1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MM_H
#define _LINUX_MM_H
#include <linux/errno.h>
#include <linux/mmdebug.h>
#include <linux/gfp.h>
#include <linux/bug.h>
#include <linux/list.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/atomic.h>
#include <linux/debug_locks.h>
#include <linux/mm_types.h>
#include <linux/mmap_lock.h>
#include <linux/range.h>
#include <linux/pfn.h>
#include <linux/percpu-refcount.h>
#include <linux/bit_spinlock.h>
#include <linux/shrinker.h>
#include <linux/resource.h>
#include <linux/page_ext.h>
#include <linux/err.h>
#include <linux/page-flags.h>
#include <linux/page_ref.h>
#include <linux/overflow.h>
#include <linux/sizes.h>
#include <linux/sched.h>
#include <linux/pgtable.h>
#include <linux/kasan.h>
#include <linux/memremap.h>
#include <linux/slab.h>
struct mempolicy;
struct anon_vma;
struct anon_vma_chain;
struct user_struct;
struct pt_regs;
extern int sysctl_page_lock_unfairness;
void mm_core_init(void);
void init_mm_internals(void);
#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
extern unsigned long max_mapnr;
static inline void set_max_mapnr(unsigned long limit)
{
max_mapnr = limit;
}
#else
static inline void set_max_mapnr(unsigned long limit) { }
#endif
extern atomic_long_t _totalram_pages;
static inline unsigned long totalram_pages(void)
{
return (unsigned long)atomic_long_read(&_totalram_pages);
}
static inline void totalram_pages_inc(void)
{
atomic_long_inc(&_totalram_pages);
}
static inline void totalram_pages_dec(void)
{
atomic_long_dec(&_totalram_pages);
}
static inline void totalram_pages_add(long count)
{
atomic_long_add(count, &_totalram_pages);
}
extern void * high_memory;
extern int page_cluster;
extern const int page_cluster_max;
#ifdef CONFIG_SYSCTL
extern int sysctl_legacy_va_layout;
#else
#define sysctl_legacy_va_layout 0
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
extern const int mmap_rnd_bits_min;
extern const int mmap_rnd_bits_max;
extern int mmap_rnd_bits __read_mostly;
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
extern const int mmap_rnd_compat_bits_min;
extern const int mmap_rnd_compat_bits_max;
extern int mmap_rnd_compat_bits __read_mostly;
#endif
#include <asm/page.h>
#include <asm/processor.h>
#ifndef __pa_symbol
#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
#endif
#ifndef page_to_virt
#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
#endif
#ifndef lm_alias
#define lm_alias(x) __va(__pa_symbol(x))
#endif
/*
* To prevent common memory management code establishing
* a zero page mapping on a read fault.
* This macro should be defined within <asm/pgtable.h>.
* s390 does this to prevent multiplexing of hardware bits
* related to the physical page in case of virtualization.
*/
#ifndef mm_forbids_zeropage
#define mm_forbids_zeropage(X) (0)
#endif
/*
* On some architectures it is expensive to call memset() for small sizes.
* If an architecture decides to implement their own version of
* mm_zero_struct_page they should wrap the defines below in a #ifndef and
* define their own version of this macro in <asm/pgtable.h>
*/
#if BITS_PER_LONG == 64
/* This function must be updated when the size of struct page grows above 96
* or reduces below 56. The idea that compiler optimizes out switch()
* statement, and only leaves move/store instructions. Also the compiler can
* combine write statements if they are both assignments and can be reordered,
* this can result in several of the writes here being dropped.
*/
#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
static inline void __mm_zero_struct_page(struct page *page)
{
unsigned long *_pp = (void *)page;
/* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
BUILD_BUG_ON(sizeof(struct page) & 7);
BUILD_BUG_ON(sizeof(struct page) < 56);
BUILD_BUG_ON(sizeof(struct page) > 96);
switch (sizeof(struct page)) {
case 96:
_pp[11] = 0;
fallthrough;
case 88:
_pp[10] = 0;
fallthrough;
case 80:
_pp[9] = 0;
fallthrough;
case 72:
_pp[8] = 0;
fallthrough;
case 64:
_pp[7] = 0;
fallthrough;
case 56:
_pp[6] = 0;
_pp[5] = 0;
_pp[4] = 0;
_pp[3] = 0;
_pp[2] = 0;
_pp[1] = 0;
_pp[0] = 0;
}
}
#else
#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
#endif
/*
* Default maximum number of active map areas, this limits the number of vmas
* per mm struct. Users can overwrite this number by sysctl but there is a
* problem.
*
* When a program's coredump is generated as ELF format, a section is created
* per a vma. In ELF, the number of sections is represented in unsigned short.
* This means the number of sections should be smaller than 65535 at coredump.
* Because the kernel adds some informative sections to a image of program at
* generating coredump, we need some margin. The number of extra sections is
* 1-3 now and depends on arch. We use "5" as safe margin, here.
*
* ELF extended numbering allows more than 65535 sections, so 16-bit bound is
* not a hard limit any more. Although some userspace tools can be surprised by
* that.
*/
#define MAPCOUNT_ELF_CORE_MARGIN (5)
#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
extern int sysctl_max_map_count;
extern unsigned long sysctl_user_reserve_kbytes;
extern unsigned long sysctl_admin_reserve_kbytes;
extern int sysctl_overcommit_memory;
extern int sysctl_overcommit_ratio;
extern unsigned long sysctl_overcommit_kbytes;
int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
#else
#define nth_page(page,n) ((page) + (n))
#define folio_page_idx(folio, p) ((p) - &(folio)->page)
#endif
/* to align the pointer to the (next) page boundary */
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
/* to align the pointer to the (prev) page boundary */
#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
static inline struct folio *lru_to_folio(struct list_head *head)
{
return list_entry((head)->prev, struct folio, lru);
}
void setup_initial_init_mm(void *start_code, void *end_code,
void *end_data, void *brk);
/*
* Linux kernel virtual memory manager primitives.
* The idea being to have a "virtual" mm in the same way
* we have a virtual fs - giving a cleaner interface to the
* mm details, and allowing different kinds of memory mappings
* (from shared memory to executable loading to arbitrary
* mmap() functions).
*/
struct vm_area_struct *vm_area_alloc(struct mm_struct *);
struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
void vm_area_free(struct vm_area_struct *);
/* Use only if VMA has no other users */
void __vm_area_free(struct vm_area_struct *vma);
#ifndef CONFIG_MMU
extern struct rb_root nommu_region_tree;
extern struct rw_semaphore nommu_region_sem;
extern unsigned int kobjsize(const void *objp);
#endif
/*
* vm_flags in vm_area_struct, see mm_types.h.
* When changing, update also include/trace/events/mmflags.h
*/
#define VM_NONE 0x00000000
#define VM_READ 0x00000001 /* currently active flags */
#define VM_WRITE 0x00000002
#define VM_EXEC 0x00000004
#define VM_SHARED 0x00000008
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
#define VM_MAYWRITE 0x00000020
#define VM_MAYEXEC 0x00000040
#define VM_MAYSHARE 0x00000080
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
#ifdef CONFIG_MMU
#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
#else /* CONFIG_MMU */
#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
#define VM_UFFD_MISSING 0
#endif /* CONFIG_MMU */
#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
#define VM_LOCKED 0x00002000
#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
/* Used by sys_madvise() */
#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
#define VM_SYNC 0x00800000 /* Synchronous page faults */
#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
#ifdef CONFIG_MEM_SOFT_DIRTY
# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
#else
# define VM_SOFTDIRTY 0
#endif
#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
#ifdef CONFIG_ARCH_HAS_PKEYS
# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
#ifdef CONFIG_PPC
# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
#else
# define VM_PKEY_BIT4 0
#endif
#endif /* CONFIG_ARCH_HAS_PKEYS */
#ifdef CONFIG_X86_USER_SHADOW_STACK
/*
* VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
* support core mm.
*
* These VMAs will get a single end guard page. This helps userspace protect
* itself from attacks. A single page is enough for current shadow stack archs
* (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
* for more details on the guard size.
*/
# define VM_SHADOW_STACK VM_HIGH_ARCH_5
#else
# define VM_SHADOW_STACK VM_NONE
#endif
#if defined(CONFIG_X86)
# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
#elif defined(CONFIG_PPC)
# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
#elif defined(CONFIG_PARISC)
# define VM_GROWSUP VM_ARCH_1
#elif defined(CONFIG_IA64)
# define VM_GROWSUP VM_ARCH_1
#elif defined(CONFIG_SPARC64)
# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
# define VM_ARCH_CLEAR VM_SPARC_ADI
#elif defined(CONFIG_ARM64)
# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
# define VM_ARCH_CLEAR VM_ARM64_BTI
#elif !defined(CONFIG_MMU)
# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
#endif
#if defined(CONFIG_ARM64_MTE)
# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
#else
# define VM_MTE VM_NONE
# define VM_MTE_ALLOWED VM_NONE
#endif
#ifndef VM_GROWSUP
# define VM_GROWSUP VM_NONE
#endif
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
# define VM_UFFD_MINOR_BIT 38
# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
# define VM_UFFD_MINOR VM_NONE
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
/* Bits set in the VMA until the stack is in its final location */
#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
/* Common data flag combinations */
#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
VM_MAYWRITE | VM_MAYEXEC)
#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
#endif
#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
#endif
#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
#ifdef CONFIG_STACK_GROWSUP
#define VM_STACK VM_GROWSUP
#define VM_STACK_EARLY VM_GROWSDOWN
#else
#define VM_STACK VM_GROWSDOWN
#define VM_STACK_EARLY 0
#endif
#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
/* VMA basic access permission flags */
#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
/*
* Special vmas that are non-mergable, non-mlock()able.
*/
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
/* This mask prevents VMA from being scanned with khugepaged */
#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
/* This mask defines which mm->def_flags a process can inherit its parent */
#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
/* This mask represents all the VMA flag bits used by mlock */
#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
/* Arch-specific flags to clear when updating VM flags on protection change */
#ifndef VM_ARCH_CLEAR
# define VM_ARCH_CLEAR VM_NONE
#endif
#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
/*
* mapping from the currently active vm_flags protection bits (the
* low four bits) to a page protection mask..
*/
/*
* The default fault flags that should be used by most of the
* arch-specific page fault handlers.
*/
#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
FAULT_FLAG_KILLABLE | \
FAULT_FLAG_INTERRUPTIBLE)
/**
* fault_flag_allow_retry_first - check ALLOW_RETRY the first time
* @flags: Fault flags.
*
* This is mostly used for places where we want to try to avoid taking
* the mmap_lock for too long a time when waiting for another condition
* to change, in which case we can try to be polite to release the
* mmap_lock in the first round to avoid potential starvation of other
* processes that would also want the mmap_lock.
*
* Return: true if the page fault allows retry and this is the first
* attempt of the fault handling; false otherwise.
*/
static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
{
return (flags & FAULT_FLAG_ALLOW_RETRY) &&
(!(flags & FAULT_FLAG_TRIED));
}
#define FAULT_FLAG_TRACE \
{ FAULT_FLAG_WRITE, "WRITE" }, \
{ FAULT_FLAG_MKWRITE, "MKWRITE" }, \
{ FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
{ FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
{ FAULT_FLAG_KILLABLE, "KILLABLE" }, \
{ FAULT_FLAG_TRIED, "TRIED" }, \
{ FAULT_FLAG_USER, "USER" }, \
{ FAULT_FLAG_REMOTE, "REMOTE" }, \
{ FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
{ FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
{ FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
/*
* vm_fault is filled by the pagefault handler and passed to the vma's
* ->fault function. The vma's ->fault is responsible for returning a bitmask
* of VM_FAULT_xxx flags that give details about how the fault was handled.
*
* MM layer fills up gfp_mask for page allocations but fault handler might
* alter it if its implementation requires a different allocation context.
*
* pgoff should be used in favour of virtual_address, if possible.
*/
struct vm_fault {
const struct {
struct vm_area_struct *vma; /* Target VMA */
gfp_t gfp_mask; /* gfp mask to be used for allocations */
pgoff_t pgoff; /* Logical page offset based on vma */
unsigned long address; /* Faulting virtual address - masked */
unsigned long real_address; /* Faulting virtual address - unmasked */
};
enum fault_flag flags; /* FAULT_FLAG_xxx flags
* XXX: should really be 'const' */
pmd_t *pmd; /* Pointer to pmd entry matching
* the 'address' */
pud_t *pud; /* Pointer to pud entry matching
* the 'address'
*/
union {
pte_t orig_pte; /* Value of PTE at the time of fault */
pmd_t orig_pmd; /* Value of PMD at the time of fault,
* used by PMD fault only.
*/
};
struct page *cow_page; /* Page handler may use for COW fault */
struct page *page; /* ->fault handlers should return a
* page here, unless VM_FAULT_NOPAGE
* is set (which is also implied by
* VM_FAULT_ERROR).
*/
/* These three entries are valid only while holding ptl lock */
pte_t *pte; /* Pointer to pte entry matching
* the 'address'. NULL if the page
* table hasn't been allocated.
*/
spinlock_t *ptl; /* Page table lock.
* Protects pte page table if 'pte'
* is not NULL, otherwise pmd.
*/
pgtable_t prealloc_pte; /* Pre-allocated pte page table.
* vm_ops->map_pages() sets up a page
* table from atomic context.
* do_fault_around() pre-allocates
* page table to avoid allocation from
* atomic context.
*/
};
/*
* These are the virtual MM functions - opening of an area, closing and
* unmapping it (needed to keep files on disk up-to-date etc), pointer
* to the functions called when a no-page or a wp-page exception occurs.
*/
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
/**
* @close: Called when the VMA is being removed from the MM.
* Context: User context. May sleep. Caller holds mmap_lock.
*/
void (*close)(struct vm_area_struct * area);
/* Called any time before splitting to check if it's allowed */
int (*may_split)(struct vm_area_struct *area, unsigned long addr);
int (*mremap)(struct vm_area_struct *area);
/*
* Called by mprotect() to make driver-specific permission
* checks before mprotect() is finalised. The VMA must not
* be modified. Returns 0 if mprotect() can proceed.
*/
int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
unsigned long end, unsigned long newflags);
vm_fault_t (*fault)(struct vm_fault *vmf);
vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
vm_fault_t (*map_pages)(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff);
unsigned long (*pagesize)(struct vm_area_struct * area);
/* notification that a previously read-only page is about to become
* writable, if an error is returned it will cause a SIGBUS */
vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
/* called by access_process_vm when get_user_pages() fails, typically
* for use by special VMAs. See also generic_access_phys() for a generic
* implementation useful for any iomem mapping.
*/
int (*access)(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);
/* Called by the /proc/PID/maps code to ask the vma whether it
* has a special name. Returning non-NULL will also cause this
* vma to be dumped unconditionally. */
const char *(*name)(struct vm_area_struct *vma);
#ifdef CONFIG_NUMA
/*
* set_policy() op must add a reference to any non-NULL @new mempolicy
* to hold the policy upon return. Caller should pass NULL @new to
* remove a policy and fall back to surrounding context--i.e. do not
* install a MPOL_DEFAULT policy, nor the task or system default
* mempolicy.
*/
int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
/*
* get_policy() op must add reference [mpol_get()] to any policy at
* (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
* in mm/mempolicy.c will do this automatically.
* get_policy() must NOT add a ref if the policy at (vma,addr) is not
* marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
* If no [shared/vma] mempolicy exists at the addr, get_policy() op
* must return NULL--i.e., do not "fallback" to task or system default
* policy.
*/
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
unsigned long addr);
#endif
/*
* Called by vm_normal_page() for special PTEs to find the
* page for @addr. This is useful if the default behavior
* (using pte_page()) would not find the correct page.
*/
struct page *(*find_special_page)(struct vm_area_struct *vma,
unsigned long addr);
};
#ifdef CONFIG_NUMA_BALANCING
static inline void vma_numab_state_init(struct vm_area_struct *vma)
{
vma->numab_state = NULL;
}
static inline void vma_numab_state_free(struct vm_area_struct *vma)
{
kfree(vma->numab_state);
}
#else
static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
#endif /* CONFIG_NUMA_BALANCING */
#ifdef CONFIG_PER_VMA_LOCK
/*
* Try to read-lock a vma. The function is allowed to occasionally yield false
* locked result to avoid performance overhead, in which case we fall back to
* using mmap_lock. The function should never yield false unlocked result.
*/
static inline bool vma_start_read(struct vm_area_struct *vma)
{
/*
* Check before locking. A race might cause false locked result.
* We can use READ_ONCE() for the mm_lock_seq here, and don't need
* ACQUIRE semantics, because this is just a lockless check whose result
* we don't rely on for anything - the mm_lock_seq read against which we
* need ordering is below.
*/
if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
return false;
if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
return false;
/*
* Overflow might produce false locked result.
* False unlocked result is impossible because we modify and check
* vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
* modification invalidates all existing locks.
*
* We must use ACQUIRE semantics for the mm_lock_seq so that if we are
* racing with vma_end_write_all(), we only start reading from the VMA
* after it has been unlocked.
* This pairs with RELEASE semantics in vma_end_write_all().
*/
if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
up_read(&vma->vm_lock->lock);
return false;
}
return true;
}
static inline void vma_end_read(struct vm_area_struct *vma)
{
rcu_read_lock(); /* keeps vma alive till the end of up_read */
up_read(&vma->vm_lock->lock);
rcu_read_unlock();
}
/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
{
mmap_assert_write_locked(vma->vm_mm);
/*
* current task is holding mmap_write_lock, both vma->vm_lock_seq and
* mm->mm_lock_seq can't be concurrently modified.
*/
*mm_lock_seq = vma->vm_mm->mm_lock_seq;
return (vma->vm_lock_seq == *mm_lock_seq);
}
/*
* Begin writing to a VMA.
* Exclude concurrent readers under the per-VMA lock until the currently
* write-locked mmap_lock is dropped or downgraded.
*/
static inline void vma_start_write(struct vm_area_struct *vma)
{
int mm_lock_seq;
if (__is_vma_write_locked(vma, &mm_lock_seq))
return;
down_write(&vma->vm_lock->lock);
/*
* We should use WRITE_ONCE() here because we can have concurrent reads
* from the early lockless pessimistic check in vma_start_read().
* We don't really care about the correctness of that early check, but
* we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
*/
WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
up_write(&vma->vm_lock->lock);
}
static inline void vma_assert_write_locked(struct vm_area_struct *vma)
{
int mm_lock_seq;
VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
}
static inline void vma_assert_locked(struct vm_area_struct *vma)
{
if (!rwsem_is_locked(&vma->vm_lock->lock))
vma_assert_write_locked(vma);
}
static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
{
/* When detaching vma should be write-locked */
if (detached)
vma_assert_write_locked(vma);
vma->detached = detached;
}
static inline void release_fault_lock(struct vm_fault *vmf)
{
if (vmf->flags & FAULT_FLAG_VMA_LOCK)
vma_end_read(vmf->vma);
else
mmap_read_unlock(vmf->vma->vm_mm);
}
static inline void assert_fault_locked(struct vm_fault *vmf)
{
if (vmf->flags & FAULT_FLAG_VMA_LOCK)
vma_assert_locked(vmf->vma);
else
mmap_assert_locked(vmf->vma->vm_mm);
}
struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
unsigned long address);
#else /* CONFIG_PER_VMA_LOCK */
static inline bool vma_start_read(struct vm_area_struct *vma)
{ return false; }
static inline void vma_end_read(struct vm_area_struct *vma) {}
static inline void vma_start_write(struct vm_area_struct *vma) {}
static inline void vma_assert_write_locked(struct vm_area_struct *vma)
{ mmap_assert_write_locked(vma->vm_mm); }
static inline void vma_mark_detached(struct vm_area_struct *vma,
bool detached) {}
static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
unsigned long address)
{
return NULL;
}
static inline void release_fault_lock(struct vm_fault *vmf)
{
mmap_read_unlock(vmf->vma->vm_mm);
}
static inline void assert_fault_locked(struct vm_fault *vmf)
{
mmap_assert_locked(vmf->vma->vm_mm);
}
#endif /* CONFIG_PER_VMA_LOCK */
extern const struct vm_operations_struct vma_dummy_vm_ops;
/*
* WARNING: vma_init does not initialize vma->vm_lock.
* Use vm_area_alloc()/vm_area_free() if vma needs locking.
*/
static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
{
memset(vma, 0, sizeof(*vma));
vma->vm_mm = mm;
vma->vm_ops = &vma_dummy_vm_ops;
INIT_LIST_HEAD(&vma->anon_vma_chain);
vma_mark_detached(vma, false);
vma_numab_state_init(vma);
}
/* Use when VMA is not part of the VMA tree and needs no locking */
static inline void vm_flags_init(struct vm_area_struct *vma,
vm_flags_t flags)
{
ACCESS_PRIVATE(vma, __vm_flags) = flags;
}
/*
* Use when VMA is part of the VMA tree and modifications need coordination
* Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
* it should be locked explicitly beforehand.
*/
static inline void vm_flags_reset(struct vm_area_struct *vma,
vm_flags_t flags)
{
vma_assert_write_locked(vma);
vm_flags_init(vma, flags);
}
static inline void vm_flags_reset_once(struct vm_area_struct *vma,
vm_flags_t flags)
{
vma_assert_write_locked(vma);
WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
}
static inline void vm_flags_set(struct vm_area_struct *vma,
vm_flags_t flags)
{
vma_start_write(vma);
ACCESS_PRIVATE(vma, __vm_flags) |= flags;
}
static inline void vm_flags_clear(struct vm_area_struct *vma,
vm_flags_t flags)
{
vma_start_write(vma);
ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
}
/*
* Use only if VMA is not part of the VMA tree or has no other users and
* therefore needs no locking.
*/
static inline void __vm_flags_mod(struct vm_area_struct *vma,
vm_flags_t set, vm_flags_t clear)
{
vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
}
/*
* Use only when the order of set/clear operations is unimportant, otherwise
* use vm_flags_{set|clear} explicitly.
*/
static inline void vm_flags_mod(struct vm_area_struct *vma,
vm_flags_t set, vm_flags_t clear)
{
vma_start_write(vma);
__vm_flags_mod(vma, set, clear);
}
static inline void vma_set_anonymous(struct vm_area_struct *vma)
{
vma->vm_ops = NULL;
}
static inline bool vma_is_anonymous(struct vm_area_struct *vma)
{
return !vma->vm_ops;
}
/*
* Indicate if the VMA is a heap for the given task; for
* /proc/PID/maps that is the heap of the main task.
*/
static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
{
return vma->vm_start <= vma->vm_mm->brk &&
vma->vm_end >= vma->vm_mm->start_brk;
}
/*
* Indicate if the VMA is a stack for the given task; for
* /proc/PID/maps that is the stack of the main task.
*/
static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
{
/*
* We make no effort to guess what a given thread considers to be
* its "stack". It's not even well-defined for programs written
* languages like Go.
*/
return vma->vm_start <= vma->vm_mm->start_stack &&
vma->vm_end >= vma->vm_mm->start_stack;
}
static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
{
int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
if (!maybe_stack)
return false;
if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
VM_STACK_INCOMPLETE_SETUP)
return true;
return false;
}
static inline bool vma_is_foreign(struct vm_area_struct *vma)
{
if (!current->mm)
return true;
if (current->mm != vma->vm_mm)
return true;
return false;
}
static inline bool vma_is_accessible(struct vm_area_struct *vma)
{
return vma->vm_flags & VM_ACCESS_FLAGS;
}
static inline
struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
{
return mas_find(&vmi->mas, max - 1);
}
static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
{
/*
* Uses mas_find() to get the first VMA when the iterator starts.
* Calling mas_next() could skip the first entry.
*/
return mas_find(&vmi->mas, ULONG_MAX);
}
static inline
struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
{
return mas_next_range(&vmi->mas, ULONG_MAX);
}
static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
{
return mas_prev(&vmi->mas, 0);
}
static inline
struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
{
return mas_prev_range(&vmi->mas, 0);
}
static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
{
return vmi->mas.index;
}
static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
{
return vmi->mas.last + 1;
}
static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
unsigned long count)
{
return mas_expected_entries(&vmi->mas, count);
}
/* Free any unused preallocations */
static inline void vma_iter_free(struct vma_iterator *vmi)
{
mas_destroy(&vmi->mas);
}
static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
struct vm_area_struct *vma)
{
vmi->mas.index = vma->vm_start;
vmi->mas.last = vma->vm_end - 1;
mas_store(&vmi->mas, vma);
if (unlikely(mas_is_err(&vmi->mas)))
return -ENOMEM;
return 0;
}
static inline void vma_iter_invalidate(struct vma_iterator *vmi)
{
mas_pause(&vmi->mas);
}
static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
{
mas_set(&vmi->mas, addr);
}
#define for_each_vma(__vmi, __vma) \
while (((__vma) = vma_next(&(__vmi))) != NULL)
/* The MM code likes to work with exclusive end addresses */
#define for_each_vma_range(__vmi, __vma, __end) \
while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
#ifdef CONFIG_SHMEM
/*
* The vma_is_shmem is not inline because it is used only by slow
* paths in userfault.
*/
bool vma_is_shmem(struct vm_area_struct *vma);
bool vma_is_anon_shmem(struct vm_area_struct *vma);
#else
static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
#endif
int vma_is_stack_for_current(struct vm_area_struct *vma);
/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
struct mmu_gather;
struct inode;
/*
* compound_order() can be called without holding a reference, which means
* that niceties like page_folio() don't work. These callers should be
* prepared to handle wild return values. For example, PG_head may be
* set before the order is initialised, or this may be a tail page.
* See compaction.c for some good examples.
*/
static inline unsigned int compound_order(struct page *page)
{
struct folio *folio = (struct folio *)page;
if (!test_bit(PG_head, &folio->flags))
return 0;
return folio->_flags_1 & 0xff;
}
/**
* folio_order - The allocation order of a folio.
* @folio: The folio.
*
* A folio is composed of 2^order pages. See get_order() for the definition
* of order.
*
* Return: The order of the folio.
*/
static inline unsigned int folio_order(struct folio *folio)
{
if (!folio_test_large(folio))
return 0;
return folio->_flags_1 & 0xff;
}
#include <linux/huge_mm.h>
/*
* Methods to modify the page usage count.
*
* What counts for a page usage:
* - cache mapping (page->mapping)
* - private data (page->private)
* - page mapped in a task's page tables, each mapping
* is counted separately
*
* Also, many kernel routines increase the page count before a critical
* routine so they can be sure the page doesn't go away from under them.
*/
/*
* Drop a ref, return true if the refcount fell to zero (the page has no users)
*/
static inline int put_page_testzero(struct page *page)
{
VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
return page_ref_dec_and_test(page);
}
static inline int folio_put_testzero(struct folio *folio)
{
return put_page_testzero(&folio->page);
}
/*
* Try to grab a ref unless the page has a refcount of zero, return false if
* that is the case.
* This can be called when MMU is off so it must not access
* any of the virtual mappings.
*/
static inline bool get_page_unless_zero(struct page *page)
{
return page_ref_add_unless(page, 1, 0);
}
static inline struct folio *folio_get_nontail_page(struct page *page)
{
if (unlikely(!get_page_unless_zero(page)))
return NULL;
return (struct folio *)page;
}
extern int page_is_ram(unsigned long pfn);
enum {
REGION_INTERSECTS,
REGION_DISJOINT,
REGION_MIXED,
};
int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
unsigned long desc);
/* Support for virtually mapped pages */
struct page *vmalloc_to_page(const void *addr);
unsigned long vmalloc_to_pfn(const void *addr);
/*
* Determine if an address is within the vmalloc range
*
* On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
* is no special casing required.
*/
#ifdef CONFIG_MMU
extern bool is_vmalloc_addr(const void *x);
extern int is_vmalloc_or_module_addr(const void *x);
#else
static inline bool is_vmalloc_addr(const void *x)
{
return false;
}
static inline int is_vmalloc_or_module_addr(const void *x)
{
return 0;
}
#endif
/*
* How many times the entire folio is mapped as a single unit (eg by a
* PMD or PUD entry). This is probably not what you want, except for
* debugging purposes - it does not include PTE-mapped sub-pages; look
* at folio_mapcount() or page_mapcount() or total_mapcount() instead.
*/
static inline int folio_entire_mapcount(struct folio *folio)
{
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
return atomic_read(&folio->_entire_mapcount) + 1;
}
/*
* The atomic page->_mapcount, starts from -1: so that transitions
* both from it and to it can be tracked, using atomic_inc_and_test
* and atomic_add_negative(-1).
*/
static inline void page_mapcount_reset(struct page *page)
{
atomic_set(&(page)->_mapcount, -1);
}
/**
* page_mapcount() - Number of times this precise page is mapped.
* @page: The page.
*
* The number of times this page is mapped. If this page is part of
* a large folio, it includes the number of times this page is mapped
* as part of that folio.
*
* The result is undefined for pages which cannot be mapped into userspace.
* For example SLAB or special types of pages. See function page_has_type().
* They use this field in struct page differently.
*/
static inline int page_mapcount(struct page *page)
{
int mapcount = atomic_read(&page->_mapcount) + 1;
if (unlikely(PageCompound(page)))
mapcount += folio_entire_mapcount(page_folio(page));
return mapcount;
}
int folio_total_mapcount(struct folio *folio);
/**
* folio_mapcount() - Calculate the number of mappings of this folio.
* @folio: The folio.
*
* A large folio tracks both how many times the entire folio is mapped,
* and how many times each individual page in the folio is mapped.
* This function calculates the total number of times the folio is
* mapped.
*
* Return: The number of times this folio is mapped.
*/
static inline int folio_mapcount(struct folio *folio)
{
if (likely(!folio_test_large(folio)))
return atomic_read(&folio->_mapcount) + 1;
return folio_total_mapcount(folio);
}
static inline int total_mapcount(struct page *page)
{
if (likely(!PageCompound(page)))
return atomic_read(&page->_mapcount) + 1;
return folio_total_mapcount(page_folio(page));
}
static inline bool folio_large_is_mapped(struct folio *folio)
{
/*
* Reading _entire_mapcount below could be omitted if hugetlb
* participated in incrementing nr_pages_mapped when compound mapped.
*/
return atomic_read(&folio->_nr_pages_mapped) > 0 ||
atomic_read(&folio->_entire_mapcount) >= 0;
}
/**
* folio_mapped - Is this folio mapped into userspace?
* @folio: The folio.
*
* Return: True if any page in this folio is referenced by user page tables.
*/
static inline bool folio_mapped(struct folio *folio)
{
if (likely(!folio_test_large(folio)))
return atomic_read(&folio->_mapcount) >= 0;
return folio_large_is_mapped(folio);
}
/*
* Return true if this page is mapped into pagetables.
* For compound page it returns true if any sub-page of compound page is mapped,
* even if this particular sub-page is not itself mapped by any PTE or PMD.
*/
static inline bool page_mapped(struct page *page)
{
if (likely(!PageCompound(page)))
return atomic_read(&page->_mapcount) >= 0;
return folio_large_is_mapped(page_folio(page));
}
static inline struct page *virt_to_head_page(const void *x)
{
struct page *page = virt_to_page(x);
return compound_head(page);
}
static inline struct folio *virt_to_folio(const void *x)
{
struct page *page = virt_to_page(x);
return page_folio(page);
}
void __folio_put(struct folio *folio);
void put_pages_list(struct list_head *pages);
void split_page(struct page *page, unsigned int order);
void folio_copy(struct folio *dst, struct folio *src);
unsigned long nr_free_buffer_pages(void);
void destroy_large_folio(struct folio *folio);
/* Returns the number of bytes in this potentially compound page. */
static inline unsigned long page_size(struct page *page)
{
return PAGE_SIZE << compound_order(page);
}
/* Returns the number of bits needed for the number of bytes in a page */
static inline unsigned int page_shift(struct page *page)
{
return PAGE_SHIFT + compound_order(page);
}
/**
* thp_order - Order of a transparent huge page.
* @page: Head page of a transparent huge page.
*/
static inline unsigned int thp_order(struct page *page)
{
VM_BUG_ON_PGFLAGS(PageTail(page), page);
return compound_order(page);
}
/**
* thp_size - Size of a transparent huge page.
* @page: Head page of a transparent huge page.
*
* Return: Number of bytes in this page.
*/
static inline unsigned long thp_size(struct page *page)
{
return PAGE_SIZE << thp_order(page);
}
#ifdef CONFIG_MMU
/*
* Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
* servicing faults for write access. In the normal case, do always want
* pte_mkwrite. But get_user_pages can cause write faults for mappings
* that do not have writing enabled, when used by access_process_vm.
*/
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
if (likely(vma->vm_flags & VM_WRITE))
pte = pte_mkwrite(pte, vma);
return pte;
}
vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
void set_pte_range(struct vm_fault *vmf, struct folio *folio,
struct page *page, unsigned int nr, unsigned long addr);
vm_fault_t finish_fault(struct vm_fault *vmf);
vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
#endif
/*
* Multiple processes may "see" the same page. E.g. for untouched
* mappings of /dev/null, all processes see the same page full of
* zeroes, and text pages of executables and shared libraries have
* only one copy in memory, at most, normally.
*
* For the non-reserved pages, page_count(page) denotes a reference count.
* page_count() == 0 means the page is free. page->lru is then used for
* freelist management in the buddy allocator.
* page_count() > 0 means the page has been allocated.
*
* Pages are allocated by the slab allocator in order to provide memory
* to kmalloc and kmem_cache_alloc. In this case, the management of the
* page, and the fields in 'struct page' are the responsibility of mm/slab.c
* unless a particular usage is carefully commented. (the responsibility of
* freeing the kmalloc memory is the caller's, of course).
*
* A page may be used by anyone else who does a __get_free_page().
* In this case, page_count still tracks the references, and should only
* be used through the normal accessor functions. The top bits of page->flags
* and page->virtual store page management information, but all other fields
* are unused and could be used privately, carefully. The management of this
* page is the responsibility of the one who allocated it, and those who have
* subsequently been given references to it.
*
* The other pages (we may call them "pagecache pages") are completely
* managed by the Linux memory manager: I/O, buffers, swapping etc.
* The following discussion applies only to them.
*
* A pagecache page contains an opaque `private' member, which belongs to the
* page's address_space. Usually, this is the address of a circular list of
* the page's disk buffers. PG_private must be set to tell the VM to call
* into the filesystem to release these pages.
*
* A page may belong to an inode's memory mapping. In this case, page->mapping
* is the pointer to the inode, and page->index is the file offset of the page,
* in units of PAGE_SIZE.
*
* If pagecache pages are not associated with an inode, they are said to be
* anonymous pages. These may become associated with the swapcache, and in that
* case PG_swapcache is set, and page->private is an offset into the swapcache.
*
* In either case (swapcache or inode backed), the pagecache itself holds one
* reference to the page. Setting PG_private should also increment the
* refcount. The each user mapping also has a reference to the page.
*
* The pagecache pages are stored in a per-mapping radix tree, which is
* rooted at mapping->i_pages, and indexed by offset.
* Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
* lists, we instead now tag pages as dirty/writeback in the radix tree.
*
* All pagecache pages may be subject to I/O:
* - inode pages may need to be read from disk,
* - inode pages which have been modified and are MAP_SHARED may need
* to be written back to the inode on disk,
* - anonymous pages (including MAP_PRIVATE file mappings) which have been
* modified may need to be swapped out to swap space and (later) to be read
* back into memory.
*/
#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
bool __put_devmap_managed_page_refs(struct page *page, int refs);
static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
{
if (!static_branch_unlikely(&devmap_managed_key))
return false;
if (!is_zone_device_page(page))
return false;
return __put_devmap_managed_page_refs(page, refs);
}
#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
{
return false;
}
#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
static inline bool put_devmap_managed_page(struct page *page)
{
return put_devmap_managed_page_refs(page, 1);
}
/* 127: arbitrary random number, small enough to assemble well */
#define folio_ref_zero_or_close_to_overflow(folio) \
((unsigned int) folio_ref_count(folio) + 127u <= 127u)
/**
* folio_get - Increment the reference count on a folio.
* @folio: The folio.
*
* Context: May be called in any context, as long as you know that
* you have a refcount on the folio. If you do not already have one,
* folio_try_get() may be the right interface for you to use.
*/
static inline void folio_get(struct folio *folio)
{
VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
folio_ref_inc(folio);
}
static inline void get_page(struct page *page)
{
folio_get(page_folio(page));
}
static inline __must_check bool try_get_page(struct page *page)
{
page = compound_head(page);
if (WARN_ON_ONCE(page_ref_count(page) <= 0))
return false;
page_ref_inc(page);
return true;
}
/**
* folio_put - Decrement the reference count on a folio.
* @folio: The folio.
*
* If the folio's reference count reaches zero, the memory will be
* released back to the page allocator and may be used by another
* allocation immediately. Do not access the memory or the struct folio
* after calling folio_put() unless you can be sure that it wasn't the
* last reference.
*
* Context: May be called in process or interrupt context, but not in NMI
* context. May be called while holding a spinlock.
*/
static inline void folio_put(struct folio *folio)
{
if (folio_put_testzero(folio))
__folio_put(folio);
}
/**
* folio_put_refs - Reduce the reference count on a folio.
* @folio: The folio.
* @refs: The amount to subtract from the folio's reference count.
*
* If the folio's reference count reaches zero, the memory will be
* released back to the page allocator and may be used by another
* allocation immediately. Do not access the memory or the struct folio
* after calling folio_put_refs() unless you can be sure that these weren't
* the last references.
*
* Context: May be called in process or interrupt context, but not in NMI
* context. May be called while holding a spinlock.
*/
static inline void folio_put_refs(struct folio *folio, int refs)
{
if (folio_ref_sub_and_test(folio, refs))
__folio_put(folio);
}
/*
* union release_pages_arg - an array of pages or folios
*
* release_pages() releases a simple array of multiple pages, and
* accepts various different forms of said page array: either
* a regular old boring array of pages, an array of folios, or
* an array of encoded page pointers.
*
* The transparent union syntax for this kind of "any of these
* argument types" is all kinds of ugly, so look away.
*/
typedef union {
struct page **pages;
struct folio **folios;
struct encoded_page **encoded_pages;
} release_pages_arg __attribute__ ((__transparent_union__));
void release_pages(release_pages_arg, int nr);
/**
* folios_put - Decrement the reference count on an array of folios.
* @folios: The folios.
* @nr: How many folios there are.
*
* Like folio_put(), but for an array of folios. This is more efficient
* than writing the loop yourself as it will optimise the locks which
* need to be taken if the folios are freed.
*
* Context: May be called in process or interrupt context, but not in NMI
* context. May be called while holding a spinlock.
*/
static inline void folios_put(struct folio **folios, unsigned int nr)
{
release_pages(folios, nr);
}
static inline void put_page(struct page *page)
{
struct folio *folio = page_folio(page);
/*
* For some devmap managed pages we need to catch refcount transition
* from 2 to 1:
*/
if (put_devmap_managed_page(&folio->page))
return;
folio_put(folio);
}
/*
* GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
* the page's refcount so that two separate items are tracked: the original page
* reference count, and also a new count of how many pin_user_pages() calls were
* made against the page. ("gup-pinned" is another term for the latter).
*
* With this scheme, pin_user_pages() becomes special: such pages are marked as
* distinct from normal pages. As such, the unpin_user_page() call (and its
* variants) must be used in order to release gup-pinned pages.
*
* Choice of value:
*
* By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
* counts with respect to pin_user_pages() and unpin_user_page() becomes
* simpler, due to the fact that adding an even power of two to the page
* refcount has the effect of using only the upper N bits, for the code that
* counts up using the bias value. This means that the lower bits are left for
* the exclusive use of the original code that increments and decrements by one
* (or at least, by much smaller values than the bias value).
*
* Of course, once the lower bits overflow into the upper bits (and this is
* OK, because subtraction recovers the original values), then visual inspection
* no longer suffices to directly view the separate counts. However, for normal
* applications that don't have huge page reference counts, this won't be an
* issue.
*
* Locking: the lockless algorithm described in folio_try_get_rcu()
* provides safe operation for get_user_pages(), page_mkclean() and
* other calls that race to set up page table entries.
*/
#define GUP_PIN_COUNTING_BIAS (1U << 10)
void unpin_user_page(struct page *page);
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
bool make_dirty);
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
bool make_dirty);
void unpin_user_pages(struct page **pages, unsigned long npages);
static inline bool is_cow_mapping(vm_flags_t flags)
{
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}
#ifndef CONFIG_MMU
static inline bool is_nommu_shared_mapping(vm_flags_t flags)
{
/*
* NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
* R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
* a file mapping. R/O MAP_PRIVATE mappings might still modify
* underlying memory if ptrace is active, so this is only possible if
* ptrace does not apply. Note that there is no mprotect() to upgrade
* write permissions later.
*/
return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
}
#endif
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTION_IN_PAGE_FLAGS
#endif
/*
* The identification function is mainly used by the buddy allocator for
* determining if two pages could be buddies. We are not really identifying
* the zone since we could be using the section number id if we do not have
* node id available in page flags.
* We only guarantee that it will return the same value for two combinable
* pages in a zone.
*/
static inline int page_zone_id(struct page *page)
{
return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
}
#ifdef NODE_NOT_IN_PAGE_FLAGS
extern int page_to_nid(const struct page *page);
#else
static inline int page_to_nid(const struct page *page)
{
struct page *p = (struct page *)page;
return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
}
#endif
static inline int folio_nid(const struct folio *folio)
{
return page_to_nid(&folio->page);
}
#ifdef CONFIG_NUMA_BALANCING
/* page access time bits needs to hold at least 4 seconds */
#define PAGE_ACCESS_TIME_MIN_BITS 12
#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
#define PAGE_ACCESS_TIME_BUCKETS \
(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
#else
#define PAGE_ACCESS_TIME_BUCKETS 0
#endif
#define PAGE_ACCESS_TIME_MASK \
(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
static inline int cpu_pid_to_cpupid(int cpu, int pid)
{
return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
}
static inline int cpupid_to_pid(int cpupid)
{
return cpupid & LAST__PID_MASK;
}
static inline int cpupid_to_cpu(int cpupid)
{
return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
}
static inline int cpupid_to_nid(int cpupid)
{
return cpu_to_node(cpupid_to_cpu(cpupid));
}
static inline bool cpupid_pid_unset(int cpupid)
{
return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
}
static inline bool cpupid_cpu_unset(int cpupid)
{
return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
}
static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
{
return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
}
#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
{
return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
}
static inline int page_cpupid_last(struct page *page)
{
return page->_last_cpupid;
}
static inline void page_cpupid_reset_last(struct page *page)
{
page->_last_cpupid = -1 & LAST_CPUPID_MASK;
}
#else
static inline int page_cpupid_last(struct page *page)
{
return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
}
extern int page_cpupid_xchg_last(struct page *page, int cpupid);
static inline void page_cpupid_reset_last(struct page *page)
{
page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
}
#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
static inline int xchg_page_access_time(struct page *page, int time)
{
int last_time;
last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
return last_time << PAGE_ACCESS_TIME_BUCKETS;
}
static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
{
unsigned int pid_bit;
pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
}
}
#else /* !CONFIG_NUMA_BALANCING */
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
{
return page_to_nid(page); /* XXX */
}
static inline int xchg_page_access_time(struct page *page, int time)
{
return 0;
}
static inline int page_cpupid_last(struct page *page)
{
return page_to_nid(page); /* XXX */
}
static inline int cpupid_to_nid(int cpupid)
{
return -1;
}
static inline int cpupid_to_pid(int cpupid)
{
return -1;
}
static inline int cpupid_to_cpu(int cpupid)
{
return -1;
}
static inline int cpu_pid_to_cpupid(int nid, int pid)
{
return -1;
}
static inline bool cpupid_pid_unset(int cpupid)
{
return true;
}
static inline void page_cpupid_reset_last(struct page *page)
{
}
static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
{
return false;
}
static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
{
}
#endif /* CONFIG_NUMA_BALANCING */
#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
/*
* KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
* setting tags for all pages to native kernel tag value 0xff, as the default
* value 0x00 maps to 0xff.
*/
static inline u8 page_kasan_tag(const struct page *page)
{
u8 tag = 0xff;
if (kasan_enabled()) {
tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
tag ^= 0xff;
}
return tag;
}
static inline void page_kasan_tag_set(struct page *page, u8 tag)
{
unsigned long old_flags, flags;
if (!kasan_enabled())
return;
tag ^= 0xff;
old_flags = READ_ONCE(page->flags);
do {
flags = old_flags;
flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
}
static inline void page_kasan_tag_reset(struct page *page)
{
if (kasan_enabled())
page_kasan_tag_set(page, 0xff);
}
#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
static inline u8 page_kasan_tag(const struct page *page)
{
return 0xff;
}
static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
static inline void page_kasan_tag_reset(struct page *page) { }
#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
static inline struct zone *page_zone(const struct page *page)
{
return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
}
static inline pg_data_t *page_pgdat(const struct page *page)
{
return NODE_DATA(page_to_nid(page));
}
static inline struct zone *folio_zone(const struct folio *folio)
{
return page_zone(&folio->page);
}
static inline pg_data_t *folio_pgdat(const struct folio *folio)
{
return page_pgdat(&folio->page);
}
#ifdef SECTION_IN_PAGE_FLAGS
static inline void set_page_section(struct page *page, unsigned long section)
{
page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
}
static inline unsigned long page_to_section(const struct page *page)
{
return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
}
#endif
/**
* folio_pfn - Return the Page Frame Number of a folio.
* @folio: The folio.
*
* A folio may contain multiple pages. The pages have consecutive
* Page Frame Numbers.
*
* Return: The Page Frame Number of the first page in the folio.
*/
static inline unsigned long folio_pfn(struct folio *folio)
{
return page_to_pfn(&folio->page);
}
static inline struct folio *pfn_folio(unsigned long pfn)
{
return page_folio(pfn_to_page(pfn));
}
/**
* folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
* @folio: The folio.
*
* This function checks if a folio has been pinned via a call to
* a function in the pin_user_pages() family.
*
* For small folios, the return value is partially fuzzy: false is not fuzzy,
* because it means "definitely not pinned for DMA", but true means "probably
* pinned for DMA, but possibly a false positive due to having at least
* GUP_PIN_COUNTING_BIAS worth of normal folio references".
*
* False positives are OK, because: a) it's unlikely for a folio to
* get that many refcounts, and b) all the callers of this routine are
* expected to be able to deal gracefully with a false positive.
*
* For large folios, the result will be exactly correct. That's because
* we have more tracking data available: the _pincount field is used
* instead of the GUP_PIN_COUNTING_BIAS scheme.
*
* For more information, please see Documentation/core-api/pin_user_pages.rst.
*
* Return: True, if it is likely that the page has been "dma-pinned".
* False, if the page is definitely not dma-pinned.
*/
static inline bool folio_maybe_dma_pinned(struct folio *folio)
{
if (folio_test_large(folio))
return atomic_read(&folio->_pincount) > 0;
/*
* folio_ref_count() is signed. If that refcount overflows, then
* folio_ref_count() returns a negative value, and callers will avoid
* further incrementing the refcount.
*
* Here, for that overflow case, use the sign bit to count a little
* bit higher via unsigned math, and thus still get an accurate result.
*/
return ((unsigned int)folio_ref_count(folio)) >=
GUP_PIN_COUNTING_BIAS;
}
static inline bool page_maybe_dma_pinned(struct page *page)
{
return folio_maybe_dma_pinned(page_folio(page));
}
/*
* This should most likely only be called during fork() to see whether we
* should break the cow immediately for an anon page on the src mm.
*
* The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
*/
static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
struct page *page)
{
VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
return false;
return page_maybe_dma_pinned(page);
}
/**
* is_zero_page - Query if a page is a zero page
* @page: The page to query
*
* This returns true if @page is one of the permanent zero pages.
*/
static inline bool is_zero_page(const struct page *page)
{
return is_zero_pfn(page_to_pfn(page));
}
/**
* is_zero_folio - Query if a folio is a zero page
* @folio: The folio to query
*
* This returns true if @folio is one of the permanent zero pages.
*/
static inline bool is_zero_folio(const struct folio *folio)
{
return is_zero_page(&folio->page);
}
/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
#ifdef CONFIG_MIGRATION
static inline bool folio_is_longterm_pinnable(struct folio *folio)
{
#ifdef CONFIG_CMA
int mt = folio_migratetype(folio);
if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
return false;
#endif
/* The zero page can be "pinned" but gets special handling. */
if (is_zero_folio(folio))
return true;
/* Coherent device memory must always allow eviction. */
if (folio_is_device_coherent(folio))
return false;
/* Otherwise, non-movable zone folios can be pinned. */
return !folio_is_zone_movable(folio);
}
#else
static inline bool folio_is_longterm_pinnable(struct folio *folio)
{
return true;
}
#endif
static inline void set_page_zone(struct page *page, enum zone_type zone)
{
page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
}
static inline void set_page_node(struct page *page, unsigned long node)
{
page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
}
static inline void set_page_links(struct page *page, enum zone_type zone,
unsigned long node, unsigned long pfn)
{
set_page_zone(page, zone);
set_page_node(page, node);
#ifdef SECTION_IN_PAGE_FLAGS
set_page_section(page, pfn_to_section_nr(pfn));
#endif
}
/**
* folio_nr_pages - The number of pages in the folio.
* @folio: The folio.
*
* Return: A positive power of two.
*/
static inline long folio_nr_pages(struct folio *folio)
{
if (!folio_test_large(folio))
return 1;
#ifdef CONFIG_64BIT
return folio->_folio_nr_pages;
#else
return 1L << (folio->_flags_1 & 0xff);
#endif
}
/*
* compound_nr() returns the number of pages in this potentially compound
* page. compound_nr() can be called on a tail page, and is defined to
* return 1 in that case.
*/
static inline unsigned long compound_nr(struct page *page)
{
struct folio *folio = (struct folio *)page;
if (!test_bit(PG_head, &folio->flags))
return 1;
#ifdef CONFIG_64BIT
return folio->_folio_nr_pages;
#else
return 1L << (folio->_flags_1 & 0xff);
#endif
}
/**
* thp_nr_pages - The number of regular pages in this huge page.
* @page: The head page of a huge page.
*/
static inline int thp_nr_pages(struct page *page)
{
return folio_nr_pages((struct folio *)page);
}
/**
* folio_next - Move to the next physical folio.
* @folio: The folio we're currently operating on.
*
* If you have physically contiguous memory which may span more than
* one folio (eg a &struct bio_vec), use this function to move from one
* folio to the next. Do not use it if the memory is only virtually
* contiguous as the folios are almost certainly not adjacent to each
* other. This is the folio equivalent to writing ``page++``.
*
* Context: We assume that the folios are refcounted and/or locked at a
* higher level and do not adjust the reference counts.
* Return: The next struct folio.
*/
static inline struct folio *folio_next(struct folio *folio)
{
return (struct folio *)folio_page(folio, folio_nr_pages(folio));
}
/**
* folio_shift - The size of the memory described by this folio.
* @folio: The folio.
*
* A folio represents a number of bytes which is a power-of-two in size.
* This function tells you which power-of-two the folio is. See also
* folio_size() and folio_order().
*
* Context: The caller should have a reference on the folio to prevent
* it from being split. It is not necessary for the folio to be locked.
* Return: The base-2 logarithm of the size of this folio.
*/
static inline unsigned int folio_shift(struct folio *folio)
{
return PAGE_SHIFT + folio_order(folio);
}
/**
* folio_size - The number of bytes in a folio.
* @folio: The folio.
*
* Context: The caller should have a reference on the folio to prevent
* it from being split. It is not necessary for the folio to be locked.
* Return: The number of bytes in this folio.
*/
static inline size_t folio_size(struct folio *folio)
{
return PAGE_SIZE << folio_order(folio);
}
/**
* folio_estimated_sharers - Estimate the number of sharers of a folio.
* @folio: The folio.
*
* folio_estimated_sharers() aims to serve as a function to efficiently
* estimate the number of processes sharing a folio. This is done by
* looking at the precise mapcount of the first subpage in the folio, and
* assuming the other subpages are the same. This may not be true for large
* folios. If you want exact mapcounts for exact calculations, look at
* page_mapcount() or folio_total_mapcount().
*
* Return: The estimated number of processes sharing a folio.
*/
static inline int folio_estimated_sharers(struct folio *folio)
{
return page_mapcount(folio_page(folio, 0));
}
#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
static inline int arch_make_page_accessible(struct page *page)
{
return 0;
}
#endif
#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
static inline int arch_make_folio_accessible(struct folio *folio)
{
int ret;
long i, nr = folio_nr_pages(folio);
for (i = 0; i < nr; i++) {
ret = arch_make_page_accessible(folio_page(folio, i));
if (ret)
break;
}
return ret;
}
#endif
/*
* Some inline functions in vmstat.h depend on page_zone()
*/
#include <linux/vmstat.h>
static __always_inline void *lowmem_page_address(const struct page *page)
{
return page_to_virt(page);
}
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
#define HASHED_PAGE_VIRTUAL
#endif
#if defined(WANT_PAGE_VIRTUAL)
static inline void *page_address(const struct page *page)
{
return page->virtual;
}
static inline void set_page_address(struct page *page, void *address)
{
page->virtual = address;
}
#define page_address_init() do { } while(0)
#endif
#if defined(HASHED_PAGE_VIRTUAL)
void *page_address(const struct page *page);
void set_page_address(struct page *page, void *virtual);
void page_address_init(void);
#endif
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address) do { } while(0)
#define page_address_init() do { } while(0)
#endif
static inline void *folio_address(const struct folio *folio)
{
return page_address(&folio->page);
}
extern pgoff_t __page_file_index(struct page *page);
/*
* Return the pagecache index of the passed page. Regular pagecache pages
* use ->index whereas swapcache pages use swp_offset(->private)
*/
static inline pgoff_t page_index(struct page *page)
{
if (unlikely(PageSwapCache(page)))
return __page_file_index(page);
return page->index;
}
/*
* Return true only if the page has been allocated with
* ALLOC_NO_WATERMARKS and the low watermark was not
* met implying that the system is under some pressure.
*/
static inline bool page_is_pfmemalloc(const struct page *page)
{
/*
* lru.next has bit 1 set if the page is allocated from the
* pfmemalloc reserves. Callers may simply overwrite it if
* they do not need to preserve that information.
*/
return (uintptr_t)page->lru.next & BIT(1);
}
/*
* Return true only if the folio has been allocated with
* ALLOC_NO_WATERMARKS and the low watermark was not
* met implying that the system is under some pressure.
*/
static inline bool folio_is_pfmemalloc(const struct folio *folio)
{
/*
* lru.next has bit 1 set if the page is allocated from the
* pfmemalloc reserves. Callers may simply overwrite it if
* they do not need to preserve that information.
*/
return (uintptr_t)folio->lru.next & BIT(1);
}
/*
* Only to be called by the page allocator on a freshly allocated
* page.
*/
static inline void set_page_pfmemalloc(struct page *page)
{
page->lru.next = (void *)BIT(1);
}
static inline void clear_page_pfmemalloc(struct page *page)
{
page->lru.next = NULL;
}
/*
* Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
*/
extern void pagefault_out_of_memory(void);
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
/*
* Parameter block passed down to zap_pte_range in exceptional cases.
*/
struct zap_details {
struct folio *single_folio; /* Locked folio to be unmapped */
bool even_cows; /* Zap COWed private pages too? */
zap_flags_t zap_flags; /* Extra flags for zapping */
};
/*
* Whether to drop the pte markers, for example, the uffd-wp information for
* file-backed memory. This should only be specified when we will completely
* drop the page in the mm, either by truncation or unmapping of the vma. By
* default, the flag is not set.
*/
#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
#ifdef CONFIG_SCHED_MM_CID
void sched_mm_cid_before_execve(struct task_struct *t);
void sched_mm_cid_after_execve(struct task_struct *t);
void sched_mm_cid_fork(struct task_struct *t);
void sched_mm_cid_exit_signals(struct task_struct *t);
static inline int task_mm_cid(struct task_struct *t)
{
return t->mm_cid;
}
#else
static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
static inline void sched_mm_cid_fork(struct task_struct *t) { }
static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
static inline int task_mm_cid(struct task_struct *t)
{
/*
* Use the processor id as a fall-back when the mm cid feature is
* disabled. This provides functional per-cpu data structure accesses
* in user-space, althrough it won't provide the memory usage benefits.
*/
return raw_smp_processor_id();
}
#endif
#ifdef CONFIG_MMU
extern bool can_do_mlock(void);
#else
static inline bool can_do_mlock(void) { return false; }
#endif
extern int user_shm_lock(size_t, struct ucounts *);
extern void user_shm_unlock(size_t, struct ucounts *);
struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
pte_t pte);
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
pte_t pte);
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t pmd);
void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
unsigned long size);
void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
unsigned long size, struct zap_details *details);
static inline void zap_vma_pages(struct vm_area_struct *vma)
{
zap_page_range_single(vma, vma->vm_start,
vma->vm_end - vma->vm_start, NULL);
}
void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
struct vm_area_struct *start_vma, unsigned long start,
unsigned long end, unsigned long tree_end, bool mm_wr_locked);
struct mmu_notifier_range;
void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
unsigned long end, unsigned long floor, unsigned long ceiling);
int
copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
int follow_pte(struct mm_struct *mm, unsigned long address,
pte_t **ptepp, spinlock_t **ptlp);
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
unsigned long *pfn);
int follow_phys(struct vm_area_struct *vma, unsigned long address,
unsigned int flags, unsigned long *prot, resource_size_t *phys);
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);
extern void truncate_pagecache(struct inode *inode, loff_t new);
extern void truncate_setsize(struct inode *inode, loff_t newsize);
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
int generic_error_remove_page(struct address_space *mapping, struct page *page);
struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
unsigned long address, struct pt_regs *regs);
#ifdef CONFIG_MMU
extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
struct pt_regs *regs);
extern int fixup_user_fault(struct mm_struct *mm,
unsigned long address, unsigned int fault_flags,
bool *unlocked);
void unmap_mapping_pages(struct address_space *mapping,
pgoff_t start, pgoff_t nr, bool even_cows);
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows);
#else
static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
struct pt_regs *regs)
{
/* should never happen if there's no MMU */
BUG();
return VM_FAULT_SIGBUS;
}
static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
unsigned int fault_flags, bool *unlocked)
{
/* should never happen if there's no MMU */
BUG();
return -EFAULT;
}
static inline void unmap_mapping_pages(struct address_space *mapping,
pgoff_t start, pgoff_t nr, bool even_cows) { }
static inline void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows) { }
#endif
static inline void unmap_shared_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen)
{
unmap_mapping_range(mapping, holebegin, holelen, 0);
}
static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
unsigned long addr);
extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
long get_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
int *locked);
long pin_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
int *locked);
static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
unsigned long addr,
int gup_flags,
struct vm_area_struct **vmap)
{
struct page *page;
struct vm_area_struct *vma;
int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
if (got < 0)
return ERR_PTR(got);
if (got == 0)
return NULL;
vma = vma_lookup(mm, addr);
if (WARN_ON_ONCE(!vma)) {
put_page(page);
return ERR_PTR(-EINVAL);
}
*vmap = vma;
return page;
}
long get_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages);
long pin_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages);
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags);
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags);
int get_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
int pin_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
void folio_add_pin(struct folio *folio);
int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
struct task_struct *task, bool bypass_rlim);
struct kvec;
struct page *get_dump_page(unsigned long addr);
bool folio_mark_dirty(struct folio *folio);
bool set_page_dirty(struct page *page);
int set_page_dirty_lock(struct page *page);
int get_cmdline(struct task_struct *task, char *buffer, int buflen);
extern unsigned long move_page_tables(struct vm_area_struct *vma,
unsigned long old_addr, struct vm_area_struct *new_vma,
unsigned long new_addr, unsigned long len,
bool need_rmap_locks);
/*
* Flags used by change_protection(). For now we make it a bitmap so
* that we can pass in multiple flags just like parameters. However
* for now all the callers are only use one of the flags at the same
* time.
*/
/*
* Whether we should manually check if we can map individual PTEs writable,
* because something (e.g., COW, uffd-wp) blocks that from happening for all
* PTEs automatically in a writable mapping.
*/
#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
/* Whether this protection change is for NUMA hints */
#define MM_CP_PROT_NUMA (1UL << 1)
/* Whether this change is for write protecting */
#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
MM_CP_UFFD_WP_RESOLVE)
bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
{
/*
* We want to check manually if we can change individual PTEs writable
* if we can't do that automatically for all PTEs in a mapping. For
* private mappings, that's always the case when we have write
* permissions as we properly have to handle COW.
*/
if (vma->vm_flags & VM_SHARED)
return vma_wants_writenotify(vma, vma->vm_page_prot);
return !!(vma->vm_flags & VM_WRITE);
}
bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
pte_t pte);
extern long change_protection(struct mmu_gather *tlb,
struct vm_area_struct *vma, unsigned long start,
unsigned long end, unsigned long cp_flags);
extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
struct vm_area_struct *vma, struct vm_area_struct **pprev,
unsigned long start, unsigned long end, unsigned long newflags);
/*
* doesn't attempt to fault and will return short.
*/
int get_user_pages_fast_only(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
static inline bool get_user_page_fast_only(unsigned long addr,
unsigned int gup_flags, struct page **pagep)
{
return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
}
/*
* per-process(per-mm_struct) statistics.
*/
static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
{
return percpu_counter_read_positive(&mm->rss_stat[member]);
}
void mm_trace_rss_stat(struct mm_struct *mm, int member);
static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
{
percpu_counter_add(&mm->rss_stat[member], value);
mm_trace_rss_stat(mm, member);
}
static inline void inc_mm_counter(struct mm_struct *mm, int member)
{
percpu_counter_inc(&mm->rss_stat[member]);
mm_trace_rss_stat(mm, member);
}
static inline void dec_mm_counter(struct mm_struct *mm, int member)
{
percpu_counter_dec(&mm->rss_stat[member]);
mm_trace_rss_stat(mm, member);
}
/* Optimized variant when page is already known not to be PageAnon */
static inline int mm_counter_file(struct page *page)
{
if (PageSwapBacked(page))
return MM_SHMEMPAGES;
return MM_FILEPAGES;
}
static inline int mm_counter(struct page *page)
{
if (PageAnon(page))
return MM_ANONPAGES;
return mm_counter_file(page);
}
static inline unsigned long get_mm_rss(struct mm_struct *mm)
{
return get_mm_counter(mm, MM_FILEPAGES) +
get_mm_counter(mm, MM_ANONPAGES) +
get_mm_counter(mm, MM_SHMEMPAGES);
}
static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
{
return max(mm->hiwater_rss, get_mm_rss(mm));
}
static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
{
return max(mm->hiwater_vm, mm->total_vm);
}
static inline void update_hiwater_rss(struct mm_struct *mm)
{
unsigned long _rss = get_mm_rss(mm);
if ((mm)->hiwater_rss < _rss)
(mm)->hiwater_rss = _rss;
}
static inline void update_hiwater_vm(struct mm_struct *mm)
{
if (mm->hiwater_vm < mm->total_vm)
mm->hiwater_vm = mm->total_vm;
}
static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
{
mm->hiwater_rss = get_mm_rss(mm);
}
static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
struct mm_struct *mm)
{
unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
if (*maxrss < hiwater_rss)
*maxrss = hiwater_rss;
}
#if defined(SPLIT_RSS_COUNTING)
void sync_mm_rss(struct mm_struct *mm);
#else
static inline void sync_mm_rss(struct mm_struct *mm)
{
}
#endif
#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
static inline int pte_special(pte_t pte)
{
return 0;
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return pte;
}
#endif
#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
static inline int pte_devmap(pte_t pte)
{
return 0;
}
#endif
extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
spinlock_t **ptl);
static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
spinlock_t **ptl)
{
pte_t *ptep;
__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
return ptep;
}
#ifdef __PAGETABLE_P4D_FOLDED
static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
unsigned long address)
{
return 0;
}
#else
int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
#endif
#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
unsigned long address)
{
return 0;
}
static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
#else
int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
static inline void mm_inc_nr_puds(struct mm_struct *mm)
{
if (mm_pud_folded(mm))
return;
atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
}
static inline void mm_dec_nr_puds(struct mm_struct *mm)
{
if (mm_pud_folded(mm))
return;
atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
}
#endif
#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
unsigned long address)
{
return 0;
}
static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
#else
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
static inline void mm_inc_nr_pmds(struct mm_struct *mm)
{
if (mm_pmd_folded(mm))
return;
atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
}
static inline void mm_dec_nr_pmds(struct mm_struct *mm)
{
if (mm_pmd_folded(mm))
return;
atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
}
#endif
#ifdef CONFIG_MMU
static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
{
atomic_long_set(&mm->pgtables_bytes, 0);
}
static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
{
return atomic_long_read(&mm->pgtables_bytes);
}
static inline void mm_inc_nr_ptes(struct mm_struct *mm)
{
atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
}
static inline void mm_dec_nr_ptes(struct mm_struct *mm)
{
atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
}
#else
static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
{
return 0;
}
static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
#endif
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
int __pte_alloc_kernel(pmd_t *pmd);
#if defined(CONFIG_MMU)
static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
unsigned long address)
{
return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
NULL : p4d_offset(pgd, address);
}
static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
unsigned long address)
{
return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
NULL : pud_offset(p4d, address);
}
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
NULL: pmd_offset(pud, address);
}
#endif /* CONFIG_MMU */
static inline struct ptdesc *virt_to_ptdesc(const void *x)
{
return page_ptdesc(virt_to_page(x));
}
static inline void *ptdesc_to_virt(const struct ptdesc *pt)
{
return page_to_virt(ptdesc_page(pt));
}
static inline void *ptdesc_address(const struct ptdesc *pt)
{
return folio_address(ptdesc_folio(pt));
}
static inline bool pagetable_is_reserved(struct ptdesc *pt)
{
return folio_test_reserved(ptdesc_folio(pt));
}
/**
* pagetable_alloc - Allocate pagetables
* @gfp: GFP flags
* @order: desired pagetable order
*
* pagetable_alloc allocates memory for page tables as well as a page table
* descriptor to describe that memory.
*
* Return: The ptdesc describing the allocated page tables.
*/
static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
{
struct page *page = alloc_pages(gfp | __GFP_COMP, order);
return page_ptdesc(page);
}
/**
* pagetable_free - Free pagetables
* @pt: The page table descriptor
*
* pagetable_free frees the memory of all page tables described by a page
* table descriptor and the memory for the descriptor itself.
*/
static inline void pagetable_free(struct ptdesc *pt)
{
struct page *page = ptdesc_page(pt);
__free_pages(page, compound_order(page));
}
#if USE_SPLIT_PTE_PTLOCKS
#if ALLOC_SPLIT_PTLOCKS
void __init ptlock_cache_init(void);
bool ptlock_alloc(struct ptdesc *ptdesc);
void ptlock_free(struct ptdesc *ptdesc);
static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
{
return ptdesc->ptl;
}
#else /* ALLOC_SPLIT_PTLOCKS */
static inline void ptlock_cache_init(void)
{
}
static inline bool ptlock_alloc(struct ptdesc *ptdesc)
{
return true;
}
static inline void ptlock_free(struct ptdesc *ptdesc)
{
}
static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
{
return &ptdesc->ptl;
}
#endif /* ALLOC_SPLIT_PTLOCKS */
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
}
static inline bool ptlock_init(struct ptdesc *ptdesc)
{
/*
* prep_new_page() initialize page->private (and therefore page->ptl)
* with 0. Make sure nobody took it in use in between.
*
* It can happen if arch try to use slab for page table allocation:
* slab code uses page->slab_cache, which share storage with page->ptl.
*/
VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
if (!ptlock_alloc(ptdesc))
return false;
spin_lock_init(ptlock_ptr(ptdesc));
return true;
}
#else /* !USE_SPLIT_PTE_PTLOCKS */
/*
* We use mm->page_table_lock to guard all pagetable pages of the mm.
*/
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return &mm->page_table_lock;
}
static inline void ptlock_cache_init(void) {}
static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
static inline void ptlock_free(struct ptdesc *ptdesc) {}
#endif /* USE_SPLIT_PTE_PTLOCKS */
static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
{
struct folio *folio = ptdesc_folio(ptdesc);
if (!ptlock_init(ptdesc))
return false;
__folio_set_pgtable(folio);
lruvec_stat_add_folio(folio, NR_PAGETABLE);
return true;
}
static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
{
struct folio *folio = ptdesc_folio(ptdesc);
ptlock_free(ptdesc);
__folio_clear_pgtable(folio);
lruvec_stat_sub_folio(folio, NR_PAGETABLE);
}
pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
{
return __pte_offset_map(pmd, addr, NULL);
}
pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, spinlock_t **ptlp);
static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, spinlock_t **ptlp)
{
pte_t *pte;
__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
return pte;
}
pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, spinlock_t **ptlp);
#define pte_unmap_unlock(pte, ptl) do { \
spin_unlock(ptl); \
pte_unmap(pte); \
} while (0)
#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
#define pte_alloc_map(mm, pmd, address) \
(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
(pte_alloc(mm, pmd) ? \
NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
#define pte_alloc_kernel(pmd, address) \
((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
NULL: pte_offset_kernel(pmd, address))
#if USE_SPLIT_PMD_PTLOCKS
static inline struct page *pmd_pgtable_page(pmd_t *pmd)
{
unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
return virt_to_page((void *)((unsigned long) pmd & mask));
}
static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
{
return page_ptdesc(pmd_pgtable_page(pmd));
}
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return ptlock_ptr(pmd_ptdesc(pmd));
}
static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ptdesc->pmd_huge_pte = NULL;
#endif
return ptlock_init(ptdesc);
}
static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
#endif
ptlock_free(ptdesc);
}
#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
#else
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return &mm->page_table_lock;
}
static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
#endif
static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
{
spinlock_t *ptl = pmd_lockptr(mm, pmd);
spin_lock(ptl);
return ptl;
}
static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
{
struct folio *folio = ptdesc_folio(ptdesc);
if (!pmd_ptlock_init(ptdesc))
return false;
__folio_set_pgtable(folio);
lruvec_stat_add_folio(folio, NR_PAGETABLE);
return true;
}
static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
{
struct folio *folio = ptdesc_folio(ptdesc);
pmd_ptlock_free(ptdesc);
__folio_clear_pgtable(folio);
lruvec_stat_sub_folio(folio, NR_PAGETABLE);
}
/*
* No scalability reason to split PUD locks yet, but follow the same pattern
* as the PMD locks to make it easier if we decide to. The VM should not be
* considered ready to switch to split PUD locks yet; there may be places
* which need to be converted from page_table_lock.
*/
static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
{
return &mm->page_table_lock;
}
static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
{
spinlock_t *ptl = pud_lockptr(mm, pud);
spin_lock(ptl);
return ptl;
}
extern void __init pagecache_init(void);
extern void free_initmem(void);
/*
* Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
* into the buddy system. The freed pages will be poisoned with pattern
* "poison" if it's within range [0, UCHAR_MAX].
* Return pages freed into the buddy system.
*/
extern unsigned long free_reserved_area(void *start, void *end,
int poison, const char *s);
extern void adjust_managed_page_count(struct page *page, long count);
extern void reserve_bootmem_region(phys_addr_t start,
phys_addr_t end, int nid);
/* Free the reserved page into the buddy system, so it gets managed. */
static inline void free_reserved_page(struct page *page)
{
ClearPageReserved(page);
init_page_count(page);
__free_page(page);
adjust_managed_page_count(page, 1);
}
#define free_highmem_page(page) free_reserved_page(page)
static inline void mark_page_reserved(struct page *page)
{
SetPageReserved(page);
adjust_managed_page_count(page, -1);
}
static inline void free_reserved_ptdesc(struct ptdesc *pt)
{
free_reserved_page(ptdesc_page(pt));
}
/*
* Default method to free all the __init memory into the buddy system.
* The freed pages will be poisoned with pattern "poison" if it's within
* range [0, UCHAR_MAX].
* Return pages freed into the buddy system.
*/
static inline unsigned long free_initmem_default(int poison)
{
extern char __init_begin[], __init_end[];
return free_reserved_area(&__init_begin, &__init_end,
poison, "unused kernel image (initmem)");
}
static inline unsigned long get_num_physpages(void)
{
int nid;
unsigned long phys_pages = 0;
for_each_online_node(nid)
phys_pages += node_present_pages(nid);
return phys_pages;
}
/*
* Using memblock node mappings, an architecture may initialise its
* zones, allocate the backing mem_map and account for memory holes in an
* architecture independent manner.
*
* An architecture is expected to register range of page frames backed by
* physical memory with memblock_add[_node]() before calling
* free_area_init() passing in the PFN each zone ends at. At a basic
* usage, an architecture is expected to do something like
*
* unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
* max_highmem_pfn};
* for_each_valid_physical_page_range()
* memblock_add_node(base, size, nid, MEMBLOCK_NONE)
* free_area_init(max_zone_pfns);
*/
void free_area_init(unsigned long *max_zone_pfn);
unsigned long node_map_pfn_alignment(void);
unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
unsigned long end_pfn);
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
unsigned long end_pfn);
extern void get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn);
#ifndef CONFIG_NUMA
static inline int early_pfn_to_nid(unsigned long pfn)
{
return 0;
}
#else
/* please see mm/page_alloc.c */
extern int __meminit early_pfn_to_nid(unsigned long pfn);
#endif
extern void set_dma_reserve(unsigned long new_dma_reserve);
extern void mem_init(void);
extern void __init mmap_init(void);
extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
static inline void show_mem(void)
{
__show_mem(0, NULL, MAX_NR_ZONES - 1);
}
extern long si_mem_available(void);
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);
#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
extern unsigned long arch_reserved_kernel_pages(void);
#endif
extern __printf(3, 4)
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
extern void setup_per_cpu_pageset(void);
/* nommu.c */
extern atomic_long_t mmap_pages_allocated;
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
/* interval_tree.c */
void vma_interval_tree_insert(struct vm_area_struct *node,
struct rb_root_cached *root);
void vma_interval_tree_insert_after(struct vm_area_struct *node,
struct vm_area_struct *prev,
struct rb_root_cached *root);
void vma_interval_tree_remove(struct vm_area_struct *node,
struct rb_root_cached *root);
struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
unsigned long start, unsigned long last);
struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
unsigned long start, unsigned long last);
#define vma_interval_tree_foreach(vma, root, start, last) \
for (vma = vma_interval_tree_iter_first(root, start, last); \
vma; vma = vma_interval_tree_iter_next(vma, start, last))
void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
struct rb_root_cached *root);
void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
struct rb_root_cached *root);
struct anon_vma_chain *
anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
unsigned long start, unsigned long last);
struct anon_vma_chain *anon_vma_interval_tree_iter_next(
struct anon_vma_chain *node, unsigned long start, unsigned long last);
#ifdef CONFIG_DEBUG_VM_RB
void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
#endif
#define anon_vma_interval_tree_foreach(avc, root, start, last) \
for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
/* mmap.c */
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long start, unsigned long end, pgoff_t pgoff,
struct vm_area_struct *next);
extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long start, unsigned long end, pgoff_t pgoff);
extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
unsigned long end, unsigned long vm_flags, struct anon_vma *,
struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
struct anon_vma_name *);
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
unsigned long addr, int new_below);
extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void unlink_file_vma(struct vm_area_struct *);
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
unsigned long addr, unsigned long len, pgoff_t pgoff,
bool *need_rmap_locks);
extern void exit_mmap(struct mm_struct *);
static inline int check_data_rlimit(unsigned long rlim,
unsigned long new,
unsigned long start,
unsigned long end_data,
unsigned long start_data)
{
if (rlim < RLIM_INFINITY) {
if (((new - start) + (end_data - start_data)) > rlim)
return -ENOSPC;
}
return 0;
}
extern int mm_take_all_locks(struct mm_struct *mm);
extern void mm_drop_all_locks(struct mm_struct *mm);
extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
extern struct file *get_mm_exe_file(struct mm_struct *mm);
extern struct file *get_task_exe_file(struct task_struct *task);
extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
const struct vm_special_mapping *sm);
extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long flags,
const struct vm_special_mapping *spec);
/* This is an obsolete alternative to _install_special_mapping. */
extern int install_special_mapping(struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long flags, struct page **pages);
unsigned long randomize_stack_top(unsigned long stack_top);
unsigned long randomize_page(unsigned long start, unsigned long range);
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
extern unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
struct list_head *uf);
extern unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot, unsigned long flags,
vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
struct list_head *uf);
extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
unsigned long start, size_t len, struct list_head *uf,
bool unlock);
extern int do_munmap(struct mm_struct *, unsigned long, size_t,
struct list_head *uf);
extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
#ifdef CONFIG_MMU
extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct list_head *uf, bool unlock);
extern int __mm_populate(unsigned long addr, unsigned long len,
int ignore_errors);
static inline void mm_populate(unsigned long addr, unsigned long len)
{
/* Ignore errors */
(void) __mm_populate(addr, len, 1);
}
#else
static inline void mm_populate(unsigned long addr, unsigned long len) {}
#endif
/* This takes the mm semaphore itself */
extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
extern int vm_munmap(unsigned long, size_t);
extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
unsigned long, unsigned long,
unsigned long, unsigned long);
struct vm_unmapped_area_info {
#define VM_UNMAPPED_AREA_TOPDOWN 1
unsigned long flags;
unsigned long length;
unsigned long low_limit;
unsigned long high_limit;
unsigned long align_mask;
unsigned long align_offset;
};
extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
/* truncate.c */
extern void truncate_inode_pages(struct address_space *, loff_t);
extern void truncate_inode_pages_range(struct address_space *,
loff_t lstart, loff_t lend);
extern void truncate_inode_pages_final(struct address_space *);
/* generic vm_area_ops exported for stackable file systems */
extern vm_fault_t filemap_fault(struct vm_fault *vmf);
extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff);
extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
extern unsigned long stack_guard_gap;
/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
int expand_downwards(struct vm_area_struct *vma, unsigned long address);
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
struct vm_area_struct **pprev);
/*
* Look up the first VMA which intersects the interval [start_addr, end_addr)
* NULL if none. Assume start_addr < end_addr.
*/
struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
unsigned long start_addr, unsigned long end_addr);
/**
* vma_lookup() - Find a VMA at a specific address
* @mm: The process address space.
* @addr: The user address.
*
* Return: The vm_area_struct at the given address, %NULL otherwise.
*/
static inline
struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
{
return mtree_load(&mm->mm_mt, addr);
}
static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
{
if (vma->vm_flags & VM_GROWSDOWN)
return stack_guard_gap;
/* See reasoning around the VM_SHADOW_STACK definition */
if (vma->vm_flags & VM_SHADOW_STACK)
return PAGE_SIZE;
return 0;
}
static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
{
unsigned long gap = stack_guard_start_gap(vma);
unsigned long vm_start = vma->vm_start;
vm_start -= gap;
if (vm_start > vma->vm_start)
vm_start = 0;
return vm_start;
}
static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
{
unsigned long vm_end = vma->vm_end;
if (vma->vm_flags & VM_GROWSUP) {
vm_end += stack_guard_gap;
if (vm_end < vma->vm_end)
vm_end = -PAGE_SIZE;
}
return vm_end;
}
static inline unsigned long vma_pages(struct vm_area_struct *vma)
{
return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
}
/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
unsigned long vm_start, unsigned long vm_end)
{
struct vm_area_struct *vma = vma_lookup(mm, vm_start);
if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
vma = NULL;
return vma;
}
static inline bool range_in_vma(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
return (vma && vma->vm_start <= start && end <= vma->vm_end);
}
#ifdef CONFIG_MMU
pgprot_t vm_get_page_prot(unsigned long vm_flags);
void vma_set_page_prot(struct vm_area_struct *vma);
#else
static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
{
return __pgprot(0);
}
static inline void vma_set_page_prot(struct vm_area_struct *vma)
{
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
}
#endif
void vma_set_file(struct vm_area_struct *vma, struct file *file);
#ifdef CONFIG_NUMA_BALANCING
unsigned long change_prot_numa(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
#endif
struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
unsigned long addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t);
int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t prot);
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
struct page **pages, unsigned long *num);
int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
unsigned long num);
int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
unsigned long num);
vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn);
vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, pgprot_t pgprot);
vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
pfn_t pfn);
vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
unsigned long addr, pfn_t pfn);
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
unsigned long addr, struct page *page)
{
int err = vm_insert_page(vma, addr, page);
if (err == -ENOMEM)
return VM_FAULT_OOM;
if (err < 0 && err != -EBUSY)
return VM_FAULT_SIGBUS;
return VM_FAULT_NOPAGE;
}
#ifndef io_remap_pfn_range
static inline int io_remap_pfn_range(struct vm_area_struct *vma,
unsigned long addr, unsigned long pfn,
unsigned long size, pgprot_t prot)
{
return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
}
#endif
static inline vm_fault_t vmf_error(int err)
{
if (err == -ENOMEM)
return VM_FAULT_OOM;
else if (err == -EHWPOISON)
return VM_FAULT_HWPOISON;
return VM_FAULT_SIGBUS;
}
/*
* Convert errno to return value for ->page_mkwrite() calls.
*
* This should eventually be merged with vmf_error() above, but will need a
* careful audit of all vmf_error() callers.
*/
static inline vm_fault_t vmf_fs_error(int err)
{
if (err == 0)
return VM_FAULT_LOCKED;
if (err == -EFAULT || err == -EAGAIN)
return VM_FAULT_NOPAGE;
if (err == -ENOMEM)
return VM_FAULT_OOM;
/* -ENOSPC, -EDQUOT, -EIO ... */
return VM_FAULT_SIGBUS;
}
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int foll_flags);
static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
{
if (vm_fault & VM_FAULT_OOM)
return -ENOMEM;
if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
return -EFAULT;
return 0;
}
/*
* Indicates whether GUP can follow a PROT_NONE mapped page, or whether
* a (NUMA hinting) fault is required.
*/
static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
unsigned int flags)
{
/*
* If callers don't want to honor NUMA hinting faults, no need to
* determine if we would actually have to trigger a NUMA hinting fault.
*/
if (!(flags & FOLL_HONOR_NUMA_FAULT))
return true;
/*
* NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
*
* Requiring a fault here even for inaccessible VMAs would mean that
* FOLL_FORCE cannot make any progress, because handle_mm_fault()
* refuses to process NUMA hinting faults in inaccessible VMAs.
*/
return !vma_is_accessible(vma);
}
typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
unsigned long size, pte_fn_t fn, void *data);
extern int apply_to_existing_page_range(struct mm_struct *mm,
unsigned long address, unsigned long size,
pte_fn_t fn, void *data);
#ifdef CONFIG_PAGE_POISONING
extern void __kernel_poison_pages(struct page *page, int numpages);
extern void __kernel_unpoison_pages(struct page *page, int numpages);
extern bool _page_poisoning_enabled_early;
DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
static inline bool page_poisoning_enabled(void)
{
return _page_poisoning_enabled_early;
}
/*
* For use in fast paths after init_mem_debugging() has run, or when a
* false negative result is not harmful when called too early.
*/
static inline bool page_poisoning_enabled_static(void)
{
return static_branch_unlikely(&_page_poisoning_enabled);
}
static inline void kernel_poison_pages(struct page *page, int numpages)
{
if (page_poisoning_enabled_static())
__kernel_poison_pages(page, numpages);
}
static inline void kernel_unpoison_pages(struct page *page, int numpages)
{
if (page_poisoning_enabled_static())
__kernel_unpoison_pages(page, numpages);
}
#else
static inline bool page_poisoning_enabled(void) { return false; }
static inline bool page_poisoning_enabled_static(void) { return false; }
static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
static inline void kernel_poison_pages(struct page *page, int numpages) { }
static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
#endif
DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
static inline bool want_init_on_alloc(gfp_t flags)
{
if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
&init_on_alloc))
return true;
return flags & __GFP_ZERO;
}
DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
static inline bool want_init_on_free(void)
{
return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
&init_on_free);
}
extern bool _debug_pagealloc_enabled_early;
DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
static inline bool debug_pagealloc_enabled(void)
{
return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
_debug_pagealloc_enabled_early;
}
/*
* For use in fast paths after mem_debugging_and_hardening_init() has run,
* or when a false negative result is not harmful when called too early.
*/
static inline bool debug_pagealloc_enabled_static(void)
{
if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
return false;
return static_branch_unlikely(&_debug_pagealloc_enabled);
}
/*
* To support DEBUG_PAGEALLOC architecture must ensure that
* __kernel_map_pages() never fails
*/
extern void __kernel_map_pages(struct page *page, int numpages, int enable);
#ifdef CONFIG_DEBUG_PAGEALLOC
static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
{
if (debug_pagealloc_enabled_static())
__kernel_map_pages(page, numpages, 1);
}
static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
{
if (debug_pagealloc_enabled_static())
__kernel_map_pages(page, numpages, 0);
}
extern unsigned int _debug_guardpage_minorder;
DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
static inline unsigned int debug_guardpage_minorder(void)
{
return _debug_guardpage_minorder;
}
static inline bool debug_guardpage_enabled(void)
{
return static_branch_unlikely(&_debug_guardpage_enabled);
}
static inline bool page_is_guard(struct page *page)
{
if (!debug_guardpage_enabled())
return false;
return PageGuard(page);
}
bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
int migratetype);
static inline bool set_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype)
{
if (!debug_guardpage_enabled())
return false;
return __set_page_guard(zone, page, order, migratetype);
}
void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
int migratetype);
static inline void clear_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype)
{
if (!debug_guardpage_enabled())
return;
__clear_page_guard(zone, page, order, migratetype);
}
#else /* CONFIG_DEBUG_PAGEALLOC */
static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
static inline unsigned int debug_guardpage_minorder(void) { return 0; }
static inline bool debug_guardpage_enabled(void) { return false; }
static inline bool page_is_guard(struct page *page) { return false; }
static inline bool set_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype) { return false; }
static inline void clear_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype) {}
#endif /* CONFIG_DEBUG_PAGEALLOC */
#ifdef __HAVE_ARCH_GATE_AREA
extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
extern int in_gate_area_no_mm(unsigned long addr);
extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
#else
static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
{
return NULL;
}
static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
{
return 0;
}
#endif /* __HAVE_ARCH_GATE_AREA */
extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
#ifdef CONFIG_SYSCTL
extern int sysctl_drop_caches;
int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
loff_t *);
#endif
void drop_slab(void);
#ifndef CONFIG_MMU
#define randomize_va_space 0
#else
extern int randomize_va_space;
#endif
const char * arch_vma_name(struct vm_area_struct *vma);
#ifdef CONFIG_MMU
void print_vma_addr(char *prefix, unsigned long rip);
#else
static inline void print_vma_addr(char *prefix, unsigned long rip)
{
}
#endif
void *sparse_buffer_alloc(unsigned long size);
struct page * __populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
struct dev_pagemap *pgmap);
void pmd_init(void *addr);
void pud_init(void *addr);
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
struct vmem_altmap *altmap, struct page *reuse);
void *vmemmap_alloc_block(unsigned long size, int node);
struct vmem_altmap;
void *vmemmap_alloc_block_buf(unsigned long size, int node,
struct vmem_altmap *altmap);
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
unsigned long addr, unsigned long next);
int vmemmap_check_pmd(pmd_t *pmd, int node,
unsigned long addr, unsigned long next);
int vmemmap_populate_basepages(unsigned long start, unsigned long end,
int node, struct vmem_altmap *altmap);
int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
int node, struct vmem_altmap *altmap);
int vmemmap_populate(unsigned long start, unsigned long end, int node,
struct vmem_altmap *altmap);
void vmemmap_populate_print_last(void);
#ifdef CONFIG_MEMORY_HOTPLUG
void vmemmap_free(unsigned long start, unsigned long end,
struct vmem_altmap *altmap);
#endif
#define VMEMMAP_RESERVE_NR 2
#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
struct dev_pagemap *pgmap)
{
unsigned long nr_pages;
unsigned long nr_vmemmap_pages;
if (!pgmap || !is_power_of_2(sizeof(struct page)))
return false;
nr_pages = pgmap_vmemmap_nr(pgmap);
nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
/*
* For vmemmap optimization with DAX we need minimum 2 vmemmap
* pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
*/
return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
}
/*
* If we don't have an architecture override, use the generic rule
*/
#ifndef vmemmap_can_optimize
#define vmemmap_can_optimize __vmemmap_can_optimize
#endif
#else
static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
struct dev_pagemap *pgmap)
{
return false;
}
#endif
void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
unsigned long nr_pages);
enum mf_flags {
MF_COUNT_INCREASED = 1 << 0,
MF_ACTION_REQUIRED = 1 << 1,
MF_MUST_KILL = 1 << 2,
MF_SOFT_OFFLINE = 1 << 3,
MF_UNPOISON = 1 << 4,
MF_SW_SIMULATED = 1 << 5,
MF_NO_RETRY = 1 << 6,
};
int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
unsigned long count, int mf_flags);
extern int memory_failure(unsigned long pfn, int flags);
extern void memory_failure_queue_kick(int cpu);
extern int unpoison_memory(unsigned long pfn);
extern void shake_page(struct page *p);
extern atomic_long_t num_poisoned_pages __read_mostly;
extern int soft_offline_page(unsigned long pfn, int flags);
#ifdef CONFIG_MEMORY_FAILURE
/*
* Sysfs entries for memory failure handling statistics.
*/
extern const struct attribute_group memory_failure_attr_group;
extern void memory_failure_queue(unsigned long pfn, int flags);
extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
bool *migratable_cleared);
void num_poisoned_pages_inc(unsigned long pfn);
void num_poisoned_pages_sub(unsigned long pfn, long i);
struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
#else
static inline void memory_failure_queue(unsigned long pfn, int flags)
{
}
static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
bool *migratable_cleared)
{
return 0;
}
static inline void num_poisoned_pages_inc(unsigned long pfn)
{
}
static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
{
}
#endif
#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
struct vm_area_struct *vma, struct list_head *to_kill,
unsigned long ksm_addr);
#endif
#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
extern void memblk_nr_poison_inc(unsigned long pfn);
extern void memblk_nr_poison_sub(unsigned long pfn, long i);
#else
static inline void memblk_nr_poison_inc(unsigned long pfn)
{
}
static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
{
}
#endif
#ifndef arch_memory_failure
static inline int arch_memory_failure(unsigned long pfn, int flags)
{
return -ENXIO;
}
#endif
#ifndef arch_is_platform_page
static inline bool arch_is_platform_page(u64 paddr)
{
return false;
}
#endif
/*
* Error handlers for various types of pages.
*/
enum mf_result {
MF_IGNORED, /* Error: cannot be handled */
MF_FAILED, /* Error: handling failed */
MF_DELAYED, /* Will be handled later */
MF_RECOVERED, /* Successfully recovered */
};
enum mf_action_page_type {
MF_MSG_KERNEL,
MF_MSG_KERNEL_HIGH_ORDER,
MF_MSG_SLAB,
MF_MSG_DIFFERENT_COMPOUND,
MF_MSG_HUGE,
MF_MSG_FREE_HUGE,
MF_MSG_UNMAP_FAILED,
MF_MSG_DIRTY_SWAPCACHE,
MF_MSG_CLEAN_SWAPCACHE,
MF_MSG_DIRTY_MLOCKED_LRU,
MF_MSG_CLEAN_MLOCKED_LRU,
MF_MSG_DIRTY_UNEVICTABLE_LRU,
MF_MSG_CLEAN_UNEVICTABLE_LRU,
MF_MSG_DIRTY_LRU,
MF_MSG_CLEAN_LRU,
MF_MSG_TRUNCATED_LRU,
MF_MSG_BUDDY,
MF_MSG_DAX,
MF_MSG_UNSPLIT_THP,
MF_MSG_UNKNOWN,
};
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
extern void clear_huge_page(struct page *page,
unsigned long addr_hint,
unsigned int pages_per_huge_page);
int copy_user_large_folio(struct folio *dst, struct folio *src,
unsigned long addr_hint,
struct vm_area_struct *vma);
long copy_folio_from_user(struct folio *dst_folio,
const void __user *usr_src,
bool allow_pagefault);
/**
* vma_is_special_huge - Are transhuge page-table entries considered special?
* @vma: Pointer to the struct vm_area_struct to consider
*
* Whether transhuge page-table entries are considered "special" following
* the definition in vm_normal_page().
*
* Return: true if transhuge page-table entries should be considered special,
* false otherwise.
*/
static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
{
return vma_is_dax(vma) || (vma->vm_file &&
(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
#if MAX_NUMNODES > 1
void __init setup_nr_node_ids(void);
#else
static inline void setup_nr_node_ids(void) {}
#endif
extern int memcmp_pages(struct page *page1, struct page *page2);
static inline int pages_identical(struct page *page1, struct page *page2)
{
return !memcmp_pages(page1, page2);
}
#ifdef CONFIG_MAPPING_DIRTY_HELPERS
unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
pgoff_t first_index, pgoff_t nr,
pgoff_t bitmap_pgoff,
unsigned long *bitmap,
pgoff_t *start,
pgoff_t *end);
unsigned long wp_shared_mapping_range(struct address_space *mapping,
pgoff_t first_index, pgoff_t nr);
#endif
extern int sysctl_nr_trim_pages;
#ifdef CONFIG_PRINTK
void mem_dump_obj(void *object);
#else
static inline void mem_dump_obj(void *object) {}
#endif
/**
* seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
* @seals: the seals to check
* @vma: the vma to operate on
*
* Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
* the vma flags. Return 0 if check pass, or <0 for errors.
*/
static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
{
if (seals & F_SEAL_FUTURE_WRITE) {
/*
* New PROT_WRITE and MAP_SHARED mmaps are not allowed when
* "future write" seal active.
*/
if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
return -EPERM;
/*
* Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
* MAP_SHARED and read-only, take care to not allow mprotect to
* revert protections on such mappings. Do this only for shared
* mappings. For private mappings, don't need to mask
* VM_MAYWRITE as we still want them to be COW-writable.
*/
if (vma->vm_flags & VM_SHARED)
vm_flags_clear(vma, VM_MAYWRITE);
}
return 0;
}
#ifdef CONFIG_ANON_VMA_NAME
int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
unsigned long len_in,
struct anon_vma_name *anon_name);
#else
static inline int
madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
unsigned long len_in, struct anon_vma_name *anon_name) {
return 0;
}
#endif
#ifdef CONFIG_UNACCEPTED_MEMORY
bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
void accept_memory(phys_addr_t start, phys_addr_t end);
#else
static inline bool range_contains_unaccepted_memory(phys_addr_t start,
phys_addr_t end)
{
return false;
}
static inline void accept_memory(phys_addr_t start, phys_addr_t end)
{
}
#endif
#endif /* _LINUX_MM_H */
|