1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
/*
* Macros for manipulating and testing page->flags
*/
#ifndef PAGE_FLAGS_H
#define PAGE_FLAGS_H
#include <linux/types.h>
#include <linux/bug.h>
#include <linux/mmdebug.h>
#ifndef __GENERATING_BOUNDS_H
#include <linux/mm_types.h>
#include <generated/bounds.h>
#endif /* !__GENERATING_BOUNDS_H */
/*
* Various page->flags bits:
*
* PG_reserved is set for special pages, which can never be swapped out. Some
* of them might not even exist (eg empty_bad_page)...
*
* The PG_private bitflag is set on pagecache pages if they contain filesystem
* specific data (which is normally at page->private). It can be used by
* private allocations for its own usage.
*
* During initiation of disk I/O, PG_locked is set. This bit is set before I/O
* and cleared when writeback _starts_ or when read _completes_. PG_writeback
* is set before writeback starts and cleared when it finishes.
*
* PG_locked also pins a page in pagecache, and blocks truncation of the file
* while it is held.
*
* page_waitqueue(page) is a wait queue of all tasks waiting for the page
* to become unlocked.
*
* PG_uptodate tells whether the page's contents is valid. When a read
* completes, the page becomes uptodate, unless a disk I/O error happened.
*
* PG_referenced, PG_reclaim are used for page reclaim for anonymous and
* file-backed pagecache (see mm/vmscan.c).
*
* PG_error is set to indicate that an I/O error occurred on this page.
*
* PG_arch_1 is an architecture specific page state bit. The generic code
* guarantees that this bit is cleared for a page when it first is entered into
* the page cache.
*
* PG_highmem pages are not permanently mapped into the kernel virtual address
* space, they need to be kmapped separately for doing IO on the pages. The
* struct page (these bits with information) are always mapped into kernel
* address space...
*
* PG_hwpoison indicates that a page got corrupted in hardware and contains
* data with incorrect ECC bits that triggered a machine check. Accessing is
* not safe since it may cause another machine check. Don't touch!
*/
/*
* Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
* locked- and dirty-page accounting.
*
* The page flags field is split into two parts, the main flags area
* which extends from the low bits upwards, and the fields area which
* extends from the high bits downwards.
*
* | FIELD | ... | FLAGS |
* N-1 ^ 0
* (NR_PAGEFLAGS)
*
* The fields area is reserved for fields mapping zone, node (for NUMA) and
* SPARSEMEM section (for variants of SPARSEMEM that require section ids like
* SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
*/
enum pageflags {
PG_locked, /* Page is locked. Don't touch. */
PG_error,
PG_referenced,
PG_uptodate,
PG_dirty,
PG_lru,
PG_active,
PG_slab,
PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
PG_arch_1,
PG_reserved,
PG_private, /* If pagecache, has fs-private data */
PG_private_2, /* If pagecache, has fs aux data */
PG_writeback, /* Page is under writeback */
#ifdef CONFIG_PAGEFLAGS_EXTENDED
PG_head, /* A head page */
PG_tail, /* A tail page */
#else
PG_compound, /* A compound page */
#endif
PG_swapcache, /* Swap page: swp_entry_t in private */
PG_mappedtodisk, /* Has blocks allocated on-disk */
PG_reclaim, /* To be reclaimed asap */
PG_swapbacked, /* Page is backed by RAM/swap */
PG_unevictable, /* Page is "unevictable" */
#ifdef CONFIG_MMU
PG_mlocked, /* Page is vma mlocked */
#endif
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
PG_uncached, /* Page has been mapped as uncached */
#endif
#ifdef CONFIG_MEMORY_FAILURE
PG_hwpoison, /* hardware poisoned page. Don't touch */
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
PG_compound_lock,
#endif
__NR_PAGEFLAGS,
/* Filesystems */
PG_checked = PG_owner_priv_1,
/* Two page bits are conscripted by FS-Cache to maintain local caching
* state. These bits are set on pages belonging to the netfs's inodes
* when those inodes are being locally cached.
*/
PG_fscache = PG_private_2, /* page backed by cache */
/* XEN */
PG_pinned = PG_owner_priv_1,
PG_savepinned = PG_dirty,
/* SLOB */
PG_slob_free = PG_private,
};
#ifndef __GENERATING_BOUNDS_H
/*
* Macros to create function definitions for page flags
*/
#define TESTPAGEFLAG(uname, lname) \
static inline int Page##uname(const struct page *page) \
{ return test_bit(PG_##lname, &page->flags); }
#define SETPAGEFLAG(uname, lname) \
static inline void SetPage##uname(struct page *page) \
{ set_bit(PG_##lname, &page->flags); }
#define CLEARPAGEFLAG(uname, lname) \
static inline void ClearPage##uname(struct page *page) \
{ clear_bit(PG_##lname, &page->flags); }
#define __SETPAGEFLAG(uname, lname) \
static inline void __SetPage##uname(struct page *page) \
{ __set_bit(PG_##lname, &page->flags); }
#define __CLEARPAGEFLAG(uname, lname) \
static inline void __ClearPage##uname(struct page *page) \
{ __clear_bit(PG_##lname, &page->flags); }
#define TESTSETFLAG(uname, lname) \
static inline int TestSetPage##uname(struct page *page) \
{ return test_and_set_bit(PG_##lname, &page->flags); }
#define TESTCLEARFLAG(uname, lname) \
static inline int TestClearPage##uname(struct page *page) \
{ return test_and_clear_bit(PG_##lname, &page->flags); }
#define __TESTCLEARFLAG(uname, lname) \
static inline int __TestClearPage##uname(struct page *page) \
{ return __test_and_clear_bit(PG_##lname, &page->flags); }
#define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname)
#define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
__SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname)
#define PAGEFLAG_FALSE(uname) \
static inline int Page##uname(const struct page *page) \
{ return 0; }
#define TESTSCFLAG(uname, lname) \
TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname)
#define SETPAGEFLAG_NOOP(uname) \
static inline void SetPage##uname(struct page *page) { }
#define CLEARPAGEFLAG_NOOP(uname) \
static inline void ClearPage##uname(struct page *page) { }
#define __CLEARPAGEFLAG_NOOP(uname) \
static inline void __ClearPage##uname(struct page *page) { }
#define TESTCLEARFLAG_FALSE(uname) \
static inline int TestClearPage##uname(struct page *page) { return 0; }
#define __TESTCLEARFLAG_FALSE(uname) \
static inline int __TestClearPage##uname(struct page *page) { return 0; }
struct page; /* forward declaration */
TESTPAGEFLAG(Locked, locked)
PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error)
PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced)
__SETPAGEFLAG(Referenced, referenced)
PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty)
PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru)
PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active)
TESTCLEARFLAG(Active, active)
__PAGEFLAG(Slab, slab)
PAGEFLAG(Checked, checked) /* Used by some filesystems */
PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */
PAGEFLAG(SavePinned, savepinned); /* Xen */
PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved)
PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked)
__SETPAGEFLAG(SwapBacked, swapbacked)
__PAGEFLAG(SlobFree, slob_free)
/*
* Private page markings that may be used by the filesystem that owns the page
* for its own purposes.
* - PG_private and PG_private_2 cause releasepage() and co to be invoked
*/
PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private)
__CLEARPAGEFLAG(Private, private)
PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2)
PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1)
/*
* Only test-and-set exist for PG_writeback. The unconditional operators are
* risky: they bypass page accounting.
*/
TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback)
PAGEFLAG(MappedToDisk, mappedtodisk)
/* PG_readahead is only used for reads; PG_reclaim is only for writes */
PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim)
PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim)
#ifdef CONFIG_HIGHMEM
/*
* Must use a macro here due to header dependency issues. page_zone() is not
* available at this point.
*/
#define PageHighMem(__p) is_highmem(page_zone(__p))
#else
PAGEFLAG_FALSE(HighMem)
#endif
#ifdef CONFIG_SWAP
PAGEFLAG(SwapCache, swapcache)
#else
PAGEFLAG_FALSE(SwapCache)
SETPAGEFLAG_NOOP(SwapCache) CLEARPAGEFLAG_NOOP(SwapCache)
#endif
PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable)
TESTCLEARFLAG(Unevictable, unevictable)
#ifdef CONFIG_MMU
PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked)
TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked)
#else
PAGEFLAG_FALSE(Mlocked) SETPAGEFLAG_NOOP(Mlocked)
TESTCLEARFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked)
#endif
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
PAGEFLAG(Uncached, uncached)
#else
PAGEFLAG_FALSE(Uncached)
#endif
#ifdef CONFIG_MEMORY_FAILURE
PAGEFLAG(HWPoison, hwpoison)
TESTSCFLAG(HWPoison, hwpoison)
#define __PG_HWPOISON (1UL << PG_hwpoison)
#else
PAGEFLAG_FALSE(HWPoison)
#define __PG_HWPOISON 0
#endif
u64 stable_page_flags(struct page *page);
static inline int PageUptodate(struct page *page)
{
int ret = test_bit(PG_uptodate, &(page)->flags);
/*
* Must ensure that the data we read out of the page is loaded
* _after_ we've loaded page->flags to check for PageUptodate.
* We can skip the barrier if the page is not uptodate, because
* we wouldn't be reading anything from it.
*
* See SetPageUptodate() for the other side of the story.
*/
if (ret)
smp_rmb();
return ret;
}
static inline void __SetPageUptodate(struct page *page)
{
smp_wmb();
__set_bit(PG_uptodate, &(page)->flags);
}
static inline void SetPageUptodate(struct page *page)
{
/*
* Memory barrier must be issued before setting the PG_uptodate bit,
* so that all previous stores issued in order to bring the page
* uptodate are actually visible before PageUptodate becomes true.
*/
smp_wmb();
set_bit(PG_uptodate, &(page)->flags);
}
CLEARPAGEFLAG(Uptodate, uptodate)
extern void cancel_dirty_page(struct page *page, unsigned int account_size);
int test_clear_page_writeback(struct page *page);
int test_set_page_writeback(struct page *page);
static inline void set_page_writeback(struct page *page)
{
test_set_page_writeback(page);
}
#ifdef CONFIG_PAGEFLAGS_EXTENDED
/*
* System with lots of page flags available. This allows separate
* flags for PageHead() and PageTail() checks of compound pages so that bit
* tests can be used in performance sensitive paths. PageCompound is
* generally not used in hot code paths except arch/powerpc/mm/init_64.c
* and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages
* and avoid handling those in real mode.
*/
__PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head)
__PAGEFLAG(Tail, tail)
static inline int PageCompound(struct page *page)
{
return page->flags & ((1L << PG_head) | (1L << PG_tail));
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void ClearPageCompound(struct page *page)
{
BUG_ON(!PageHead(page));
ClearPageHead(page);
}
#endif
#else
/*
* Reduce page flag use as much as possible by overlapping
* compound page flags with the flags used for page cache pages. Possible
* because PageCompound is always set for compound pages and not for
* pages on the LRU and/or pagecache.
*/
TESTPAGEFLAG(Compound, compound)
__SETPAGEFLAG(Head, compound) __CLEARPAGEFLAG(Head, compound)
/*
* PG_reclaim is used in combination with PG_compound to mark the
* head and tail of a compound page. This saves one page flag
* but makes it impossible to use compound pages for the page cache.
* The PG_reclaim bit would have to be used for reclaim or readahead
* if compound pages enter the page cache.
*
* PG_compound & PG_reclaim => Tail page
* PG_compound & ~PG_reclaim => Head page
*/
#define PG_head_mask ((1L << PG_compound))
#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim))
static inline int PageHead(struct page *page)
{
return ((page->flags & PG_head_tail_mask) == PG_head_mask);
}
static inline int PageTail(struct page *page)
{
return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask);
}
static inline void __SetPageTail(struct page *page)
{
page->flags |= PG_head_tail_mask;
}
static inline void __ClearPageTail(struct page *page)
{
page->flags &= ~PG_head_tail_mask;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void ClearPageCompound(struct page *page)
{
BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound));
clear_bit(PG_compound, &page->flags);
}
#endif
#endif /* !PAGEFLAGS_EXTENDED */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* PageHuge() only returns true for hugetlbfs pages, but not for
* normal or transparent huge pages.
*
* PageTransHuge() returns true for both transparent huge and
* hugetlbfs pages, but not normal pages. PageTransHuge() can only be
* called only in the core VM paths where hugetlbfs pages can't exist.
*/
static inline int PageTransHuge(struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
return PageHead(page);
}
/*
* PageTransCompound returns true for both transparent huge pages
* and hugetlbfs pages, so it should only be called when it's known
* that hugetlbfs pages aren't involved.
*/
static inline int PageTransCompound(struct page *page)
{
return PageCompound(page);
}
/*
* PageTransTail returns true for both transparent huge pages
* and hugetlbfs pages, so it should only be called when it's known
* that hugetlbfs pages aren't involved.
*/
static inline int PageTransTail(struct page *page)
{
return PageTail(page);
}
#else
static inline int PageTransHuge(struct page *page)
{
return 0;
}
static inline int PageTransCompound(struct page *page)
{
return 0;
}
static inline int PageTransTail(struct page *page)
{
return 0;
}
#endif
/*
* If network-based swap is enabled, sl*b must keep track of whether pages
* were allocated from pfmemalloc reserves.
*/
static inline int PageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
return PageActive(page);
}
static inline void SetPageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
SetPageActive(page);
}
static inline void __ClearPageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
__ClearPageActive(page);
}
static inline void ClearPageSlabPfmemalloc(struct page *page)
{
VM_BUG_ON_PAGE(!PageSlab(page), page);
ClearPageActive(page);
}
#ifdef CONFIG_MMU
#define __PG_MLOCKED (1 << PG_mlocked)
#else
#define __PG_MLOCKED 0
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __PG_COMPOUND_LOCK (1 << PG_compound_lock)
#else
#define __PG_COMPOUND_LOCK 0
#endif
/*
* Flags checked when a page is freed. Pages being freed should not have
* these flags set. It they are, there is a problem.
*/
#define PAGE_FLAGS_CHECK_AT_FREE \
(1 << PG_lru | 1 << PG_locked | \
1 << PG_private | 1 << PG_private_2 | \
1 << PG_writeback | 1 << PG_reserved | \
1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \
1 << PG_unevictable | __PG_MLOCKED | __PG_HWPOISON | \
__PG_COMPOUND_LOCK)
/*
* Flags checked when a page is prepped for return by the page allocator.
* Pages being prepped should not have any flags set. It they are set,
* there has been a kernel bug or struct page corruption.
*/
#define PAGE_FLAGS_CHECK_AT_PREP ((1 << NR_PAGEFLAGS) - 1)
#define PAGE_FLAGS_PRIVATE \
(1 << PG_private | 1 << PG_private_2)
/**
* page_has_private - Determine if page has private stuff
* @page: The page to be checked
*
* Determine if a page has private stuff, indicating that release routines
* should be invoked upon it.
*/
static inline int page_has_private(struct page *page)
{
return !!(page->flags & PAGE_FLAGS_PRIVATE);
}
#endif /* !__GENERATING_BOUNDS_H */
#endif /* PAGE_FLAGS_H */
|