1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_errortag.h"
#include "xfs_error.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_trace.h"
#include "xfs_sysfs.h"
#include "xfs_sb.h"
#include "xfs_health.h"
kmem_zone_t *xfs_log_ticket_zone;
/* Local miscellaneous function prototypes */
STATIC struct xlog *
xlog_alloc_log(
struct xfs_mount *mp,
struct xfs_buftarg *log_target,
xfs_daddr_t blk_offset,
int num_bblks);
STATIC int
xlog_space_left(
struct xlog *log,
atomic64_t *head);
STATIC void
xlog_dealloc_log(
struct xlog *log);
/* local state machine functions */
STATIC void xlog_state_done_syncing(
struct xlog_in_core *iclog);
STATIC int
xlog_state_get_iclog_space(
struct xlog *log,
int len,
struct xlog_in_core **iclog,
struct xlog_ticket *ticket,
int *continued_write,
int *logoffsetp);
STATIC void
xlog_state_switch_iclogs(
struct xlog *log,
struct xlog_in_core *iclog,
int eventual_size);
STATIC void
xlog_grant_push_ail(
struct xlog *log,
int need_bytes);
STATIC void
xlog_sync(
struct xlog *log,
struct xlog_in_core *iclog);
#if defined(DEBUG)
STATIC void
xlog_verify_dest_ptr(
struct xlog *log,
void *ptr);
STATIC void
xlog_verify_grant_tail(
struct xlog *log);
STATIC void
xlog_verify_iclog(
struct xlog *log,
struct xlog_in_core *iclog,
int count);
STATIC void
xlog_verify_tail_lsn(
struct xlog *log,
struct xlog_in_core *iclog,
xfs_lsn_t tail_lsn);
#else
#define xlog_verify_dest_ptr(a,b)
#define xlog_verify_grant_tail(a)
#define xlog_verify_iclog(a,b,c)
#define xlog_verify_tail_lsn(a,b,c)
#endif
STATIC int
xlog_iclogs_empty(
struct xlog *log);
static void
xlog_grant_sub_space(
struct xlog *log,
atomic64_t *head,
int bytes)
{
int64_t head_val = atomic64_read(head);
int64_t new, old;
do {
int cycle, space;
xlog_crack_grant_head_val(head_val, &cycle, &space);
space -= bytes;
if (space < 0) {
space += log->l_logsize;
cycle--;
}
old = head_val;
new = xlog_assign_grant_head_val(cycle, space);
head_val = atomic64_cmpxchg(head, old, new);
} while (head_val != old);
}
static void
xlog_grant_add_space(
struct xlog *log,
atomic64_t *head,
int bytes)
{
int64_t head_val = atomic64_read(head);
int64_t new, old;
do {
int tmp;
int cycle, space;
xlog_crack_grant_head_val(head_val, &cycle, &space);
tmp = log->l_logsize - space;
if (tmp > bytes)
space += bytes;
else {
space = bytes - tmp;
cycle++;
}
old = head_val;
new = xlog_assign_grant_head_val(cycle, space);
head_val = atomic64_cmpxchg(head, old, new);
} while (head_val != old);
}
STATIC void
xlog_grant_head_init(
struct xlog_grant_head *head)
{
xlog_assign_grant_head(&head->grant, 1, 0);
INIT_LIST_HEAD(&head->waiters);
spin_lock_init(&head->lock);
}
STATIC void
xlog_grant_head_wake_all(
struct xlog_grant_head *head)
{
struct xlog_ticket *tic;
spin_lock(&head->lock);
list_for_each_entry(tic, &head->waiters, t_queue)
wake_up_process(tic->t_task);
spin_unlock(&head->lock);
}
static inline int
xlog_ticket_reservation(
struct xlog *log,
struct xlog_grant_head *head,
struct xlog_ticket *tic)
{
if (head == &log->l_write_head) {
ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
return tic->t_unit_res;
} else {
if (tic->t_flags & XLOG_TIC_PERM_RESERV)
return tic->t_unit_res * tic->t_cnt;
else
return tic->t_unit_res;
}
}
STATIC bool
xlog_grant_head_wake(
struct xlog *log,
struct xlog_grant_head *head,
int *free_bytes)
{
struct xlog_ticket *tic;
int need_bytes;
bool woken_task = false;
list_for_each_entry(tic, &head->waiters, t_queue) {
/*
* There is a chance that the size of the CIL checkpoints in
* progress at the last AIL push target calculation resulted in
* limiting the target to the log head (l_last_sync_lsn) at the
* time. This may not reflect where the log head is now as the
* CIL checkpoints may have completed.
*
* Hence when we are woken here, it may be that the head of the
* log that has moved rather than the tail. As the tail didn't
* move, there still won't be space available for the
* reservation we require. However, if the AIL has already
* pushed to the target defined by the old log head location, we
* will hang here waiting for something else to update the AIL
* push target.
*
* Therefore, if there isn't space to wake the first waiter on
* the grant head, we need to push the AIL again to ensure the
* target reflects both the current log tail and log head
* position before we wait for the tail to move again.
*/
need_bytes = xlog_ticket_reservation(log, head, tic);
if (*free_bytes < need_bytes) {
if (!woken_task)
xlog_grant_push_ail(log, need_bytes);
return false;
}
*free_bytes -= need_bytes;
trace_xfs_log_grant_wake_up(log, tic);
wake_up_process(tic->t_task);
woken_task = true;
}
return true;
}
STATIC int
xlog_grant_head_wait(
struct xlog *log,
struct xlog_grant_head *head,
struct xlog_ticket *tic,
int need_bytes) __releases(&head->lock)
__acquires(&head->lock)
{
list_add_tail(&tic->t_queue, &head->waiters);
do {
if (XLOG_FORCED_SHUTDOWN(log))
goto shutdown;
xlog_grant_push_ail(log, need_bytes);
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock(&head->lock);
XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
trace_xfs_log_grant_sleep(log, tic);
schedule();
trace_xfs_log_grant_wake(log, tic);
spin_lock(&head->lock);
if (XLOG_FORCED_SHUTDOWN(log))
goto shutdown;
} while (xlog_space_left(log, &head->grant) < need_bytes);
list_del_init(&tic->t_queue);
return 0;
shutdown:
list_del_init(&tic->t_queue);
return -EIO;
}
/*
* Atomically get the log space required for a log ticket.
*
* Once a ticket gets put onto head->waiters, it will only return after the
* needed reservation is satisfied.
*
* This function is structured so that it has a lock free fast path. This is
* necessary because every new transaction reservation will come through this
* path. Hence any lock will be globally hot if we take it unconditionally on
* every pass.
*
* As tickets are only ever moved on and off head->waiters under head->lock, we
* only need to take that lock if we are going to add the ticket to the queue
* and sleep. We can avoid taking the lock if the ticket was never added to
* head->waiters because the t_queue list head will be empty and we hold the
* only reference to it so it can safely be checked unlocked.
*/
STATIC int
xlog_grant_head_check(
struct xlog *log,
struct xlog_grant_head *head,
struct xlog_ticket *tic,
int *need_bytes)
{
int free_bytes;
int error = 0;
ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
/*
* If there are other waiters on the queue then give them a chance at
* logspace before us. Wake up the first waiters, if we do not wake
* up all the waiters then go to sleep waiting for more free space,
* otherwise try to get some space for this transaction.
*/
*need_bytes = xlog_ticket_reservation(log, head, tic);
free_bytes = xlog_space_left(log, &head->grant);
if (!list_empty_careful(&head->waiters)) {
spin_lock(&head->lock);
if (!xlog_grant_head_wake(log, head, &free_bytes) ||
free_bytes < *need_bytes) {
error = xlog_grant_head_wait(log, head, tic,
*need_bytes);
}
spin_unlock(&head->lock);
} else if (free_bytes < *need_bytes) {
spin_lock(&head->lock);
error = xlog_grant_head_wait(log, head, tic, *need_bytes);
spin_unlock(&head->lock);
}
return error;
}
static void
xlog_tic_reset_res(xlog_ticket_t *tic)
{
tic->t_res_num = 0;
tic->t_res_arr_sum = 0;
tic->t_res_num_ophdrs = 0;
}
static void
xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
{
if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
/* add to overflow and start again */
tic->t_res_o_flow += tic->t_res_arr_sum;
tic->t_res_num = 0;
tic->t_res_arr_sum = 0;
}
tic->t_res_arr[tic->t_res_num].r_len = len;
tic->t_res_arr[tic->t_res_num].r_type = type;
tic->t_res_arr_sum += len;
tic->t_res_num++;
}
/*
* Replenish the byte reservation required by moving the grant write head.
*/
int
xfs_log_regrant(
struct xfs_mount *mp,
struct xlog_ticket *tic)
{
struct xlog *log = mp->m_log;
int need_bytes;
int error = 0;
if (XLOG_FORCED_SHUTDOWN(log))
return -EIO;
XFS_STATS_INC(mp, xs_try_logspace);
/*
* This is a new transaction on the ticket, so we need to change the
* transaction ID so that the next transaction has a different TID in
* the log. Just add one to the existing tid so that we can see chains
* of rolling transactions in the log easily.
*/
tic->t_tid++;
xlog_grant_push_ail(log, tic->t_unit_res);
tic->t_curr_res = tic->t_unit_res;
xlog_tic_reset_res(tic);
if (tic->t_cnt > 0)
return 0;
trace_xfs_log_regrant(log, tic);
error = xlog_grant_head_check(log, &log->l_write_head, tic,
&need_bytes);
if (error)
goto out_error;
xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
trace_xfs_log_regrant_exit(log, tic);
xlog_verify_grant_tail(log);
return 0;
out_error:
/*
* If we are failing, make sure the ticket doesn't have any current
* reservations. We don't want to add this back when the ticket/
* transaction gets cancelled.
*/
tic->t_curr_res = 0;
tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
return error;
}
/*
* Reserve log space and return a ticket corresponding to the reservation.
*
* Each reservation is going to reserve extra space for a log record header.
* When writes happen to the on-disk log, we don't subtract the length of the
* log record header from any reservation. By wasting space in each
* reservation, we prevent over allocation problems.
*/
int
xfs_log_reserve(
struct xfs_mount *mp,
int unit_bytes,
int cnt,
struct xlog_ticket **ticp,
uint8_t client,
bool permanent)
{
struct xlog *log = mp->m_log;
struct xlog_ticket *tic;
int need_bytes;
int error = 0;
ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
if (XLOG_FORCED_SHUTDOWN(log))
return -EIO;
XFS_STATS_INC(mp, xs_try_logspace);
ASSERT(*ticp == NULL);
tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
*ticp = tic;
xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
: tic->t_unit_res);
trace_xfs_log_reserve(log, tic);
error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
&need_bytes);
if (error)
goto out_error;
xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
trace_xfs_log_reserve_exit(log, tic);
xlog_verify_grant_tail(log);
return 0;
out_error:
/*
* If we are failing, make sure the ticket doesn't have any current
* reservations. We don't want to add this back when the ticket/
* transaction gets cancelled.
*/
tic->t_curr_res = 0;
tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
return error;
}
static bool
__xlog_state_release_iclog(
struct xlog *log,
struct xlog_in_core *iclog)
{
lockdep_assert_held(&log->l_icloglock);
if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
/* update tail before writing to iclog */
xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
iclog->ic_state = XLOG_STATE_SYNCING;
iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
xlog_verify_tail_lsn(log, iclog, tail_lsn);
/* cycle incremented when incrementing curr_block */
return true;
}
ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
return false;
}
/*
* Flush iclog to disk if this is the last reference to the given iclog and the
* it is in the WANT_SYNC state.
*/
static int
xlog_state_release_iclog(
struct xlog *log,
struct xlog_in_core *iclog)
{
lockdep_assert_held(&log->l_icloglock);
if (iclog->ic_state == XLOG_STATE_IOERROR)
return -EIO;
if (atomic_dec_and_test(&iclog->ic_refcnt) &&
__xlog_state_release_iclog(log, iclog)) {
spin_unlock(&log->l_icloglock);
xlog_sync(log, iclog);
spin_lock(&log->l_icloglock);
}
return 0;
}
void
xfs_log_release_iclog(
struct xlog_in_core *iclog)
{
struct xlog *log = iclog->ic_log;
bool sync = false;
if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
if (iclog->ic_state != XLOG_STATE_IOERROR)
sync = __xlog_state_release_iclog(log, iclog);
spin_unlock(&log->l_icloglock);
}
if (sync)
xlog_sync(log, iclog);
}
/*
* Mount a log filesystem
*
* mp - ubiquitous xfs mount point structure
* log_target - buftarg of on-disk log device
* blk_offset - Start block # where block size is 512 bytes (BBSIZE)
* num_bblocks - Number of BBSIZE blocks in on-disk log
*
* Return error or zero.
*/
int
xfs_log_mount(
xfs_mount_t *mp,
xfs_buftarg_t *log_target,
xfs_daddr_t blk_offset,
int num_bblks)
{
bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
int error = 0;
int min_logfsbs;
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
xfs_notice(mp, "Mounting V%d Filesystem",
XFS_SB_VERSION_NUM(&mp->m_sb));
} else {
xfs_notice(mp,
"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
XFS_SB_VERSION_NUM(&mp->m_sb));
ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
}
mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
if (IS_ERR(mp->m_log)) {
error = PTR_ERR(mp->m_log);
goto out;
}
/*
* Validate the given log space and drop a critical message via syslog
* if the log size is too small that would lead to some unexpected
* situations in transaction log space reservation stage.
*
* Note: we can't just reject the mount if the validation fails. This
* would mean that people would have to downgrade their kernel just to
* remedy the situation as there is no way to grow the log (short of
* black magic surgery with xfs_db).
*
* We can, however, reject mounts for CRC format filesystems, as the
* mkfs binary being used to make the filesystem should never create a
* filesystem with a log that is too small.
*/
min_logfsbs = xfs_log_calc_minimum_size(mp);
if (mp->m_sb.sb_logblocks < min_logfsbs) {
xfs_warn(mp,
"Log size %d blocks too small, minimum size is %d blocks",
mp->m_sb.sb_logblocks, min_logfsbs);
error = -EINVAL;
} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
xfs_warn(mp,
"Log size %d blocks too large, maximum size is %lld blocks",
mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
error = -EINVAL;
} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
xfs_warn(mp,
"log size %lld bytes too large, maximum size is %lld bytes",
XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
XFS_MAX_LOG_BYTES);
error = -EINVAL;
} else if (mp->m_sb.sb_logsunit > 1 &&
mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
xfs_warn(mp,
"log stripe unit %u bytes must be a multiple of block size",
mp->m_sb.sb_logsunit);
error = -EINVAL;
fatal = true;
}
if (error) {
/*
* Log check errors are always fatal on v5; or whenever bad
* metadata leads to a crash.
*/
if (fatal) {
xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
ASSERT(0);
goto out_free_log;
}
xfs_crit(mp, "Log size out of supported range.");
xfs_crit(mp,
"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
}
/*
* Initialize the AIL now we have a log.
*/
error = xfs_trans_ail_init(mp);
if (error) {
xfs_warn(mp, "AIL initialisation failed: error %d", error);
goto out_free_log;
}
mp->m_log->l_ailp = mp->m_ail;
/*
* skip log recovery on a norecovery mount. pretend it all
* just worked.
*/
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
if (readonly)
mp->m_flags &= ~XFS_MOUNT_RDONLY;
error = xlog_recover(mp->m_log);
if (readonly)
mp->m_flags |= XFS_MOUNT_RDONLY;
if (error) {
xfs_warn(mp, "log mount/recovery failed: error %d",
error);
xlog_recover_cancel(mp->m_log);
goto out_destroy_ail;
}
}
error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
"log");
if (error)
goto out_destroy_ail;
/* Normal transactions can now occur */
mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
/*
* Now the log has been fully initialised and we know were our
* space grant counters are, we can initialise the permanent ticket
* needed for delayed logging to work.
*/
xlog_cil_init_post_recovery(mp->m_log);
return 0;
out_destroy_ail:
xfs_trans_ail_destroy(mp);
out_free_log:
xlog_dealloc_log(mp->m_log);
out:
return error;
}
/*
* Finish the recovery of the file system. This is separate from the
* xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
* in the root and real-time bitmap inodes between calling xfs_log_mount() and
* here.
*
* If we finish recovery successfully, start the background log work. If we are
* not doing recovery, then we have a RO filesystem and we don't need to start
* it.
*/
int
xfs_log_mount_finish(
struct xfs_mount *mp)
{
int error = 0;
bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
return 0;
} else if (readonly) {
/* Allow unlinked processing to proceed */
mp->m_flags &= ~XFS_MOUNT_RDONLY;
}
/*
* During the second phase of log recovery, we need iget and
* iput to behave like they do for an active filesystem.
* xfs_fs_drop_inode needs to be able to prevent the deletion
* of inodes before we're done replaying log items on those
* inodes. Turn it off immediately after recovery finishes
* so that we don't leak the quota inodes if subsequent mount
* activities fail.
*
* We let all inodes involved in redo item processing end up on
* the LRU instead of being evicted immediately so that if we do
* something to an unlinked inode, the irele won't cause
* premature truncation and freeing of the inode, which results
* in log recovery failure. We have to evict the unreferenced
* lru inodes after clearing SB_ACTIVE because we don't
* otherwise clean up the lru if there's a subsequent failure in
* xfs_mountfs, which leads to us leaking the inodes if nothing
* else (e.g. quotacheck) references the inodes before the
* mount failure occurs.
*/
mp->m_super->s_flags |= SB_ACTIVE;
error = xlog_recover_finish(mp->m_log);
if (!error)
xfs_log_work_queue(mp);
mp->m_super->s_flags &= ~SB_ACTIVE;
evict_inodes(mp->m_super);
/*
* Drain the buffer LRU after log recovery. This is required for v4
* filesystems to avoid leaving around buffers with NULL verifier ops,
* but we do it unconditionally to make sure we're always in a clean
* cache state after mount.
*
* Don't push in the error case because the AIL may have pending intents
* that aren't removed until recovery is cancelled.
*/
if (!error && recovered) {
xfs_log_force(mp, XFS_LOG_SYNC);
xfs_ail_push_all_sync(mp->m_ail);
}
xfs_wait_buftarg(mp->m_ddev_targp);
if (readonly)
mp->m_flags |= XFS_MOUNT_RDONLY;
return error;
}
/*
* The mount has failed. Cancel the recovery if it hasn't completed and destroy
* the log.
*/
void
xfs_log_mount_cancel(
struct xfs_mount *mp)
{
xlog_recover_cancel(mp->m_log);
xfs_log_unmount(mp);
}
/*
* Wait for the iclog to be written disk, or return an error if the log has been
* shut down.
*/
static int
xlog_wait_on_iclog(
struct xlog_in_core *iclog)
__releases(iclog->ic_log->l_icloglock)
{
struct xlog *log = iclog->ic_log;
if (!XLOG_FORCED_SHUTDOWN(log) &&
iclog->ic_state != XLOG_STATE_ACTIVE &&
iclog->ic_state != XLOG_STATE_DIRTY) {
XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
} else {
spin_unlock(&log->l_icloglock);
}
if (XLOG_FORCED_SHUTDOWN(log))
return -EIO;
return 0;
}
/*
* Write out an unmount record using the ticket provided. We have to account for
* the data space used in the unmount ticket as this write is not done from a
* transaction context that has already done the accounting for us.
*/
static int
xlog_write_unmount_record(
struct xlog *log,
struct xlog_ticket *ticket,
xfs_lsn_t *lsn,
uint flags)
{
struct xfs_unmount_log_format ulf = {
.magic = XLOG_UNMOUNT_TYPE,
};
struct xfs_log_iovec reg = {
.i_addr = &ulf,
.i_len = sizeof(ulf),
.i_type = XLOG_REG_TYPE_UNMOUNT,
};
struct xfs_log_vec vec = {
.lv_niovecs = 1,
.lv_iovecp = ®,
};
/* account for space used by record data */
ticket->t_curr_res -= sizeof(ulf);
return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
}
/*
* Mark the filesystem clean by writing an unmount record to the head of the
* log.
*/
static void
xlog_unmount_write(
struct xlog *log)
{
struct xfs_mount *mp = log->l_mp;
struct xlog_in_core *iclog;
struct xlog_ticket *tic = NULL;
xfs_lsn_t lsn;
uint flags = XLOG_UNMOUNT_TRANS;
int error;
error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
if (error)
goto out_err;
error = xlog_write_unmount_record(log, tic, &lsn, flags);
/*
* At this point, we're umounting anyway, so there's no point in
* transitioning log state to IOERROR. Just continue...
*/
out_err:
if (error)
xfs_alert(mp, "%s: unmount record failed", __func__);
spin_lock(&log->l_icloglock);
iclog = log->l_iclog;
atomic_inc(&iclog->ic_refcnt);
if (iclog->ic_state == XLOG_STATE_ACTIVE)
xlog_state_switch_iclogs(log, iclog, 0);
else
ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
iclog->ic_state == XLOG_STATE_IOERROR);
error = xlog_state_release_iclog(log, iclog);
xlog_wait_on_iclog(iclog);
if (tic) {
trace_xfs_log_umount_write(log, tic);
xfs_log_ticket_ungrant(log, tic);
}
}
static void
xfs_log_unmount_verify_iclog(
struct xlog *log)
{
struct xlog_in_core *iclog = log->l_iclog;
do {
ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
ASSERT(iclog->ic_offset == 0);
} while ((iclog = iclog->ic_next) != log->l_iclog);
}
/*
* Unmount record used to have a string "Unmount filesystem--" in the
* data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
* We just write the magic number now since that particular field isn't
* currently architecture converted and "Unmount" is a bit foo.
* As far as I know, there weren't any dependencies on the old behaviour.
*/
static void
xfs_log_unmount_write(
struct xfs_mount *mp)
{
struct xlog *log = mp->m_log;
/*
* Don't write out unmount record on norecovery mounts or ro devices.
* Or, if we are doing a forced umount (typically because of IO errors).
*/
if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
xfs_readonly_buftarg(log->l_targ)) {
ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
return;
}
xfs_log_force(mp, XFS_LOG_SYNC);
if (XLOG_FORCED_SHUTDOWN(log))
return;
/*
* If we think the summary counters are bad, avoid writing the unmount
* record to force log recovery at next mount, after which the summary
* counters will be recalculated. Refer to xlog_check_unmount_rec for
* more details.
*/
if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
xfs_alert(mp, "%s: will fix summary counters at next mount",
__func__);
return;
}
xfs_log_unmount_verify_iclog(log);
xlog_unmount_write(log);
}
/*
* Empty the log for unmount/freeze.
*
* To do this, we first need to shut down the background log work so it is not
* trying to cover the log as we clean up. We then need to unpin all objects in
* the log so we can then flush them out. Once they have completed their IO and
* run the callbacks removing themselves from the AIL, we can write the unmount
* record.
*/
void
xfs_log_quiesce(
struct xfs_mount *mp)
{
cancel_delayed_work_sync(&mp->m_log->l_work);
xfs_log_force(mp, XFS_LOG_SYNC);
/*
* The superblock buffer is uncached and while xfs_ail_push_all_sync()
* will push it, xfs_wait_buftarg() will not wait for it. Further,
* xfs_buf_iowait() cannot be used because it was pushed with the
* XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
* the IO to complete.
*/
xfs_ail_push_all_sync(mp->m_ail);
xfs_wait_buftarg(mp->m_ddev_targp);
xfs_buf_lock(mp->m_sb_bp);
xfs_buf_unlock(mp->m_sb_bp);
xfs_log_unmount_write(mp);
}
/*
* Shut down and release the AIL and Log.
*
* During unmount, we need to ensure we flush all the dirty metadata objects
* from the AIL so that the log is empty before we write the unmount record to
* the log. Once this is done, we can tear down the AIL and the log.
*/
void
xfs_log_unmount(
struct xfs_mount *mp)
{
xfs_log_quiesce(mp);
xfs_trans_ail_destroy(mp);
xfs_sysfs_del(&mp->m_log->l_kobj);
xlog_dealloc_log(mp->m_log);
}
void
xfs_log_item_init(
struct xfs_mount *mp,
struct xfs_log_item *item,
int type,
const struct xfs_item_ops *ops)
{
item->li_mountp = mp;
item->li_ailp = mp->m_ail;
item->li_type = type;
item->li_ops = ops;
item->li_lv = NULL;
INIT_LIST_HEAD(&item->li_ail);
INIT_LIST_HEAD(&item->li_cil);
INIT_LIST_HEAD(&item->li_bio_list);
INIT_LIST_HEAD(&item->li_trans);
}
/*
* Wake up processes waiting for log space after we have moved the log tail.
*/
void
xfs_log_space_wake(
struct xfs_mount *mp)
{
struct xlog *log = mp->m_log;
int free_bytes;
if (XLOG_FORCED_SHUTDOWN(log))
return;
if (!list_empty_careful(&log->l_write_head.waiters)) {
ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
spin_lock(&log->l_write_head.lock);
free_bytes = xlog_space_left(log, &log->l_write_head.grant);
xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
spin_unlock(&log->l_write_head.lock);
}
if (!list_empty_careful(&log->l_reserve_head.waiters)) {
ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
spin_lock(&log->l_reserve_head.lock);
free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
spin_unlock(&log->l_reserve_head.lock);
}
}
/*
* Determine if we have a transaction that has gone to disk that needs to be
* covered. To begin the transition to the idle state firstly the log needs to
* be idle. That means the CIL, the AIL and the iclogs needs to be empty before
* we start attempting to cover the log.
*
* Only if we are then in a state where covering is needed, the caller is
* informed that dummy transactions are required to move the log into the idle
* state.
*
* If there are any items in the AIl or CIL, then we do not want to attempt to
* cover the log as we may be in a situation where there isn't log space
* available to run a dummy transaction and this can lead to deadlocks when the
* tail of the log is pinned by an item that is modified in the CIL. Hence
* there's no point in running a dummy transaction at this point because we
* can't start trying to idle the log until both the CIL and AIL are empty.
*/
static int
xfs_log_need_covered(xfs_mount_t *mp)
{
struct xlog *log = mp->m_log;
int needed = 0;
if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
return 0;
if (!xlog_cil_empty(log))
return 0;
spin_lock(&log->l_icloglock);
switch (log->l_covered_state) {
case XLOG_STATE_COVER_DONE:
case XLOG_STATE_COVER_DONE2:
case XLOG_STATE_COVER_IDLE:
break;
case XLOG_STATE_COVER_NEED:
case XLOG_STATE_COVER_NEED2:
if (xfs_ail_min_lsn(log->l_ailp))
break;
if (!xlog_iclogs_empty(log))
break;
needed = 1;
if (log->l_covered_state == XLOG_STATE_COVER_NEED)
log->l_covered_state = XLOG_STATE_COVER_DONE;
else
log->l_covered_state = XLOG_STATE_COVER_DONE2;
break;
default:
needed = 1;
break;
}
spin_unlock(&log->l_icloglock);
return needed;
}
/*
* We may be holding the log iclog lock upon entering this routine.
*/
xfs_lsn_t
xlog_assign_tail_lsn_locked(
struct xfs_mount *mp)
{
struct xlog *log = mp->m_log;
struct xfs_log_item *lip;
xfs_lsn_t tail_lsn;
assert_spin_locked(&mp->m_ail->ail_lock);
/*
* To make sure we always have a valid LSN for the log tail we keep
* track of the last LSN which was committed in log->l_last_sync_lsn,
* and use that when the AIL was empty.
*/
lip = xfs_ail_min(mp->m_ail);
if (lip)
tail_lsn = lip->li_lsn;
else
tail_lsn = atomic64_read(&log->l_last_sync_lsn);
trace_xfs_log_assign_tail_lsn(log, tail_lsn);
atomic64_set(&log->l_tail_lsn, tail_lsn);
return tail_lsn;
}
xfs_lsn_t
xlog_assign_tail_lsn(
struct xfs_mount *mp)
{
xfs_lsn_t tail_lsn;
spin_lock(&mp->m_ail->ail_lock);
tail_lsn = xlog_assign_tail_lsn_locked(mp);
spin_unlock(&mp->m_ail->ail_lock);
return tail_lsn;
}
/*
* Return the space in the log between the tail and the head. The head
* is passed in the cycle/bytes formal parms. In the special case where
* the reserve head has wrapped passed the tail, this calculation is no
* longer valid. In this case, just return 0 which means there is no space
* in the log. This works for all places where this function is called
* with the reserve head. Of course, if the write head were to ever
* wrap the tail, we should blow up. Rather than catch this case here,
* we depend on other ASSERTions in other parts of the code. XXXmiken
*
* This code also handles the case where the reservation head is behind
* the tail. The details of this case are described below, but the end
* result is that we return the size of the log as the amount of space left.
*/
STATIC int
xlog_space_left(
struct xlog *log,
atomic64_t *head)
{
int free_bytes;
int tail_bytes;
int tail_cycle;
int head_cycle;
int head_bytes;
xlog_crack_grant_head(head, &head_cycle, &head_bytes);
xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
tail_bytes = BBTOB(tail_bytes);
if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
free_bytes = log->l_logsize - (head_bytes - tail_bytes);
else if (tail_cycle + 1 < head_cycle)
return 0;
else if (tail_cycle < head_cycle) {
ASSERT(tail_cycle == (head_cycle - 1));
free_bytes = tail_bytes - head_bytes;
} else {
/*
* The reservation head is behind the tail.
* In this case we just want to return the size of the
* log as the amount of space left.
*/
xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
xfs_alert(log->l_mp,
" tail_cycle = %d, tail_bytes = %d",
tail_cycle, tail_bytes);
xfs_alert(log->l_mp,
" GH cycle = %d, GH bytes = %d",
head_cycle, head_bytes);
ASSERT(0);
free_bytes = log->l_logsize;
}
return free_bytes;
}
static void
xlog_ioend_work(
struct work_struct *work)
{
struct xlog_in_core *iclog =
container_of(work, struct xlog_in_core, ic_end_io_work);
struct xlog *log = iclog->ic_log;
int error;
error = blk_status_to_errno(iclog->ic_bio.bi_status);
#ifdef DEBUG
/* treat writes with injected CRC errors as failed */
if (iclog->ic_fail_crc)
error = -EIO;
#endif
/*
* Race to shutdown the filesystem if we see an error.
*/
if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
xfs_alert(log->l_mp, "log I/O error %d", error);
xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
}
xlog_state_done_syncing(iclog);
bio_uninit(&iclog->ic_bio);
/*
* Drop the lock to signal that we are done. Nothing references the
* iclog after this, so an unmount waiting on this lock can now tear it
* down safely. As such, it is unsafe to reference the iclog after the
* unlock as we could race with it being freed.
*/
up(&iclog->ic_sema);
}
/*
* Return size of each in-core log record buffer.
*
* All machines get 8 x 32kB buffers by default, unless tuned otherwise.
*
* If the filesystem blocksize is too large, we may need to choose a
* larger size since the directory code currently logs entire blocks.
*/
STATIC void
xlog_get_iclog_buffer_size(
struct xfs_mount *mp,
struct xlog *log)
{
if (mp->m_logbufs <= 0)
mp->m_logbufs = XLOG_MAX_ICLOGS;
if (mp->m_logbsize <= 0)
mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
log->l_iclog_bufs = mp->m_logbufs;
log->l_iclog_size = mp->m_logbsize;
/*
* # headers = size / 32k - one header holds cycles from 32k of data.
*/
log->l_iclog_heads =
DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
}
void
xfs_log_work_queue(
struct xfs_mount *mp)
{
queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
msecs_to_jiffies(xfs_syncd_centisecs * 10));
}
/*
* Every sync period we need to unpin all items in the AIL and push them to
* disk. If there is nothing dirty, then we might need to cover the log to
* indicate that the filesystem is idle.
*/
static void
xfs_log_worker(
struct work_struct *work)
{
struct xlog *log = container_of(to_delayed_work(work),
struct xlog, l_work);
struct xfs_mount *mp = log->l_mp;
/* dgc: errors ignored - not fatal and nowhere to report them */
if (xfs_log_need_covered(mp)) {
/*
* Dump a transaction into the log that contains no real change.
* This is needed to stamp the current tail LSN into the log
* during the covering operation.
*
* We cannot use an inode here for this - that will push dirty
* state back up into the VFS and then periodic inode flushing
* will prevent log covering from making progress. Hence we
* synchronously log the superblock instead to ensure the
* superblock is immediately unpinned and can be written back.
*/
xfs_sync_sb(mp, true);
} else
xfs_log_force(mp, 0);
/* start pushing all the metadata that is currently dirty */
xfs_ail_push_all(mp->m_ail);
/* queue us up again */
xfs_log_work_queue(mp);
}
/*
* This routine initializes some of the log structure for a given mount point.
* Its primary purpose is to fill in enough, so recovery can occur. However,
* some other stuff may be filled in too.
*/
STATIC struct xlog *
xlog_alloc_log(
struct xfs_mount *mp,
struct xfs_buftarg *log_target,
xfs_daddr_t blk_offset,
int num_bblks)
{
struct xlog *log;
xlog_rec_header_t *head;
xlog_in_core_t **iclogp;
xlog_in_core_t *iclog, *prev_iclog=NULL;
int i;
int error = -ENOMEM;
uint log2_size = 0;
log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
if (!log) {
xfs_warn(mp, "Log allocation failed: No memory!");
goto out;
}
log->l_mp = mp;
log->l_targ = log_target;
log->l_logsize = BBTOB(num_bblks);
log->l_logBBstart = blk_offset;
log->l_logBBsize = num_bblks;
log->l_covered_state = XLOG_STATE_COVER_IDLE;
log->l_flags |= XLOG_ACTIVE_RECOVERY;
INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
log->l_prev_block = -1;
/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
xlog_grant_head_init(&log->l_reserve_head);
xlog_grant_head_init(&log->l_write_head);
error = -EFSCORRUPTED;
if (xfs_sb_version_hassector(&mp->m_sb)) {
log2_size = mp->m_sb.sb_logsectlog;
if (log2_size < BBSHIFT) {
xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
log2_size, BBSHIFT);
goto out_free_log;
}
log2_size -= BBSHIFT;
if (log2_size > mp->m_sectbb_log) {
xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
log2_size, mp->m_sectbb_log);
goto out_free_log;
}
/* for larger sector sizes, must have v2 or external log */
if (log2_size && log->l_logBBstart > 0 &&
!xfs_sb_version_haslogv2(&mp->m_sb)) {
xfs_warn(mp,
"log sector size (0x%x) invalid for configuration.",
log2_size);
goto out_free_log;
}
}
log->l_sectBBsize = 1 << log2_size;
xlog_get_iclog_buffer_size(mp, log);
spin_lock_init(&log->l_icloglock);
init_waitqueue_head(&log->l_flush_wait);
iclogp = &log->l_iclog;
/*
* The amount of memory to allocate for the iclog structure is
* rather funky due to the way the structure is defined. It is
* done this way so that we can use different sizes for machines
* with different amounts of memory. See the definition of
* xlog_in_core_t in xfs_log_priv.h for details.
*/
ASSERT(log->l_iclog_size >= 4096);
for (i = 0; i < log->l_iclog_bufs; i++) {
int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
sizeof(struct bio_vec);
iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
if (!iclog)
goto out_free_iclog;
*iclogp = iclog;
iclog->ic_prev = prev_iclog;
prev_iclog = iclog;
iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
KM_MAYFAIL | KM_ZERO);
if (!iclog->ic_data)
goto out_free_iclog;
#ifdef DEBUG
log->l_iclog_bak[i] = &iclog->ic_header;
#endif
head = &iclog->ic_header;
memset(head, 0, sizeof(xlog_rec_header_t));
head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
head->h_version = cpu_to_be32(
xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
head->h_size = cpu_to_be32(log->l_iclog_size);
/* new fields */
head->h_fmt = cpu_to_be32(XLOG_FMT);
memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
iclog->ic_state = XLOG_STATE_ACTIVE;
iclog->ic_log = log;
atomic_set(&iclog->ic_refcnt, 0);
spin_lock_init(&iclog->ic_callback_lock);
INIT_LIST_HEAD(&iclog->ic_callbacks);
iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
init_waitqueue_head(&iclog->ic_force_wait);
init_waitqueue_head(&iclog->ic_write_wait);
INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
sema_init(&iclog->ic_sema, 1);
iclogp = &iclog->ic_next;
}
*iclogp = log->l_iclog; /* complete ring */
log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
mp->m_super->s_id);
if (!log->l_ioend_workqueue)
goto out_free_iclog;
error = xlog_cil_init(log);
if (error)
goto out_destroy_workqueue;
return log;
out_destroy_workqueue:
destroy_workqueue(log->l_ioend_workqueue);
out_free_iclog:
for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
prev_iclog = iclog->ic_next;
kmem_free(iclog->ic_data);
kmem_free(iclog);
if (prev_iclog == log->l_iclog)
break;
}
out_free_log:
kmem_free(log);
out:
return ERR_PTR(error);
} /* xlog_alloc_log */
/*
* Write out the commit record of a transaction associated with the given
* ticket to close off a running log write. Return the lsn of the commit record.
*/
int
xlog_commit_record(
struct xlog *log,
struct xlog_ticket *ticket,
struct xlog_in_core **iclog,
xfs_lsn_t *lsn)
{
struct xfs_log_iovec reg = {
.i_addr = NULL,
.i_len = 0,
.i_type = XLOG_REG_TYPE_COMMIT,
};
struct xfs_log_vec vec = {
.lv_niovecs = 1,
.lv_iovecp = ®,
};
int error;
if (XLOG_FORCED_SHUTDOWN(log))
return -EIO;
error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
false);
if (error)
xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
return error;
}
/*
* Push on the buffer cache code if we ever use more than 75% of the on-disk
* log space. This code pushes on the lsn which would supposedly free up
* the 25% which we want to leave free. We may need to adopt a policy which
* pushes on an lsn which is further along in the log once we reach the high
* water mark. In this manner, we would be creating a low water mark.
*/
STATIC void
xlog_grant_push_ail(
struct xlog *log,
int need_bytes)
{
xfs_lsn_t threshold_lsn = 0;
xfs_lsn_t last_sync_lsn;
int free_blocks;
int free_bytes;
int threshold_block;
int threshold_cycle;
int free_threshold;
ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
free_blocks = BTOBBT(free_bytes);
/*
* Set the threshold for the minimum number of free blocks in the
* log to the maximum of what the caller needs, one quarter of the
* log, and 256 blocks.
*/
free_threshold = BTOBB(need_bytes);
free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
free_threshold = max(free_threshold, 256);
if (free_blocks >= free_threshold)
return;
xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
&threshold_block);
threshold_block += free_threshold;
if (threshold_block >= log->l_logBBsize) {
threshold_block -= log->l_logBBsize;
threshold_cycle += 1;
}
threshold_lsn = xlog_assign_lsn(threshold_cycle,
threshold_block);
/*
* Don't pass in an lsn greater than the lsn of the last
* log record known to be on disk. Use a snapshot of the last sync lsn
* so that it doesn't change between the compare and the set.
*/
last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
threshold_lsn = last_sync_lsn;
/*
* Get the transaction layer to kick the dirty buffers out to
* disk asynchronously. No point in trying to do this if
* the filesystem is shutting down.
*/
if (!XLOG_FORCED_SHUTDOWN(log))
xfs_ail_push(log->l_ailp, threshold_lsn);
}
/*
* Stamp cycle number in every block
*/
STATIC void
xlog_pack_data(
struct xlog *log,
struct xlog_in_core *iclog,
int roundoff)
{
int i, j, k;
int size = iclog->ic_offset + roundoff;
__be32 cycle_lsn;
char *dp;
cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
dp = iclog->ic_datap;
for (i = 0; i < BTOBB(size); i++) {
if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
break;
iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
*(__be32 *)dp = cycle_lsn;
dp += BBSIZE;
}
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
xlog_in_core_2_t *xhdr = iclog->ic_data;
for ( ; i < BTOBB(size); i++) {
j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
*(__be32 *)dp = cycle_lsn;
dp += BBSIZE;
}
for (i = 1; i < log->l_iclog_heads; i++)
xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
}
}
/*
* Calculate the checksum for a log buffer.
*
* This is a little more complicated than it should be because the various
* headers and the actual data are non-contiguous.
*/
__le32
xlog_cksum(
struct xlog *log,
struct xlog_rec_header *rhead,
char *dp,
int size)
{
uint32_t crc;
/* first generate the crc for the record header ... */
crc = xfs_start_cksum_update((char *)rhead,
sizeof(struct xlog_rec_header),
offsetof(struct xlog_rec_header, h_crc));
/* ... then for additional cycle data for v2 logs ... */
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
int i;
int xheads;
xheads = size / XLOG_HEADER_CYCLE_SIZE;
if (size % XLOG_HEADER_CYCLE_SIZE)
xheads++;
for (i = 1; i < xheads; i++) {
crc = crc32c(crc, &xhdr[i].hic_xheader,
sizeof(struct xlog_rec_ext_header));
}
}
/* ... and finally for the payload */
crc = crc32c(crc, dp, size);
return xfs_end_cksum(crc);
}
static void
xlog_bio_end_io(
struct bio *bio)
{
struct xlog_in_core *iclog = bio->bi_private;
queue_work(iclog->ic_log->l_ioend_workqueue,
&iclog->ic_end_io_work);
}
static int
xlog_map_iclog_data(
struct bio *bio,
void *data,
size_t count)
{
do {
struct page *page = kmem_to_page(data);
unsigned int off = offset_in_page(data);
size_t len = min_t(size_t, count, PAGE_SIZE - off);
if (bio_add_page(bio, page, len, off) != len)
return -EIO;
data += len;
count -= len;
} while (count);
return 0;
}
STATIC void
xlog_write_iclog(
struct xlog *log,
struct xlog_in_core *iclog,
uint64_t bno,
unsigned int count,
bool need_flush)
{
ASSERT(bno < log->l_logBBsize);
/*
* We lock the iclogbufs here so that we can serialise against I/O
* completion during unmount. We might be processing a shutdown
* triggered during unmount, and that can occur asynchronously to the
* unmount thread, and hence we need to ensure that completes before
* tearing down the iclogbufs. Hence we need to hold the buffer lock
* across the log IO to archieve that.
*/
down(&iclog->ic_sema);
if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
/*
* It would seem logical to return EIO here, but we rely on
* the log state machine to propagate I/O errors instead of
* doing it here. We kick of the state machine and unlock
* the buffer manually, the code needs to be kept in sync
* with the I/O completion path.
*/
xlog_state_done_syncing(iclog);
up(&iclog->ic_sema);
return;
}
bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
iclog->ic_bio.bi_end_io = xlog_bio_end_io;
iclog->ic_bio.bi_private = iclog;
/*
* We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
* IOs coming immediately after this one. This prevents the block layer
* writeback throttle from throttling log writes behind background
* metadata writeback and causing priority inversions.
*/
iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
REQ_IDLE | REQ_FUA;
if (need_flush)
iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
return;
}
if (is_vmalloc_addr(iclog->ic_data))
flush_kernel_vmap_range(iclog->ic_data, count);
/*
* If this log buffer would straddle the end of the log we will have
* to split it up into two bios, so that we can continue at the start.
*/
if (bno + BTOBB(count) > log->l_logBBsize) {
struct bio *split;
split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
GFP_NOIO, &fs_bio_set);
bio_chain(split, &iclog->ic_bio);
submit_bio(split);
/* restart at logical offset zero for the remainder */
iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
}
submit_bio(&iclog->ic_bio);
}
/*
* We need to bump cycle number for the part of the iclog that is
* written to the start of the log. Watch out for the header magic
* number case, though.
*/
static void
xlog_split_iclog(
struct xlog *log,
void *data,
uint64_t bno,
unsigned int count)
{
unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
unsigned int i;
for (i = split_offset; i < count; i += BBSIZE) {
uint32_t cycle = get_unaligned_be32(data + i);
if (++cycle == XLOG_HEADER_MAGIC_NUM)
cycle++;
put_unaligned_be32(cycle, data + i);
}
}
static int
xlog_calc_iclog_size(
struct xlog *log,
struct xlog_in_core *iclog,
uint32_t *roundoff)
{
uint32_t count_init, count;
bool use_lsunit;
use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
log->l_mp->m_sb.sb_logsunit > 1;
/* Add for LR header */
count_init = log->l_iclog_hsize + iclog->ic_offset;
/* Round out the log write size */
if (use_lsunit) {
/* we have a v2 stripe unit to use */
count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
} else {
count = BBTOB(BTOBB(count_init));
}
ASSERT(count >= count_init);
*roundoff = count - count_init;
if (use_lsunit)
ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
else
ASSERT(*roundoff < BBTOB(1));
return count;
}
/*
* Flush out the in-core log (iclog) to the on-disk log in an asynchronous
* fashion. Previously, we should have moved the current iclog
* ptr in the log to point to the next available iclog. This allows further
* write to continue while this code syncs out an iclog ready to go.
* Before an in-core log can be written out, the data section must be scanned
* to save away the 1st word of each BBSIZE block into the header. We replace
* it with the current cycle count. Each BBSIZE block is tagged with the
* cycle count because there in an implicit assumption that drives will
* guarantee that entire 512 byte blocks get written at once. In other words,
* we can't have part of a 512 byte block written and part not written. By
* tagging each block, we will know which blocks are valid when recovering
* after an unclean shutdown.
*
* This routine is single threaded on the iclog. No other thread can be in
* this routine with the same iclog. Changing contents of iclog can there-
* fore be done without grabbing the state machine lock. Updating the global
* log will require grabbing the lock though.
*
* The entire log manager uses a logical block numbering scheme. Only
* xlog_write_iclog knows about the fact that the log may not start with
* block zero on a given device.
*/
STATIC void
xlog_sync(
struct xlog *log,
struct xlog_in_core *iclog)
{
unsigned int count; /* byte count of bwrite */
unsigned int roundoff; /* roundoff to BB or stripe */
uint64_t bno;
unsigned int size;
bool need_flush = true, split = false;
ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
count = xlog_calc_iclog_size(log, iclog, &roundoff);
/* move grant heads by roundoff in sync */
xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
/* put cycle number in every block */
xlog_pack_data(log, iclog, roundoff);
/* real byte length */
size = iclog->ic_offset;
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
size += roundoff;
iclog->ic_header.h_len = cpu_to_be32(size);
XFS_STATS_INC(log->l_mp, xs_log_writes);
XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
/* Do we need to split this write into 2 parts? */
if (bno + BTOBB(count) > log->l_logBBsize) {
xlog_split_iclog(log, &iclog->ic_header, bno, count);
split = true;
}
/* calculcate the checksum */
iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
iclog->ic_datap, size);
/*
* Intentionally corrupt the log record CRC based on the error injection
* frequency, if defined. This facilitates testing log recovery in the
* event of torn writes. Hence, set the IOABORT state to abort the log
* write on I/O completion and shutdown the fs. The subsequent mount
* detects the bad CRC and attempts to recover.
*/
#ifdef DEBUG
if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
iclog->ic_fail_crc = true;
xfs_warn(log->l_mp,
"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
be64_to_cpu(iclog->ic_header.h_lsn));
}
#endif
/*
* Flush the data device before flushing the log to make sure all meta
* data written back from the AIL actually made it to disk before
* stamping the new log tail LSN into the log buffer. For an external
* log we need to issue the flush explicitly, and unfortunately
* synchronously here; for an internal log we can simply use the block
* layer state machine for preflushes.
*/
if (log->l_targ != log->l_mp->m_ddev_targp || split) {
xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
need_flush = false;
}
xlog_verify_iclog(log, iclog, count);
xlog_write_iclog(log, iclog, bno, count, need_flush);
}
/*
* Deallocate a log structure
*/
STATIC void
xlog_dealloc_log(
struct xlog *log)
{
xlog_in_core_t *iclog, *next_iclog;
int i;
xlog_cil_destroy(log);
/*
* Cycle all the iclogbuf locks to make sure all log IO completion
* is done before we tear down these buffers.
*/
iclog = log->l_iclog;
for (i = 0; i < log->l_iclog_bufs; i++) {
down(&iclog->ic_sema);
up(&iclog->ic_sema);
iclog = iclog->ic_next;
}
iclog = log->l_iclog;
for (i = 0; i < log->l_iclog_bufs; i++) {
next_iclog = iclog->ic_next;
kmem_free(iclog->ic_data);
kmem_free(iclog);
iclog = next_iclog;
}
log->l_mp->m_log = NULL;
destroy_workqueue(log->l_ioend_workqueue);
kmem_free(log);
}
/*
* Update counters atomically now that memcpy is done.
*/
static inline void
xlog_state_finish_copy(
struct xlog *log,
struct xlog_in_core *iclog,
int record_cnt,
int copy_bytes)
{
lockdep_assert_held(&log->l_icloglock);
be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
iclog->ic_offset += copy_bytes;
}
/*
* print out info relating to regions written which consume
* the reservation
*/
void
xlog_print_tic_res(
struct xfs_mount *mp,
struct xlog_ticket *ticket)
{
uint i;
uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
/* match with XLOG_REG_TYPE_* in xfs_log.h */
#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
static char *res_type_str[] = {
REG_TYPE_STR(BFORMAT, "bformat"),
REG_TYPE_STR(BCHUNK, "bchunk"),
REG_TYPE_STR(EFI_FORMAT, "efi_format"),
REG_TYPE_STR(EFD_FORMAT, "efd_format"),
REG_TYPE_STR(IFORMAT, "iformat"),
REG_TYPE_STR(ICORE, "icore"),
REG_TYPE_STR(IEXT, "iext"),
REG_TYPE_STR(IBROOT, "ibroot"),
REG_TYPE_STR(ILOCAL, "ilocal"),
REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
REG_TYPE_STR(QFORMAT, "qformat"),
REG_TYPE_STR(DQUOT, "dquot"),
REG_TYPE_STR(QUOTAOFF, "quotaoff"),
REG_TYPE_STR(LRHEADER, "LR header"),
REG_TYPE_STR(UNMOUNT, "unmount"),
REG_TYPE_STR(COMMIT, "commit"),
REG_TYPE_STR(TRANSHDR, "trans header"),
REG_TYPE_STR(ICREATE, "inode create"),
REG_TYPE_STR(RUI_FORMAT, "rui_format"),
REG_TYPE_STR(RUD_FORMAT, "rud_format"),
REG_TYPE_STR(CUI_FORMAT, "cui_format"),
REG_TYPE_STR(CUD_FORMAT, "cud_format"),
REG_TYPE_STR(BUI_FORMAT, "bui_format"),
REG_TYPE_STR(BUD_FORMAT, "bud_format"),
};
BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
#undef REG_TYPE_STR
xfs_warn(mp, "ticket reservation summary:");
xfs_warn(mp, " unit res = %d bytes",
ticket->t_unit_res);
xfs_warn(mp, " current res = %d bytes",
ticket->t_curr_res);
xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
ticket->t_res_arr_sum, ticket->t_res_o_flow);
xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
ticket->t_res_num_ophdrs, ophdr_spc);
xfs_warn(mp, " ophdr + reg = %u bytes",
ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
xfs_warn(mp, " num regions = %u",
ticket->t_res_num);
for (i = 0; i < ticket->t_res_num; i++) {
uint r_type = ticket->t_res_arr[i].r_type;
xfs_warn(mp, "region[%u]: %s - %u bytes", i,
((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
"bad-rtype" : res_type_str[r_type]),
ticket->t_res_arr[i].r_len);
}
}
/*
* Print a summary of the transaction.
*/
void
xlog_print_trans(
struct xfs_trans *tp)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_log_item *lip;
/* dump core transaction and ticket info */
xfs_warn(mp, "transaction summary:");
xfs_warn(mp, " log res = %d", tp->t_log_res);
xfs_warn(mp, " log count = %d", tp->t_log_count);
xfs_warn(mp, " flags = 0x%x", tp->t_flags);
xlog_print_tic_res(mp, tp->t_ticket);
/* dump each log item */
list_for_each_entry(lip, &tp->t_items, li_trans) {
struct xfs_log_vec *lv = lip->li_lv;
struct xfs_log_iovec *vec;
int i;
xfs_warn(mp, "log item: ");
xfs_warn(mp, " type = 0x%x", lip->li_type);
xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
if (!lv)
continue;
xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
xfs_warn(mp, " size = %d", lv->lv_size);
xfs_warn(mp, " bytes = %d", lv->lv_bytes);
xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
/* dump each iovec for the log item */
vec = lv->lv_iovecp;
for (i = 0; i < lv->lv_niovecs; i++) {
int dumplen = min(vec->i_len, 32);
xfs_warn(mp, " iovec[%d]", i);
xfs_warn(mp, " type = 0x%x", vec->i_type);
xfs_warn(mp, " len = %d", vec->i_len);
xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
xfs_hex_dump(vec->i_addr, dumplen);
vec++;
}
}
}
/*
* Calculate the potential space needed by the log vector. We may need a start
* record, and each region gets its own struct xlog_op_header and may need to be
* double word aligned.
*/
static int
xlog_write_calc_vec_length(
struct xlog_ticket *ticket,
struct xfs_log_vec *log_vector,
bool need_start_rec)
{
struct xfs_log_vec *lv;
int headers = need_start_rec ? 1 : 0;
int len = 0;
int i;
for (lv = log_vector; lv; lv = lv->lv_next) {
/* we don't write ordered log vectors */
if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
continue;
headers += lv->lv_niovecs;
for (i = 0; i < lv->lv_niovecs; i++) {
struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
len += vecp->i_len;
xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
}
}
ticket->t_res_num_ophdrs += headers;
len += headers * sizeof(struct xlog_op_header);
return len;
}
static void
xlog_write_start_rec(
struct xlog_op_header *ophdr,
struct xlog_ticket *ticket)
{
ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
ophdr->oh_clientid = ticket->t_clientid;
ophdr->oh_len = 0;
ophdr->oh_flags = XLOG_START_TRANS;
ophdr->oh_res2 = 0;
}
static xlog_op_header_t *
xlog_write_setup_ophdr(
struct xlog *log,
struct xlog_op_header *ophdr,
struct xlog_ticket *ticket,
uint flags)
{
ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
ophdr->oh_clientid = ticket->t_clientid;
ophdr->oh_res2 = 0;
/* are we copying a commit or unmount record? */
ophdr->oh_flags = flags;
/*
* We've seen logs corrupted with bad transaction client ids. This
* makes sure that XFS doesn't generate them on. Turn this into an EIO
* and shut down the filesystem.
*/
switch (ophdr->oh_clientid) {
case XFS_TRANSACTION:
case XFS_VOLUME:
case XFS_LOG:
break;
default:
xfs_warn(log->l_mp,
"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
ophdr->oh_clientid, ticket);
return NULL;
}
return ophdr;
}
/*
* Set up the parameters of the region copy into the log. This has
* to handle region write split across multiple log buffers - this
* state is kept external to this function so that this code can
* be written in an obvious, self documenting manner.
*/
static int
xlog_write_setup_copy(
struct xlog_ticket *ticket,
struct xlog_op_header *ophdr,
int space_available,
int space_required,
int *copy_off,
int *copy_len,
int *last_was_partial_copy,
int *bytes_consumed)
{
int still_to_copy;
still_to_copy = space_required - *bytes_consumed;
*copy_off = *bytes_consumed;
if (still_to_copy <= space_available) {
/* write of region completes here */
*copy_len = still_to_copy;
ophdr->oh_len = cpu_to_be32(*copy_len);
if (*last_was_partial_copy)
ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
*last_was_partial_copy = 0;
*bytes_consumed = 0;
return 0;
}
/* partial write of region, needs extra log op header reservation */
*copy_len = space_available;
ophdr->oh_len = cpu_to_be32(*copy_len);
ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
if (*last_was_partial_copy)
ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
*bytes_consumed += *copy_len;
(*last_was_partial_copy)++;
/* account for new log op header */
ticket->t_curr_res -= sizeof(struct xlog_op_header);
ticket->t_res_num_ophdrs++;
return sizeof(struct xlog_op_header);
}
static int
xlog_write_copy_finish(
struct xlog *log,
struct xlog_in_core *iclog,
uint flags,
int *record_cnt,
int *data_cnt,
int *partial_copy,
int *partial_copy_len,
int log_offset,
struct xlog_in_core **commit_iclog)
{
int error;
if (*partial_copy) {
/*
* This iclog has already been marked WANT_SYNC by
* xlog_state_get_iclog_space.
*/
spin_lock(&log->l_icloglock);
xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
*record_cnt = 0;
*data_cnt = 0;
goto release_iclog;
}
*partial_copy = 0;
*partial_copy_len = 0;
if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
/* no more space in this iclog - push it. */
spin_lock(&log->l_icloglock);
xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
*record_cnt = 0;
*data_cnt = 0;
if (iclog->ic_state == XLOG_STATE_ACTIVE)
xlog_state_switch_iclogs(log, iclog, 0);
else
ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
iclog->ic_state == XLOG_STATE_IOERROR);
if (!commit_iclog)
goto release_iclog;
spin_unlock(&log->l_icloglock);
ASSERT(flags & XLOG_COMMIT_TRANS);
*commit_iclog = iclog;
}
return 0;
release_iclog:
error = xlog_state_release_iclog(log, iclog);
spin_unlock(&log->l_icloglock);
return error;
}
/*
* Write some region out to in-core log
*
* This will be called when writing externally provided regions or when
* writing out a commit record for a given transaction.
*
* General algorithm:
* 1. Find total length of this write. This may include adding to the
* lengths passed in.
* 2. Check whether we violate the tickets reservation.
* 3. While writing to this iclog
* A. Reserve as much space in this iclog as can get
* B. If this is first write, save away start lsn
* C. While writing this region:
* 1. If first write of transaction, write start record
* 2. Write log operation header (header per region)
* 3. Find out if we can fit entire region into this iclog
* 4. Potentially, verify destination memcpy ptr
* 5. Memcpy (partial) region
* 6. If partial copy, release iclog; otherwise, continue
* copying more regions into current iclog
* 4. Mark want sync bit (in simulation mode)
* 5. Release iclog for potential flush to on-disk log.
*
* ERRORS:
* 1. Panic if reservation is overrun. This should never happen since
* reservation amounts are generated internal to the filesystem.
* NOTES:
* 1. Tickets are single threaded data structures.
* 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
* syncing routine. When a single log_write region needs to span
* multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
* on all log operation writes which don't contain the end of the
* region. The XLOG_END_TRANS bit is used for the in-core log
* operation which contains the end of the continued log_write region.
* 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
* we don't really know exactly how much space will be used. As a result,
* we don't update ic_offset until the end when we know exactly how many
* bytes have been written out.
*/
int
xlog_write(
struct xlog *log,
struct xfs_log_vec *log_vector,
struct xlog_ticket *ticket,
xfs_lsn_t *start_lsn,
struct xlog_in_core **commit_iclog,
uint flags,
bool need_start_rec)
{
struct xlog_in_core *iclog = NULL;
struct xfs_log_vec *lv = log_vector;
struct xfs_log_iovec *vecp = lv->lv_iovecp;
int index = 0;
int len;
int partial_copy = 0;
int partial_copy_len = 0;
int contwr = 0;
int record_cnt = 0;
int data_cnt = 0;
int error = 0;
/*
* If this is a commit or unmount transaction, we don't need a start
* record to be written. We do, however, have to account for the
* commit or unmount header that gets written. Hence we always have
* to account for an extra xlog_op_header here.
*/
ticket->t_curr_res -= sizeof(struct xlog_op_header);
if (ticket->t_curr_res < 0) {
xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
"ctx ticket reservation ran out. Need to up reservation");
xlog_print_tic_res(log->l_mp, ticket);
xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
}
len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
*start_lsn = 0;
while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
void *ptr;
int log_offset;
error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
&contwr, &log_offset);
if (error)
return error;
ASSERT(log_offset <= iclog->ic_size - 1);
ptr = iclog->ic_datap + log_offset;
/* start_lsn is the first lsn written to. That's all we need. */
if (!*start_lsn)
*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
/*
* This loop writes out as many regions as can fit in the amount
* of space which was allocated by xlog_state_get_iclog_space().
*/
while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
struct xfs_log_iovec *reg;
struct xlog_op_header *ophdr;
int copy_len;
int copy_off;
bool ordered = false;
/* ordered log vectors have no regions to write */
if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
ASSERT(lv->lv_niovecs == 0);
ordered = true;
goto next_lv;
}
reg = &vecp[index];
ASSERT(reg->i_len % sizeof(int32_t) == 0);
ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
/*
* Before we start formatting log vectors, we need to
* write a start record. Only do this for the first
* iclog we write to.
*/
if (need_start_rec) {
xlog_write_start_rec(ptr, ticket);
xlog_write_adv_cnt(&ptr, &len, &log_offset,
sizeof(struct xlog_op_header));
}
ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
if (!ophdr)
return -EIO;
xlog_write_adv_cnt(&ptr, &len, &log_offset,
sizeof(struct xlog_op_header));
len += xlog_write_setup_copy(ticket, ophdr,
iclog->ic_size-log_offset,
reg->i_len,
©_off, ©_len,
&partial_copy,
&partial_copy_len);
xlog_verify_dest_ptr(log, ptr);
/*
* Copy region.
*
* Unmount records just log an opheader, so can have
* empty payloads with no data region to copy. Hence we
* only copy the payload if the vector says it has data
* to copy.
*/
ASSERT(copy_len >= 0);
if (copy_len > 0) {
memcpy(ptr, reg->i_addr + copy_off, copy_len);
xlog_write_adv_cnt(&ptr, &len, &log_offset,
copy_len);
}
copy_len += sizeof(struct xlog_op_header);
record_cnt++;
if (need_start_rec) {
copy_len += sizeof(struct xlog_op_header);
record_cnt++;
need_start_rec = false;
}
data_cnt += contwr ? copy_len : 0;
error = xlog_write_copy_finish(log, iclog, flags,
&record_cnt, &data_cnt,
&partial_copy,
&partial_copy_len,
log_offset,
commit_iclog);
if (error)
return error;
/*
* if we had a partial copy, we need to get more iclog
* space but we don't want to increment the region
* index because there is still more is this region to
* write.
*
* If we completed writing this region, and we flushed
* the iclog (indicated by resetting of the record
* count), then we also need to get more log space. If
* this was the last record, though, we are done and
* can just return.
*/
if (partial_copy)
break;
if (++index == lv->lv_niovecs) {
next_lv:
lv = lv->lv_next;
index = 0;
if (lv)
vecp = lv->lv_iovecp;
}
if (record_cnt == 0 && !ordered) {
if (!lv)
return 0;
break;
}
}
}
ASSERT(len == 0);
spin_lock(&log->l_icloglock);
xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
if (commit_iclog) {
ASSERT(flags & XLOG_COMMIT_TRANS);
*commit_iclog = iclog;
} else {
error = xlog_state_release_iclog(log, iclog);
}
spin_unlock(&log->l_icloglock);
return error;
}
static void
xlog_state_activate_iclog(
struct xlog_in_core *iclog,
int *iclogs_changed)
{
ASSERT(list_empty_careful(&iclog->ic_callbacks));
/*
* If the number of ops in this iclog indicate it just contains the
* dummy transaction, we can change state into IDLE (the second time
* around). Otherwise we should change the state into NEED a dummy.
* We don't need to cover the dummy.
*/
if (*iclogs_changed == 0 &&
iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
*iclogs_changed = 1;
} else {
/*
* We have two dirty iclogs so start over. This could also be
* num of ops indicating this is not the dummy going out.
*/
*iclogs_changed = 2;
}
iclog->ic_state = XLOG_STATE_ACTIVE;
iclog->ic_offset = 0;
iclog->ic_header.h_num_logops = 0;
memset(iclog->ic_header.h_cycle_data, 0,
sizeof(iclog->ic_header.h_cycle_data));
iclog->ic_header.h_lsn = 0;
}
/*
* Loop through all iclogs and mark all iclogs currently marked DIRTY as
* ACTIVE after iclog I/O has completed.
*/
static void
xlog_state_activate_iclogs(
struct xlog *log,
int *iclogs_changed)
{
struct xlog_in_core *iclog = log->l_iclog;
do {
if (iclog->ic_state == XLOG_STATE_DIRTY)
xlog_state_activate_iclog(iclog, iclogs_changed);
/*
* The ordering of marking iclogs ACTIVE must be maintained, so
* an iclog doesn't become ACTIVE beyond one that is SYNCING.
*/
else if (iclog->ic_state != XLOG_STATE_ACTIVE)
break;
} while ((iclog = iclog->ic_next) != log->l_iclog);
}
static int
xlog_covered_state(
int prev_state,
int iclogs_changed)
{
/*
* We usually go to NEED. But we go to NEED2 if the changed indicates we
* are done writing the dummy record. If we are done with the second
* dummy recored (DONE2), then we go to IDLE.
*/
switch (prev_state) {
case XLOG_STATE_COVER_IDLE:
case XLOG_STATE_COVER_NEED:
case XLOG_STATE_COVER_NEED2:
break;
case XLOG_STATE_COVER_DONE:
if (iclogs_changed == 1)
return XLOG_STATE_COVER_NEED2;
break;
case XLOG_STATE_COVER_DONE2:
if (iclogs_changed == 1)
return XLOG_STATE_COVER_IDLE;
break;
default:
ASSERT(0);
}
return XLOG_STATE_COVER_NEED;
}
STATIC void
xlog_state_clean_iclog(
struct xlog *log,
struct xlog_in_core *dirty_iclog)
{
int iclogs_changed = 0;
dirty_iclog->ic_state = XLOG_STATE_DIRTY;
xlog_state_activate_iclogs(log, &iclogs_changed);
wake_up_all(&dirty_iclog->ic_force_wait);
if (iclogs_changed) {
log->l_covered_state = xlog_covered_state(log->l_covered_state,
iclogs_changed);
}
}
STATIC xfs_lsn_t
xlog_get_lowest_lsn(
struct xlog *log)
{
struct xlog_in_core *iclog = log->l_iclog;
xfs_lsn_t lowest_lsn = 0, lsn;
do {
if (iclog->ic_state == XLOG_STATE_ACTIVE ||
iclog->ic_state == XLOG_STATE_DIRTY)
continue;
lsn = be64_to_cpu(iclog->ic_header.h_lsn);
if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
lowest_lsn = lsn;
} while ((iclog = iclog->ic_next) != log->l_iclog);
return lowest_lsn;
}
/*
* Completion of a iclog IO does not imply that a transaction has completed, as
* transactions can be large enough to span many iclogs. We cannot change the
* tail of the log half way through a transaction as this may be the only
* transaction in the log and moving the tail to point to the middle of it
* will prevent recovery from finding the start of the transaction. Hence we
* should only update the last_sync_lsn if this iclog contains transaction
* completion callbacks on it.
*
* We have to do this before we drop the icloglock to ensure we are the only one
* that can update it.
*
* If we are moving the last_sync_lsn forwards, we also need to ensure we kick
* the reservation grant head pushing. This is due to the fact that the push
* target is bound by the current last_sync_lsn value. Hence if we have a large
* amount of log space bound up in this committing transaction then the
* last_sync_lsn value may be the limiting factor preventing tail pushing from
* freeing space in the log. Hence once we've updated the last_sync_lsn we
* should push the AIL to ensure the push target (and hence the grant head) is
* no longer bound by the old log head location and can move forwards and make
* progress again.
*/
static void
xlog_state_set_callback(
struct xlog *log,
struct xlog_in_core *iclog,
xfs_lsn_t header_lsn)
{
iclog->ic_state = XLOG_STATE_CALLBACK;
ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
header_lsn) <= 0);
if (list_empty_careful(&iclog->ic_callbacks))
return;
atomic64_set(&log->l_last_sync_lsn, header_lsn);
xlog_grant_push_ail(log, 0);
}
/*
* Return true if we need to stop processing, false to continue to the next
* iclog. The caller will need to run callbacks if the iclog is returned in the
* XLOG_STATE_CALLBACK state.
*/
static bool
xlog_state_iodone_process_iclog(
struct xlog *log,
struct xlog_in_core *iclog,
bool *ioerror)
{
xfs_lsn_t lowest_lsn;
xfs_lsn_t header_lsn;
switch (iclog->ic_state) {
case XLOG_STATE_ACTIVE:
case XLOG_STATE_DIRTY:
/*
* Skip all iclogs in the ACTIVE & DIRTY states:
*/
return false;
case XLOG_STATE_IOERROR:
/*
* Between marking a filesystem SHUTDOWN and stopping the log,
* we do flush all iclogs to disk (if there wasn't a log I/O
* error). So, we do want things to go smoothly in case of just
* a SHUTDOWN w/o a LOG_IO_ERROR.
*/
*ioerror = true;
return false;
case XLOG_STATE_DONE_SYNC:
/*
* Now that we have an iclog that is in the DONE_SYNC state, do
* one more check here to see if we have chased our tail around.
* If this is not the lowest lsn iclog, then we will leave it
* for another completion to process.
*/
header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
lowest_lsn = xlog_get_lowest_lsn(log);
if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
return false;
xlog_state_set_callback(log, iclog, header_lsn);
return false;
default:
/*
* Can only perform callbacks in order. Since this iclog is not
* in the DONE_SYNC state, we skip the rest and just try to
* clean up.
*/
return true;
}
}
/*
* Keep processing entries in the iclog callback list until we come around and
* it is empty. We need to atomically see that the list is empty and change the
* state to DIRTY so that we don't miss any more callbacks being added.
*
* This function is called with the icloglock held and returns with it held. We
* drop it while running callbacks, however, as holding it over thousands of
* callbacks is unnecessary and causes excessive contention if we do.
*/
static void
xlog_state_do_iclog_callbacks(
struct xlog *log,
struct xlog_in_core *iclog)
__releases(&log->l_icloglock)
__acquires(&log->l_icloglock)
{
spin_unlock(&log->l_icloglock);
spin_lock(&iclog->ic_callback_lock);
while (!list_empty(&iclog->ic_callbacks)) {
LIST_HEAD(tmp);
list_splice_init(&iclog->ic_callbacks, &tmp);
spin_unlock(&iclog->ic_callback_lock);
xlog_cil_process_committed(&tmp);
spin_lock(&iclog->ic_callback_lock);
}
/*
* Pick up the icloglock while still holding the callback lock so we
* serialise against anyone trying to add more callbacks to this iclog
* now we've finished processing.
*/
spin_lock(&log->l_icloglock);
spin_unlock(&iclog->ic_callback_lock);
}
STATIC void
xlog_state_do_callback(
struct xlog *log)
{
struct xlog_in_core *iclog;
struct xlog_in_core *first_iclog;
bool cycled_icloglock;
bool ioerror;
int flushcnt = 0;
int repeats = 0;
spin_lock(&log->l_icloglock);
do {
/*
* Scan all iclogs starting with the one pointed to by the
* log. Reset this starting point each time the log is
* unlocked (during callbacks).
*
* Keep looping through iclogs until one full pass is made
* without running any callbacks.
*/
first_iclog = log->l_iclog;
iclog = log->l_iclog;
cycled_icloglock = false;
ioerror = false;
repeats++;
do {
if (xlog_state_iodone_process_iclog(log, iclog,
&ioerror))
break;
if (iclog->ic_state != XLOG_STATE_CALLBACK &&
iclog->ic_state != XLOG_STATE_IOERROR) {
iclog = iclog->ic_next;
continue;
}
/*
* Running callbacks will drop the icloglock which means
* we'll have to run at least one more complete loop.
*/
cycled_icloglock = true;
xlog_state_do_iclog_callbacks(log, iclog);
if (XLOG_FORCED_SHUTDOWN(log))
wake_up_all(&iclog->ic_force_wait);
else
xlog_state_clean_iclog(log, iclog);
iclog = iclog->ic_next;
} while (first_iclog != iclog);
if (repeats > 5000) {
flushcnt += repeats;
repeats = 0;
xfs_warn(log->l_mp,
"%s: possible infinite loop (%d iterations)",
__func__, flushcnt);
}
} while (!ioerror && cycled_icloglock);
if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
log->l_iclog->ic_state == XLOG_STATE_IOERROR)
wake_up_all(&log->l_flush_wait);
spin_unlock(&log->l_icloglock);
}
/*
* Finish transitioning this iclog to the dirty state.
*
* Make sure that we completely execute this routine only when this is
* the last call to the iclog. There is a good chance that iclog flushes,
* when we reach the end of the physical log, get turned into 2 separate
* calls to bwrite. Hence, one iclog flush could generate two calls to this
* routine. By using the reference count bwritecnt, we guarantee that only
* the second completion goes through.
*
* Callbacks could take time, so they are done outside the scope of the
* global state machine log lock.
*/
STATIC void
xlog_state_done_syncing(
struct xlog_in_core *iclog)
{
struct xlog *log = iclog->ic_log;
spin_lock(&log->l_icloglock);
ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
/*
* If we got an error, either on the first buffer, or in the case of
* split log writes, on the second, we shut down the file system and
* no iclogs should ever be attempted to be written to disk again.
*/
if (!XLOG_FORCED_SHUTDOWN(log)) {
ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
iclog->ic_state = XLOG_STATE_DONE_SYNC;
}
/*
* Someone could be sleeping prior to writing out the next
* iclog buffer, we wake them all, one will get to do the
* I/O, the others get to wait for the result.
*/
wake_up_all(&iclog->ic_write_wait);
spin_unlock(&log->l_icloglock);
xlog_state_do_callback(log);
}
/*
* If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
* sleep. We wait on the flush queue on the head iclog as that should be
* the first iclog to complete flushing. Hence if all iclogs are syncing,
* we will wait here and all new writes will sleep until a sync completes.
*
* The in-core logs are used in a circular fashion. They are not used
* out-of-order even when an iclog past the head is free.
*
* return:
* * log_offset where xlog_write() can start writing into the in-core
* log's data space.
* * in-core log pointer to which xlog_write() should write.
* * boolean indicating this is a continued write to an in-core log.
* If this is the last write, then the in-core log's offset field
* needs to be incremented, depending on the amount of data which
* is copied.
*/
STATIC int
xlog_state_get_iclog_space(
struct xlog *log,
int len,
struct xlog_in_core **iclogp,
struct xlog_ticket *ticket,
int *continued_write,
int *logoffsetp)
{
int log_offset;
xlog_rec_header_t *head;
xlog_in_core_t *iclog;
restart:
spin_lock(&log->l_icloglock);
if (XLOG_FORCED_SHUTDOWN(log)) {
spin_unlock(&log->l_icloglock);
return -EIO;
}
iclog = log->l_iclog;
if (iclog->ic_state != XLOG_STATE_ACTIVE) {
XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
/* Wait for log writes to have flushed */
xlog_wait(&log->l_flush_wait, &log->l_icloglock);
goto restart;
}
head = &iclog->ic_header;
atomic_inc(&iclog->ic_refcnt); /* prevents sync */
log_offset = iclog->ic_offset;
/* On the 1st write to an iclog, figure out lsn. This works
* if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
* committing to. If the offset is set, that's how many blocks
* must be written.
*/
if (log_offset == 0) {
ticket->t_curr_res -= log->l_iclog_hsize;
xlog_tic_add_region(ticket,
log->l_iclog_hsize,
XLOG_REG_TYPE_LRHEADER);
head->h_cycle = cpu_to_be32(log->l_curr_cycle);
head->h_lsn = cpu_to_be64(
xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
ASSERT(log->l_curr_block >= 0);
}
/* If there is enough room to write everything, then do it. Otherwise,
* claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
* bit is on, so this will get flushed out. Don't update ic_offset
* until you know exactly how many bytes get copied. Therefore, wait
* until later to update ic_offset.
*
* xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
* can fit into remaining data section.
*/
if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
int error = 0;
xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
/*
* If we are the only one writing to this iclog, sync it to
* disk. We need to do an atomic compare and decrement here to
* avoid racing with concurrent atomic_dec_and_lock() calls in
* xlog_state_release_iclog() when there is more than one
* reference to the iclog.
*/
if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
error = xlog_state_release_iclog(log, iclog);
spin_unlock(&log->l_icloglock);
if (error)
return error;
goto restart;
}
/* Do we have enough room to write the full amount in the remainder
* of this iclog? Or must we continue a write on the next iclog and
* mark this iclog as completely taken? In the case where we switch
* iclogs (to mark it taken), this particular iclog will release/sync
* to disk in xlog_write().
*/
if (len <= iclog->ic_size - iclog->ic_offset) {
*continued_write = 0;
iclog->ic_offset += len;
} else {
*continued_write = 1;
xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
}
*iclogp = iclog;
ASSERT(iclog->ic_offset <= iclog->ic_size);
spin_unlock(&log->l_icloglock);
*logoffsetp = log_offset;
return 0;
}
/*
* The first cnt-1 times a ticket goes through here we don't need to move the
* grant write head because the permanent reservation has reserved cnt times the
* unit amount. Release part of current permanent unit reservation and reset
* current reservation to be one units worth. Also move grant reservation head
* forward.
*/
void
xfs_log_ticket_regrant(
struct xlog *log,
struct xlog_ticket *ticket)
{
trace_xfs_log_ticket_regrant(log, ticket);
if (ticket->t_cnt > 0)
ticket->t_cnt--;
xlog_grant_sub_space(log, &log->l_reserve_head.grant,
ticket->t_curr_res);
xlog_grant_sub_space(log, &log->l_write_head.grant,
ticket->t_curr_res);
ticket->t_curr_res = ticket->t_unit_res;
xlog_tic_reset_res(ticket);
trace_xfs_log_ticket_regrant_sub(log, ticket);
/* just return if we still have some of the pre-reserved space */
if (!ticket->t_cnt) {
xlog_grant_add_space(log, &log->l_reserve_head.grant,
ticket->t_unit_res);
trace_xfs_log_ticket_regrant_exit(log, ticket);
ticket->t_curr_res = ticket->t_unit_res;
xlog_tic_reset_res(ticket);
}
xfs_log_ticket_put(ticket);
}
/*
* Give back the space left from a reservation.
*
* All the information we need to make a correct determination of space left
* is present. For non-permanent reservations, things are quite easy. The
* count should have been decremented to zero. We only need to deal with the
* space remaining in the current reservation part of the ticket. If the
* ticket contains a permanent reservation, there may be left over space which
* needs to be released. A count of N means that N-1 refills of the current
* reservation can be done before we need to ask for more space. The first
* one goes to fill up the first current reservation. Once we run out of
* space, the count will stay at zero and the only space remaining will be
* in the current reservation field.
*/
void
xfs_log_ticket_ungrant(
struct xlog *log,
struct xlog_ticket *ticket)
{
int bytes;
trace_xfs_log_ticket_ungrant(log, ticket);
if (ticket->t_cnt > 0)
ticket->t_cnt--;
trace_xfs_log_ticket_ungrant_sub(log, ticket);
/*
* If this is a permanent reservation ticket, we may be able to free
* up more space based on the remaining count.
*/
bytes = ticket->t_curr_res;
if (ticket->t_cnt > 0) {
ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
bytes += ticket->t_unit_res*ticket->t_cnt;
}
xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
trace_xfs_log_ticket_ungrant_exit(log, ticket);
xfs_log_space_wake(log->l_mp);
xfs_log_ticket_put(ticket);
}
/*
* This routine will mark the current iclog in the ring as WANT_SYNC and move
* the current iclog pointer to the next iclog in the ring.
*/
STATIC void
xlog_state_switch_iclogs(
struct xlog *log,
struct xlog_in_core *iclog,
int eventual_size)
{
ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
assert_spin_locked(&log->l_icloglock);
if (!eventual_size)
eventual_size = iclog->ic_offset;
iclog->ic_state = XLOG_STATE_WANT_SYNC;
iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
log->l_prev_block = log->l_curr_block;
log->l_prev_cycle = log->l_curr_cycle;
/* roll log?: ic_offset changed later */
log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
/* Round up to next log-sunit */
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
log->l_mp->m_sb.sb_logsunit > 1) {
uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
}
if (log->l_curr_block >= log->l_logBBsize) {
/*
* Rewind the current block before the cycle is bumped to make
* sure that the combined LSN never transiently moves forward
* when the log wraps to the next cycle. This is to support the
* unlocked sample of these fields from xlog_valid_lsn(). Most
* other cases should acquire l_icloglock.
*/
log->l_curr_block -= log->l_logBBsize;
ASSERT(log->l_curr_block >= 0);
smp_wmb();
log->l_curr_cycle++;
if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
log->l_curr_cycle++;
}
ASSERT(iclog == log->l_iclog);
log->l_iclog = iclog->ic_next;
}
/*
* Write out all data in the in-core log as of this exact moment in time.
*
* Data may be written to the in-core log during this call. However,
* we don't guarantee this data will be written out. A change from past
* implementation means this routine will *not* write out zero length LRs.
*
* Basically, we try and perform an intelligent scan of the in-core logs.
* If we determine there is no flushable data, we just return. There is no
* flushable data if:
*
* 1. the current iclog is active and has no data; the previous iclog
* is in the active or dirty state.
* 2. the current iclog is drity, and the previous iclog is in the
* active or dirty state.
*
* We may sleep if:
*
* 1. the current iclog is not in the active nor dirty state.
* 2. the current iclog dirty, and the previous iclog is not in the
* active nor dirty state.
* 3. the current iclog is active, and there is another thread writing
* to this particular iclog.
* 4. a) the current iclog is active and has no other writers
* b) when we return from flushing out this iclog, it is still
* not in the active nor dirty state.
*/
int
xfs_log_force(
struct xfs_mount *mp,
uint flags)
{
struct xlog *log = mp->m_log;
struct xlog_in_core *iclog;
xfs_lsn_t lsn;
XFS_STATS_INC(mp, xs_log_force);
trace_xfs_log_force(mp, 0, _RET_IP_);
xlog_cil_force(log);
spin_lock(&log->l_icloglock);
iclog = log->l_iclog;
if (iclog->ic_state == XLOG_STATE_IOERROR)
goto out_error;
if (iclog->ic_state == XLOG_STATE_DIRTY ||
(iclog->ic_state == XLOG_STATE_ACTIVE &&
atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
/*
* If the head is dirty or (active and empty), then we need to
* look at the previous iclog.
*
* If the previous iclog is active or dirty we are done. There
* is nothing to sync out. Otherwise, we attach ourselves to the
* previous iclog and go to sleep.
*/
iclog = iclog->ic_prev;
} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
if (atomic_read(&iclog->ic_refcnt) == 0) {
/*
* We are the only one with access to this iclog.
*
* Flush it out now. There should be a roundoff of zero
* to show that someone has already taken care of the
* roundoff from the previous sync.
*/
atomic_inc(&iclog->ic_refcnt);
lsn = be64_to_cpu(iclog->ic_header.h_lsn);
xlog_state_switch_iclogs(log, iclog, 0);
if (xlog_state_release_iclog(log, iclog))
goto out_error;
if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
goto out_unlock;
} else {
/*
* Someone else is writing to this iclog.
*
* Use its call to flush out the data. However, the
* other thread may not force out this LR, so we mark
* it WANT_SYNC.
*/
xlog_state_switch_iclogs(log, iclog, 0);
}
} else {
/*
* If the head iclog is not active nor dirty, we just attach
* ourselves to the head and go to sleep if necessary.
*/
;
}
if (flags & XFS_LOG_SYNC)
return xlog_wait_on_iclog(iclog);
out_unlock:
spin_unlock(&log->l_icloglock);
return 0;
out_error:
spin_unlock(&log->l_icloglock);
return -EIO;
}
static int
__xfs_log_force_lsn(
struct xfs_mount *mp,
xfs_lsn_t lsn,
uint flags,
int *log_flushed,
bool already_slept)
{
struct xlog *log = mp->m_log;
struct xlog_in_core *iclog;
spin_lock(&log->l_icloglock);
iclog = log->l_iclog;
if (iclog->ic_state == XLOG_STATE_IOERROR)
goto out_error;
while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
iclog = iclog->ic_next;
if (iclog == log->l_iclog)
goto out_unlock;
}
if (iclog->ic_state == XLOG_STATE_ACTIVE) {
/*
* We sleep here if we haven't already slept (e.g. this is the
* first time we've looked at the correct iclog buf) and the
* buffer before us is going to be sync'ed. The reason for this
* is that if we are doing sync transactions here, by waiting
* for the previous I/O to complete, we can allow a few more
* transactions into this iclog before we close it down.
*
* Otherwise, we mark the buffer WANT_SYNC, and bump up the
* refcnt so we can release the log (which drops the ref count).
* The state switch keeps new transaction commits from using
* this buffer. When the current commits finish writing into
* the buffer, the refcount will drop to zero and the buffer
* will go out then.
*/
if (!already_slept &&
(iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
XFS_STATS_INC(mp, xs_log_force_sleep);
xlog_wait(&iclog->ic_prev->ic_write_wait,
&log->l_icloglock);
return -EAGAIN;
}
atomic_inc(&iclog->ic_refcnt);
xlog_state_switch_iclogs(log, iclog, 0);
if (xlog_state_release_iclog(log, iclog))
goto out_error;
if (log_flushed)
*log_flushed = 1;
}
if (flags & XFS_LOG_SYNC)
return xlog_wait_on_iclog(iclog);
out_unlock:
spin_unlock(&log->l_icloglock);
return 0;
out_error:
spin_unlock(&log->l_icloglock);
return -EIO;
}
/*
* Force the in-core log to disk for a specific LSN.
*
* Find in-core log with lsn.
* If it is in the DIRTY state, just return.
* If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
* state and go to sleep or return.
* If it is in any other state, go to sleep or return.
*
* Synchronous forces are implemented with a wait queue. All callers trying
* to force a given lsn to disk must wait on the queue attached to the
* specific in-core log. When given in-core log finally completes its write
* to disk, that thread will wake up all threads waiting on the queue.
*/
int
xfs_log_force_lsn(
struct xfs_mount *mp,
xfs_lsn_t lsn,
uint flags,
int *log_flushed)
{
int ret;
ASSERT(lsn != 0);
XFS_STATS_INC(mp, xs_log_force);
trace_xfs_log_force(mp, lsn, _RET_IP_);
lsn = xlog_cil_force_lsn(mp->m_log, lsn);
if (lsn == NULLCOMMITLSN)
return 0;
ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
if (ret == -EAGAIN)
ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
return ret;
}
/*
* Free a used ticket when its refcount falls to zero.
*/
void
xfs_log_ticket_put(
xlog_ticket_t *ticket)
{
ASSERT(atomic_read(&ticket->t_ref) > 0);
if (atomic_dec_and_test(&ticket->t_ref))
kmem_cache_free(xfs_log_ticket_zone, ticket);
}
xlog_ticket_t *
xfs_log_ticket_get(
xlog_ticket_t *ticket)
{
ASSERT(atomic_read(&ticket->t_ref) > 0);
atomic_inc(&ticket->t_ref);
return ticket;
}
/*
* Figure out the total log space unit (in bytes) that would be
* required for a log ticket.
*/
int
xfs_log_calc_unit_res(
struct xfs_mount *mp,
int unit_bytes)
{
struct xlog *log = mp->m_log;
int iclog_space;
uint num_headers;
/*
* Permanent reservations have up to 'cnt'-1 active log operations
* in the log. A unit in this case is the amount of space for one
* of these log operations. Normal reservations have a cnt of 1
* and their unit amount is the total amount of space required.
*
* The following lines of code account for non-transaction data
* which occupy space in the on-disk log.
*
* Normal form of a transaction is:
* <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
* and then there are LR hdrs, split-recs and roundoff at end of syncs.
*
* We need to account for all the leadup data and trailer data
* around the transaction data.
* And then we need to account for the worst case in terms of using
* more space.
* The worst case will happen if:
* - the placement of the transaction happens to be such that the
* roundoff is at its maximum
* - the transaction data is synced before the commit record is synced
* i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
* Therefore the commit record is in its own Log Record.
* This can happen as the commit record is called with its
* own region to xlog_write().
* This then means that in the worst case, roundoff can happen for
* the commit-rec as well.
* The commit-rec is smaller than padding in this scenario and so it is
* not added separately.
*/
/* for trans header */
unit_bytes += sizeof(xlog_op_header_t);
unit_bytes += sizeof(xfs_trans_header_t);
/* for start-rec */
unit_bytes += sizeof(xlog_op_header_t);
/*
* for LR headers - the space for data in an iclog is the size minus
* the space used for the headers. If we use the iclog size, then we
* undercalculate the number of headers required.
*
* Furthermore - the addition of op headers for split-recs might
* increase the space required enough to require more log and op
* headers, so take that into account too.
*
* IMPORTANT: This reservation makes the assumption that if this
* transaction is the first in an iclog and hence has the LR headers
* accounted to it, then the remaining space in the iclog is
* exclusively for this transaction. i.e. if the transaction is larger
* than the iclog, it will be the only thing in that iclog.
* Fundamentally, this means we must pass the entire log vector to
* xlog_write to guarantee this.
*/
iclog_space = log->l_iclog_size - log->l_iclog_hsize;
num_headers = howmany(unit_bytes, iclog_space);
/* for split-recs - ophdrs added when data split over LRs */
unit_bytes += sizeof(xlog_op_header_t) * num_headers;
/* add extra header reservations if we overrun */
while (!num_headers ||
howmany(unit_bytes, iclog_space) > num_headers) {
unit_bytes += sizeof(xlog_op_header_t);
num_headers++;
}
unit_bytes += log->l_iclog_hsize * num_headers;
/* for commit-rec LR header - note: padding will subsume the ophdr */
unit_bytes += log->l_iclog_hsize;
/* for roundoff padding for transaction data and one for commit record */
if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
/* log su roundoff */
unit_bytes += 2 * mp->m_sb.sb_logsunit;
} else {
/* BB roundoff */
unit_bytes += 2 * BBSIZE;
}
return unit_bytes;
}
/*
* Allocate and initialise a new log ticket.
*/
struct xlog_ticket *
xlog_ticket_alloc(
struct xlog *log,
int unit_bytes,
int cnt,
char client,
bool permanent)
{
struct xlog_ticket *tic;
int unit_res;
tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
atomic_set(&tic->t_ref, 1);
tic->t_task = current;
INIT_LIST_HEAD(&tic->t_queue);
tic->t_unit_res = unit_res;
tic->t_curr_res = unit_res;
tic->t_cnt = cnt;
tic->t_ocnt = cnt;
tic->t_tid = prandom_u32();
tic->t_clientid = client;
if (permanent)
tic->t_flags |= XLOG_TIC_PERM_RESERV;
xlog_tic_reset_res(tic);
return tic;
}
#if defined(DEBUG)
/*
* Make sure that the destination ptr is within the valid data region of
* one of the iclogs. This uses backup pointers stored in a different
* part of the log in case we trash the log structure.
*/
STATIC void
xlog_verify_dest_ptr(
struct xlog *log,
void *ptr)
{
int i;
int good_ptr = 0;
for (i = 0; i < log->l_iclog_bufs; i++) {
if (ptr >= log->l_iclog_bak[i] &&
ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
good_ptr++;
}
if (!good_ptr)
xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
}
/*
* Check to make sure the grant write head didn't just over lap the tail. If
* the cycles are the same, we can't be overlapping. Otherwise, make sure that
* the cycles differ by exactly one and check the byte count.
*
* This check is run unlocked, so can give false positives. Rather than assert
* on failures, use a warn-once flag and a panic tag to allow the admin to
* determine if they want to panic the machine when such an error occurs. For
* debug kernels this will have the same effect as using an assert but, unlinke
* an assert, it can be turned off at runtime.
*/
STATIC void
xlog_verify_grant_tail(
struct xlog *log)
{
int tail_cycle, tail_blocks;
int cycle, space;
xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
if (tail_cycle != cycle) {
if (cycle - 1 != tail_cycle &&
!(log->l_flags & XLOG_TAIL_WARN)) {
xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
"%s: cycle - 1 != tail_cycle", __func__);
log->l_flags |= XLOG_TAIL_WARN;
}
if (space > BBTOB(tail_blocks) &&
!(log->l_flags & XLOG_TAIL_WARN)) {
xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
"%s: space > BBTOB(tail_blocks)", __func__);
log->l_flags |= XLOG_TAIL_WARN;
}
}
}
/* check if it will fit */
STATIC void
xlog_verify_tail_lsn(
struct xlog *log,
struct xlog_in_core *iclog,
xfs_lsn_t tail_lsn)
{
int blocks;
if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
blocks =
log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
} else {
ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
if (blocks < BTOBB(iclog->ic_offset) + 1)
xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
}
}
/*
* Perform a number of checks on the iclog before writing to disk.
*
* 1. Make sure the iclogs are still circular
* 2. Make sure we have a good magic number
* 3. Make sure we don't have magic numbers in the data
* 4. Check fields of each log operation header for:
* A. Valid client identifier
* B. tid ptr value falls in valid ptr space (user space code)
* C. Length in log record header is correct according to the
* individual operation headers within record.
* 5. When a bwrite will occur within 5 blocks of the front of the physical
* log, check the preceding blocks of the physical log to make sure all
* the cycle numbers agree with the current cycle number.
*/
STATIC void
xlog_verify_iclog(
struct xlog *log,
struct xlog_in_core *iclog,
int count)
{
xlog_op_header_t *ophead;
xlog_in_core_t *icptr;
xlog_in_core_2_t *xhdr;
void *base_ptr, *ptr, *p;
ptrdiff_t field_offset;
uint8_t clientid;
int len, i, j, k, op_len;
int idx;
/* check validity of iclog pointers */
spin_lock(&log->l_icloglock);
icptr = log->l_iclog;
for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
ASSERT(icptr);
if (icptr != log->l_iclog)
xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
spin_unlock(&log->l_icloglock);
/* check log magic numbers */
if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
base_ptr = ptr = &iclog->ic_header;
p = &iclog->ic_header;
for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
xfs_emerg(log->l_mp, "%s: unexpected magic num",
__func__);
}
/* check fields */
len = be32_to_cpu(iclog->ic_header.h_num_logops);
base_ptr = ptr = iclog->ic_datap;
ophead = ptr;
xhdr = iclog->ic_data;
for (i = 0; i < len; i++) {
ophead = ptr;
/* clientid is only 1 byte */
p = &ophead->oh_clientid;
field_offset = p - base_ptr;
if (field_offset & 0x1ff) {
clientid = ophead->oh_clientid;
} else {
idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
clientid = xlog_get_client_id(
xhdr[j].hic_xheader.xh_cycle_data[k]);
} else {
clientid = xlog_get_client_id(
iclog->ic_header.h_cycle_data[idx]);
}
}
if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
xfs_warn(log->l_mp,
"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
__func__, clientid, ophead,
(unsigned long)field_offset);
/* check length */
p = &ophead->oh_len;
field_offset = p - base_ptr;
if (field_offset & 0x1ff) {
op_len = be32_to_cpu(ophead->oh_len);
} else {
idx = BTOBBT((uintptr_t)&ophead->oh_len -
(uintptr_t)iclog->ic_datap);
if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
} else {
op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
}
}
ptr += sizeof(xlog_op_header_t) + op_len;
}
}
#endif
/*
* Mark all iclogs IOERROR. l_icloglock is held by the caller.
*/
STATIC int
xlog_state_ioerror(
struct xlog *log)
{
xlog_in_core_t *iclog, *ic;
iclog = log->l_iclog;
if (iclog->ic_state != XLOG_STATE_IOERROR) {
/*
* Mark all the incore logs IOERROR.
* From now on, no log flushes will result.
*/
ic = iclog;
do {
ic->ic_state = XLOG_STATE_IOERROR;
ic = ic->ic_next;
} while (ic != iclog);
return 0;
}
/*
* Return non-zero, if state transition has already happened.
*/
return 1;
}
/*
* This is called from xfs_force_shutdown, when we're forcibly
* shutting down the filesystem, typically because of an IO error.
* Our main objectives here are to make sure that:
* a. if !logerror, flush the logs to disk. Anything modified
* after this is ignored.
* b. the filesystem gets marked 'SHUTDOWN' for all interested
* parties to find out, 'atomically'.
* c. those who're sleeping on log reservations, pinned objects and
* other resources get woken up, and be told the bad news.
* d. nothing new gets queued up after (b) and (c) are done.
*
* Note: for the !logerror case we need to flush the regions held in memory out
* to disk first. This needs to be done before the log is marked as shutdown,
* otherwise the iclog writes will fail.
*/
int
xfs_log_force_umount(
struct xfs_mount *mp,
int logerror)
{
struct xlog *log;
int retval;
log = mp->m_log;
/*
* If this happens during log recovery, don't worry about
* locking; the log isn't open for business yet.
*/
if (!log ||
log->l_flags & XLOG_ACTIVE_RECOVERY) {
mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
if (mp->m_sb_bp)
mp->m_sb_bp->b_flags |= XBF_DONE;
return 0;
}
/*
* Somebody could've already done the hard work for us.
* No need to get locks for this.
*/
if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
ASSERT(XLOG_FORCED_SHUTDOWN(log));
return 1;
}
/*
* Flush all the completed transactions to disk before marking the log
* being shut down. We need to do it in this order to ensure that
* completed operations are safely on disk before we shut down, and that
* we don't have to issue any buffer IO after the shutdown flags are set
* to guarantee this.
*/
if (!logerror)
xfs_log_force(mp, XFS_LOG_SYNC);
/*
* mark the filesystem and the as in a shutdown state and wake
* everybody up to tell them the bad news.
*/
spin_lock(&log->l_icloglock);
mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
if (mp->m_sb_bp)
mp->m_sb_bp->b_flags |= XBF_DONE;
/*
* Mark the log and the iclogs with IO error flags to prevent any
* further log IO from being issued or completed.
*/
log->l_flags |= XLOG_IO_ERROR;
retval = xlog_state_ioerror(log);
spin_unlock(&log->l_icloglock);
/*
* We don't want anybody waiting for log reservations after this. That
* means we have to wake up everybody queued up on reserveq as well as
* writeq. In addition, we make sure in xlog_{re}grant_log_space that
* we don't enqueue anything once the SHUTDOWN flag is set, and this
* action is protected by the grant locks.
*/
xlog_grant_head_wake_all(&log->l_reserve_head);
xlog_grant_head_wake_all(&log->l_write_head);
/*
* Wake up everybody waiting on xfs_log_force. Wake the CIL push first
* as if the log writes were completed. The abort handling in the log
* item committed callback functions will do this again under lock to
* avoid races.
*/
spin_lock(&log->l_cilp->xc_push_lock);
wake_up_all(&log->l_cilp->xc_commit_wait);
spin_unlock(&log->l_cilp->xc_push_lock);
xlog_state_do_callback(log);
/* return non-zero if log IOERROR transition had already happened */
return retval;
}
STATIC int
xlog_iclogs_empty(
struct xlog *log)
{
xlog_in_core_t *iclog;
iclog = log->l_iclog;
do {
/* endianness does not matter here, zero is zero in
* any language.
*/
if (iclog->ic_header.h_num_logops)
return 0;
iclog = iclog->ic_next;
} while (iclog != log->l_iclog);
return 1;
}
/*
* Verify that an LSN stamped into a piece of metadata is valid. This is
* intended for use in read verifiers on v5 superblocks.
*/
bool
xfs_log_check_lsn(
struct xfs_mount *mp,
xfs_lsn_t lsn)
{
struct xlog *log = mp->m_log;
bool valid;
/*
* norecovery mode skips mount-time log processing and unconditionally
* resets the in-core LSN. We can't validate in this mode, but
* modifications are not allowed anyways so just return true.
*/
if (mp->m_flags & XFS_MOUNT_NORECOVERY)
return true;
/*
* Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
* handled by recovery and thus safe to ignore here.
*/
if (lsn == NULLCOMMITLSN)
return true;
valid = xlog_valid_lsn(mp->m_log, lsn);
/* warn the user about what's gone wrong before verifier failure */
if (!valid) {
spin_lock(&log->l_icloglock);
xfs_warn(mp,
"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
"Please unmount and run xfs_repair (>= v4.3) to resolve.",
CYCLE_LSN(lsn), BLOCK_LSN(lsn),
log->l_curr_cycle, log->l_curr_block);
spin_unlock(&log->l_icloglock);
}
return valid;
}
bool
xfs_log_in_recovery(
struct xfs_mount *mp)
{
struct xlog *log = mp->m_log;
return log->l_flags & XLOG_ACTIVE_RECOVERY;
}
|