in the resist_table.
 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
 *   to internal resistance (Ri). The resistance is given in microohm for the
 *   corresponding voltage in microvolts. The internal resistance is used to
 *   determine the open circuit voltage so that we can determine the capacity
 *   of the battery. These voltages to resistance tables apply when the battery
 *   is discharging. The table must be ordered descending by voltage: highest
 *   voltage first.
 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
 *   table.
 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
 *   when the battery is charging. Being under charge changes the battery's
 *   internal resistance characteristics so a separate table is needed.*
 *   The table must be ordered descending by voltage: highest voltage first.
 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
 *   table.
 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
 *   in ohms for this battery, if an identification resistor is mounted
 *   between a third battery terminal and ground. This scheme is used by a lot
 *   of mobile device batteries.
 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
 *   for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
 *   tolerance is 10% we will detect a proper battery if the BTI resistance
 *   is between 6300 and 7700 Ohm.
 *
 * This is the recommended struct to manage static battery parameters,
 * populated by power_supply_get_battery_info(). Most platform drivers should
 * use these for consistency.
 *
 * Its field names must correspond to elements in enum power_supply_property.
 * The default field value is -EINVAL or NULL for pointers.
 *
 * CC/CV CHARGING:
 *
 * The charging parameters here assume a CC/CV charging scheme. This method
 * is most common with Lithium Ion batteries (other methods are possible) and
 * looks as follows:
 *
 * ^ Battery voltage
 * |                                               --- overvoltage_limit_uv
 * |
 * |                    ...................................................
 * |                 .. constant_charge_voltage_max_uv
 * |              ..
 * |             .
 * |            .
 * |           .
 * |          .
 * |         .
 * |     .. precharge_voltage_max_uv
 * |  ..
 * |. (trickle charging)
 * +------------------------------------------------------------------> time
 *
 * ^ Current into the battery
 * |
 * |      ............. constant_charge_current_max_ua
 * |      .            .
 * |      .             .
 * |      .              .
 * |      .               .
 * |      .                ..
 * |      .                  ....
 * |      .                       .....
 * |    ... precharge_current_ua       .......  charge_term_current_ua
 * |    .                                    .
 * |    .                                    .
 * |.... tricklecharge_current_ua            .
 * |                                         .
 * +-----------------------------------------------------------------> time
 *
 * These diagrams are synchronized on time and the voltage and current
 * follow each other.
 *
 * With CC/CV charging commence over time like this for an empty battery:
 *
 * 1. When the battery is completely empty it may need to be charged with
 *    an especially small current so that electrons just "trickle in",
 *    this is the tricklecharge_current_ua.
 *
 * 2. Next a small initial pre-charge current (precharge_current_ua)
 *    is applied if the voltage is below precharge_voltage_max_uv until we
 *    reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
 *    to as "trickle charging" but the use in the Linux kernel is different
 *    see below!
 *
 * 3. Then the main charging current is applied, which is called the constant
 *    current (CC) phase. A current regulator is set up to allow
 *    constant_charge_current_max_ua of current to flow into the battery.
 *    The chemical reaction in the battery will make the voltage go up as
 *    charge goes into the battery. This current is applied until we reach
 *    the constant_charge_voltage_max_uv voltage.
 *
 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
 *    means we allow current to go into the battery, but we keep the voltage
 *    fixed. This current will continue to charge the battery while keeping
 *    the voltage the same. A chemical reaction in the battery goes on
 *    storing energy without affecting the voltage. Over time the current
 *    will slowly drop and when we reach charge_term_current_ua we will
 *    end the constant voltage phase.
 *
 * After this the battery is fully charged, and if we do not support maintenance
 * charging, the charging will not restart until power dissipation makes the
 * voltage fall so that we reach charge_restart_voltage_uv and at this point
 * we restart charging at the appropriate phase, usually this will be inside
 * the CV phase.
 *
 * If we support maintenance charging the voltage is however kept high after
 * the CV phase with a very low current. This is meant to let the same charge
 * go in for usage while the charger is still connected, mainly for
 * dissipation for the power consuming entity while connected to the
 * charger.
 *
 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
 * explosions.
 *
 * DETERMINING BATTERY CAPACITY:
 *
 * Several members of the struct deal with trying to determine the remaining
 * capacity in the battery, usually as a percentage of charge. In practice
 * many chargers uses a so-called fuel gauge or coloumb counter that measure
 * how much charge goes into the battery and how much goes out (+/- leak
 * consumption). This does not help if we do not know how much capacity the
 * battery has to begin with, such as when it is first used or was taken out
 * and charged in a separate charger. Therefore many capacity algorithms use
 * the open circuit voltage with a look-up table to determine the rough
 * capacity of the battery. The open circuit voltage can be conceptualized
 * with an ideal voltage source (V) in series with an internal resistance (Ri)
 * like this:
 *
 *      +-------> IBAT >----------------+
 *      |                    ^          |
 *     [ ] Ri                |          |
 *      |                    | VBAT     |
 *      o <----------        |          |
 *     +|           ^        |         [ ] Rload
 *    .---.         |        |          |
 *    | V |         | OCV    |          |
 *    '---'         |        |          |
 *      |           |        |          |
 *  GND +-------------------------------+
 *
 * If we disconnect the load (here simplified as a fixed resistance Rload)
 * and measure VBAT with a infinite impedance voltage meter we will get
 * VBAT = OCV and this assumption is sometimes made even under load, assuming
 * Rload is insignificant. However this will be of dubious quality because the
 * load is rarely that small and Ri is strongly nonlinear depending on
 * temperature and how much capacity is left in the battery due to the
 * chemistry involved.
 *
 * In many practical applications we cannot just disconnect the battery from
 * the load, so instead we often try to measure the instantaneous IBAT (the
 * current out from the battery), estimate the Ri and thus calculate the
 * voltage drop over Ri and compensate like this:
 *
 *   OCV = VBAT - (IBAT * Ri)
 *
 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
 * (by interpolation) the Ri from the VBAT under load. These curves are highly
 * nonlinear and may need many datapoints but can be found in datasheets for
 * some batteries. This gives the compensated open circuit voltage (OCV) for
 * the battery even under load. Using this method will also compensate for
 * temperature changes in the environment: this will also make the internal
 * resistance change, and it will affect the VBAT under load, so correlating
 * VBAT to Ri takes both remaining capacity and temperature into consideration.
 *
 * Alternatively a manufacturer can specify how the capacity of the battery
 * is dependent on the battery temperature which is the main factor affecting
 * Ri. As we know all checmical reactions are faster when it is warm and slower
 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
 * voltage drops too low for example. This effect is also highly nonlinear and
 * the purpose of the table resist_table: this will take a temperature and
 * tell us how big percentage of Ri the specified temperature correlates to.
 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
 * Celsius.
 *
 * The power supply class itself doesn't use this struct as of now.
 */

struct power_supply_battery_info {
	unsigned int technology;
	int energy_full_design_uwh;
	int charge_full_design_uah;
	int voltage_min_design_uv;
	int voltage_max_design_uv;
	int tricklecharge_current_ua;
	int precharge_current_ua;
	int precharge_voltage_max_uv;
	int charge_term_current_ua;
	int charge_restart_voltage_uv;
	int overvoltage_limit_uv;
	int constant_charge_current_max_ua;
	int constant_charge_voltage_max_uv;
	struct power_supply_maintenance_charge_table *maintenance_charge;
	int maintenance_charge_size;
	int alert_low_temp_charge_current_ua;
	int alert_low_temp_charge_voltage_uv;
	int alert_high_temp_charge_current_ua;
	int alert_high_temp_charge_voltage_uv;
	int factory_internal_resistance_uohm;
	int factory_internal_resistance_charging_uohm;
	int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
	int temp_ambient_alert_min;
	int temp_ambient_alert_max;
	int temp_alert_min;
	int temp_alert_max;
	int temp_min;
	int temp_max;
	struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
	int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
	struct power_supply_resistance_temp_table *resist_table;
	int resist_table_size;
	struct power_supply_vbat_ri_table *vbat2ri_discharging;
	int vbat2ri_discharging_size;
	struct power_supply_vbat_ri_table *vbat2ri_charging;
	int vbat2ri_charging_size;
	int bti_resistance_ohm;
	int bti_resistance_tolerance;
};

extern struct atomic_notifier_head power_supply_notifier;
extern int power_supply_reg_notifier(struct notifier_block *nb);
extern void power_supply_unreg_notifier(struct notifier_block *nb);
#if IS_ENABLED(CONFIG_POWER_SUPPLY)
extern struct power_supply *power_supply_get_by_name(const char *name);
extern void power_supply_put(struct power_supply *psy);
#else
static inline void power_supply_put(struct power_supply *psy) {}
static inline struct power_supply *power_supply_get_by_name(const char *name)
{ return NULL; }
#endif
#ifdef CONFIG_OF
extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
							const char *property);
extern struct power_supply *devm_power_supply_get_by_phandle(
				    struct device *dev, const char *property);
#else /* !CONFIG_OF */
static inline struct power_supply *
power_supply_get_by_phandle(struct device_node *np, const char *property)
{ return NULL; }
static inline struct power_supply *
devm_power_supply_get_by_phandle(struct device *dev, const char *property)
{ return NULL; }
#endif /* CONFIG_OF */

extern int power_supply_get_battery_info(struct power_supply *psy,
					 struct power_supply_battery_info **info_out);
extern void power_supply_put_battery_info(struct power_supply *psy,
					  struct power_supply_battery_info *info);
extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
				       int table_len, int ocv);
extern struct power_supply_battery_ocv_table *
power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
				int temp, int *table_len);
extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
					int ocv, int temp);
extern int
power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
				int table_len, int temp);
extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
				int vbat_uv, bool charging);
extern struct power_supply_maintenance_charge_table *
power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
					      int resistance);
extern void power_supply_changed(struct power_supply *psy);
extern int power_supply_am_i_supplied(struct power_supply *psy);
int power_supply_get_property_from_supplier(struct power_supply *psy,
					    enum power_supply_property psp,
					    union power_supply_propval *val);
extern int power_supply_set_battery_charged(struct power_supply *psy);

static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
{
	struct power_supply_maintenance_charge_table *mt;

	mt = power_supply_get_maintenance_charging_setting(info, 0);

	return (mt != NULL);
}

static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
{
	return ((info->vbat2ri_discharging != NULL) &&
		info->vbat2ri_discharging_size > 0);
}

static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info *info)
{
	return ((info->resist_table != NULL) &&
		info->resist_table_size > 0);
}

#ifdef CONFIG_POWER_SUPPLY
extern int power_supply_is_system_supplied(void);
#else
static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
#endif

extern int power_supply_get_property(struct power_supply *psy,
			    enum power_supply_property psp,
			    union power_supply_propval *val);
#if IS_ENABLED(CONFIG_POWER_SUPPLY)
extern int power_supply_set_property(struct power_supply *psy,
			    enum power_supply_property psp,
			    const union power_supply_propval *val);
#else
static inline int power_supply_set_property(struct power_supply *psy,
			    enum power_supply_property psp,
			    const union power_supply_propval *val)
{ return 0; }
#endif
extern int power_supply_property_is_writeable(struct power_supply *psy,
					enum power_supply_property psp);
extern void power_supply_external_power_changed(struct power_supply *psy);

extern struct power_supply *__must_check
power_supply_register(struct device *parent,
				 const struct power_supply_desc *desc,
				 const struct power_supply_config *cfg);
extern struct power_supply *__must_check
power_supply_register_no_ws(struct device *parent,
				 const struct power_supply_desc *desc,
				 const struct power_supply_config *cfg);
extern struct power_supply *__must_check
devm_power_supply_register(struct device *parent,
				 const struct power_supply_desc *desc,
				 const struct power_supply_config *cfg);
extern struct power_supply *__must_check
devm_power_supply_register_no_ws(struct device *parent,
				 const struct power_supply_desc *desc,
				 const struct power_supply_config *cfg);
extern void power_supply_unregister(struct power_supply *psy);
extern int power_supply_powers(struct power_supply *psy, struct device *dev);

#define to_power_supply(device) container_of(device, struct power_supply, dev)

extern void *power_supply_get_drvdata(struct power_supply *psy);
/* For APM emulation, think legacy userspace. */
extern struct class *power_supply_class;

static inline bool power_supply_is_amp_property(enum power_supply_property psp)
{
	switch (psp) {
	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
	case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
	case POWER_SUPPLY_PROP_CHARGE_FULL:
	case POWER_SUPPLY_PROP_CHARGE_EMPTY:
	case POWER_SUPPLY_PROP_CHARGE_NOW:
	case POWER_SUPPLY_PROP_CHARGE_AVG:
	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
	case POWER_SUPPLY_PROP_CURRENT_MAX:
	case POWER_SUPPLY_PROP_CURRENT_NOW:
	case POWER_SUPPLY_PROP_CURRENT_AVG:
	case POWER_SUPPLY_PROP_CURRENT_BOOT:
		return true;
	default:
		break;
	}

	return false;
}

static inline bool power_supply_is_watt_property(enum power_supply_property psp)
{
	switch (psp) {
	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
	case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
	case POWER_SUPPLY_PROP_ENERGY_FULL:
	case POWER_SUPPLY_PROP_ENERGY_EMPTY:
	case POWER_SUPPLY_PROP_ENERGY_NOW:
	case POWER_SUPPLY_PROP_ENERGY_AVG:
	case POWER_SUPPLY_PROP_VOLTAGE_MAX:
	case POWER_SUPPLY_PROP_VOLTAGE_MIN:
	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
	case POWER_SUPPLY_PROP_POWER_NOW:
		return true;
	default:
		break;
	}

	return false;
}

#ifdef CONFIG_POWER_SUPPLY_HWMON
int power_supply_add_hwmon_sysfs(struct power_supply *psy);
void power_supply_remove_hwmon_sysfs(struct power_supply *psy);
#else
static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy)
{
	return 0;
}

static inline
void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {}
#endif

#ifdef CONFIG_SYSFS
ssize_t power_supply_charge_behaviour_show(struct device *dev,
					   unsigned int available_behaviours,
					   enum power_supply_charge_behaviour behaviour,
					   char *buf);

int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
#else
static inline
ssize_t power_supply_charge_behaviour_show(struct device *dev,
					   unsigned int available_behaviours,
					   enum power_supply_charge_behaviour behaviour,
					   char *buf)
{
	return -EOPNOTSUPP;
}

static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
						      const char *buf)
{
	return -EOPNOTSUPP;
}
#endif

#endif /* __LINUX_POWER_SUPPLY_H__ */