summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_buf_item_recover.c
blob: ffa94102094d9e686d78399bdc4da870626c7d2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 * All Rights Reserved.
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_trans_priv.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_log_recover.h"
#include "xfs_error.h"
#include "xfs_inode.h"
#include "xfs_dir2.h"
#include "xfs_quota.h"

/*
 * This is the number of entries in the l_buf_cancel_table used during
 * recovery.
 */
#define	XLOG_BC_TABLE_SIZE	64

#define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
	((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))

/*
 * This structure is used during recovery to record the buf log items which
 * have been canceled and should not be replayed.
 */
struct xfs_buf_cancel {
	xfs_daddr_t		bc_blkno;
	uint			bc_len;
	int			bc_refcount;
	struct list_head	bc_list;
};

static struct xfs_buf_cancel *
xlog_find_buffer_cancelled(
	struct xlog		*log,
	xfs_daddr_t		blkno,
	uint			len)
{
	struct list_head	*bucket;
	struct xfs_buf_cancel	*bcp;

	if (!log->l_buf_cancel_table)
		return NULL;

	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
	list_for_each_entry(bcp, bucket, bc_list) {
		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
			return bcp;
	}

	return NULL;
}

static bool
xlog_add_buffer_cancelled(
	struct xlog		*log,
	xfs_daddr_t		blkno,
	uint			len)
{
	struct xfs_buf_cancel	*bcp;

	/*
	 * If we find an existing cancel record, this indicates that the buffer
	 * was cancelled multiple times.  To ensure that during pass 2 we keep
	 * the record in the table until we reach its last occurrence in the
	 * log, a reference count is kept to tell how many times we expect to
	 * see this record during the second pass.
	 */
	bcp = xlog_find_buffer_cancelled(log, blkno, len);
	if (bcp) {
		bcp->bc_refcount++;
		return false;
	}

	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
	bcp->bc_blkno = blkno;
	bcp->bc_len = len;
	bcp->bc_refcount = 1;
	list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno));
	return true;
}

/*
 * Check if there is and entry for blkno, len in the buffer cancel record table.
 */
bool
xlog_is_buffer_cancelled(
	struct xlog		*log,
	xfs_daddr_t		blkno,
	uint			len)
{
	return xlog_find_buffer_cancelled(log, blkno, len) != NULL;
}

/*
 * Check if there is and entry for blkno, len in the buffer cancel record table,
 * and decremented the reference count on it if there is one.
 *
 * Remove the cancel record once the refcount hits zero, so that if the same
 * buffer is re-used again after its last cancellation we actually replay the
 * changes made at that point.
 */
static bool
xlog_put_buffer_cancelled(
	struct xlog		*log,
	xfs_daddr_t		blkno,
	uint			len)
{
	struct xfs_buf_cancel	*bcp;

	bcp = xlog_find_buffer_cancelled(log, blkno, len);
	if (!bcp) {
		ASSERT(0);
		return false;
	}

	if (--bcp->bc_refcount == 0) {
		list_del(&bcp->bc_list);
		kmem_free(bcp);
	}
	return true;
}

/* log buffer item recovery */

/*
 * Sort buffer items for log recovery.  Most buffer items should end up on the
 * buffer list and are recovered first, with the following exceptions:
 *
 * 1. XFS_BLF_CANCEL buffers must be processed last because some log items
 *    might depend on the incor ecancellation record, and replaying a cancelled
 *    buffer item can remove the incore record.
 *
 * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
 *    we replay di_next_unlinked only after flushing the inode 'free' state
 *    to the inode buffer.
 *
 * See xlog_recover_reorder_trans for more details.
 */
STATIC enum xlog_recover_reorder
xlog_recover_buf_reorder(
	struct xlog_recover_item	*item)
{
	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;

	if (buf_f->blf_flags & XFS_BLF_CANCEL)
		return XLOG_REORDER_CANCEL_LIST;
	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
		return XLOG_REORDER_INODE_BUFFER_LIST;
	return XLOG_REORDER_BUFFER_LIST;
}

STATIC void
xlog_recover_buf_ra_pass2(
	struct xlog                     *log,
	struct xlog_recover_item        *item)
{
	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;

	xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL);
}

/*
 * Build up the table of buf cancel records so that we don't replay cancelled
 * data in the second pass.
 */
static int
xlog_recover_buf_commit_pass1(
	struct xlog			*log,
	struct xlog_recover_item	*item)
{
	struct xfs_buf_log_format	*bf = item->ri_buf[0].i_addr;

	if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
		xfs_err(log->l_mp, "bad buffer log item size (%d)",
				item->ri_buf[0].i_len);
		return -EFSCORRUPTED;
	}

	if (!(bf->blf_flags & XFS_BLF_CANCEL))
		trace_xfs_log_recover_buf_not_cancel(log, bf);
	else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len))
		trace_xfs_log_recover_buf_cancel_add(log, bf);
	else
		trace_xfs_log_recover_buf_cancel_ref_inc(log, bf);
	return 0;
}

/*
 * Validate the recovered buffer is of the correct type and attach the
 * appropriate buffer operations to them for writeback. Magic numbers are in a
 * few places:
 *	the first 16 bits of the buffer (inode buffer, dquot buffer),
 *	the first 32 bits of the buffer (most blocks),
 *	inside a struct xfs_da_blkinfo at the start of the buffer.
 */
static void
xlog_recover_validate_buf_type(
	struct xfs_mount		*mp,
	struct xfs_buf			*bp,
	struct xfs_buf_log_format	*buf_f,
	xfs_lsn_t			current_lsn)
{
	struct xfs_da_blkinfo		*info = bp->b_addr;
	uint32_t			magic32;
	uint16_t			magic16;
	uint16_t			magicda;
	char				*warnmsg = NULL;

	/*
	 * We can only do post recovery validation on items on CRC enabled
	 * fielsystems as we need to know when the buffer was written to be able
	 * to determine if we should have replayed the item. If we replay old
	 * metadata over a newer buffer, then it will enter a temporarily
	 * inconsistent state resulting in verification failures. Hence for now
	 * just avoid the verification stage for non-crc filesystems
	 */
	if (!xfs_has_crc(mp))
		return;

	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
	magicda = be16_to_cpu(info->magic);
	switch (xfs_blft_from_flags(buf_f)) {
	case XFS_BLFT_BTREE_BUF:
		switch (magic32) {
		case XFS_ABTB_CRC_MAGIC:
		case XFS_ABTB_MAGIC:
			bp->b_ops = &xfs_bnobt_buf_ops;
			break;
		case XFS_ABTC_CRC_MAGIC:
		case XFS_ABTC_MAGIC:
			bp->b_ops = &xfs_cntbt_buf_ops;
			break;
		case XFS_IBT_CRC_MAGIC:
		case XFS_IBT_MAGIC:
			bp->b_ops = &xfs_inobt_buf_ops;
			break;
		case XFS_FIBT_CRC_MAGIC:
		case XFS_FIBT_MAGIC:
			bp->b_ops = &xfs_finobt_buf_ops;
			break;
		case XFS_BMAP_CRC_MAGIC:
		case XFS_BMAP_MAGIC:
			bp->b_ops = &xfs_bmbt_buf_ops;
			break;
		case XFS_RMAP_CRC_MAGIC:
			bp->b_ops = &xfs_rmapbt_buf_ops;
			break;
		case XFS_REFC_CRC_MAGIC:
			bp->b_ops = &xfs_refcountbt_buf_ops;
			break;
		default:
			warnmsg = "Bad btree block magic!";
			break;
		}
		break;
	case XFS_BLFT_AGF_BUF:
		if (magic32 != XFS_AGF_MAGIC) {
			warnmsg = "Bad AGF block magic!";
			break;
		}
		bp->b_ops = &xfs_agf_buf_ops;
		break;
	case XFS_BLFT_AGFL_BUF:
		if (magic32 != XFS_AGFL_MAGIC) {
			warnmsg = "Bad AGFL block magic!";
			break;
		}
		bp->b_ops = &xfs_agfl_buf_ops;
		break;
	case XFS_BLFT_AGI_BUF:
		if (magic32 != XFS_AGI_MAGIC) {
			warnmsg = "Bad AGI block magic!";
			break;
		}
		bp->b_ops = &xfs_agi_buf_ops;
		break;
	case XFS_BLFT_UDQUOT_BUF:
	case XFS_BLFT_PDQUOT_BUF:
	case XFS_BLFT_GDQUOT_BUF:
#ifdef CONFIG_XFS_QUOTA
		if (magic16 != XFS_DQUOT_MAGIC) {
			warnmsg = "Bad DQUOT block magic!";
			break;
		}
		bp->b_ops = &xfs_dquot_buf_ops;
#else
		xfs_alert(mp,
	"Trying to recover dquots without QUOTA support built in!");
		ASSERT(0);
#endif
		break;
	case XFS_BLFT_DINO_BUF:
		if (magic16 != XFS_DINODE_MAGIC) {
			warnmsg = "Bad INODE block magic!";
			break;
		}
		bp->b_ops = &xfs_inode_buf_ops;
		break;
	case XFS_BLFT_SYMLINK_BUF:
		if (magic32 != XFS_SYMLINK_MAGIC) {
			warnmsg = "Bad symlink block magic!";
			break;
		}
		bp->b_ops = &xfs_symlink_buf_ops;
		break;
	case XFS_BLFT_DIR_BLOCK_BUF:
		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
			warnmsg = "Bad dir block magic!";
			break;
		}
		bp->b_ops = &xfs_dir3_block_buf_ops;
		break;
	case XFS_BLFT_DIR_DATA_BUF:
		if (magic32 != XFS_DIR2_DATA_MAGIC &&
		    magic32 != XFS_DIR3_DATA_MAGIC) {
			warnmsg = "Bad dir data magic!";
			break;
		}
		bp->b_ops = &xfs_dir3_data_buf_ops;
		break;
	case XFS_BLFT_DIR_FREE_BUF:
		if (magic32 != XFS_DIR2_FREE_MAGIC &&
		    magic32 != XFS_DIR3_FREE_MAGIC) {
			warnmsg = "Bad dir3 free magic!";
			break;
		}
		bp->b_ops = &xfs_dir3_free_buf_ops;
		break;
	case XFS_BLFT_DIR_LEAF1_BUF:
		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
		    magicda != XFS_DIR3_LEAF1_MAGIC) {
			warnmsg = "Bad dir leaf1 magic!";
			break;
		}
		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
		break;
	case XFS_BLFT_DIR_LEAFN_BUF:
		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
		    magicda != XFS_DIR3_LEAFN_MAGIC) {
			warnmsg = "Bad dir leafn magic!";
			break;
		}
		bp->b_ops = &xfs_dir3_leafn_buf_ops;
		break;
	case XFS_BLFT_DA_NODE_BUF:
		if (magicda != XFS_DA_NODE_MAGIC &&
		    magicda != XFS_DA3_NODE_MAGIC) {
			warnmsg = "Bad da node magic!";
			break;
		}
		bp->b_ops = &xfs_da3_node_buf_ops;
		break;
	case XFS_BLFT_ATTR_LEAF_BUF:
		if (magicda != XFS_ATTR_LEAF_MAGIC &&
		    magicda != XFS_ATTR3_LEAF_MAGIC) {
			warnmsg = "Bad attr leaf magic!";
			break;
		}
		bp->b_ops = &xfs_attr3_leaf_buf_ops;
		break;
	case XFS_BLFT_ATTR_RMT_BUF:
		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
			warnmsg = "Bad attr remote magic!";
			break;
		}
		bp->b_ops = &xfs_attr3_rmt_buf_ops;
		break;
	case XFS_BLFT_SB_BUF:
		if (magic32 != XFS_SB_MAGIC) {
			warnmsg = "Bad SB block magic!";
			break;
		}
		bp->b_ops = &xfs_sb_buf_ops;
		break;
#ifdef CONFIG_XFS_RT
	case XFS_BLFT_RTBITMAP_BUF:
	case XFS_BLFT_RTSUMMARY_BUF:
		/* no magic numbers for verification of RT buffers */
		bp->b_ops = &xfs_rtbuf_ops;
		break;
#endif /* CONFIG_XFS_RT */
	default:
		xfs_warn(mp, "Unknown buffer type %d!",
			 xfs_blft_from_flags(buf_f));
		break;
	}

	/*
	 * Nothing else to do in the case of a NULL current LSN as this means
	 * the buffer is more recent than the change in the log and will be
	 * skipped.
	 */
	if (current_lsn == NULLCOMMITLSN)
		return;

	if (warnmsg) {
		xfs_warn(mp, warnmsg);
		ASSERT(0);
	}

	/*
	 * We must update the metadata LSN of the buffer as it is written out to
	 * ensure that older transactions never replay over this one and corrupt
	 * the buffer. This can occur if log recovery is interrupted at some
	 * point after the current transaction completes, at which point a
	 * subsequent mount starts recovery from the beginning.
	 *
	 * Write verifiers update the metadata LSN from log items attached to
	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
	 * the verifier.
	 */
	if (bp->b_ops) {
		struct xfs_buf_log_item	*bip;

		bp->b_flags |= _XBF_LOGRECOVERY;
		xfs_buf_item_init(bp, mp);
		bip = bp->b_log_item;
		bip->bli_item.li_lsn = current_lsn;
	}
}

/*
 * Perform a 'normal' buffer recovery.  Each logged region of the
 * buffer should be copied over the corresponding region in the
 * given buffer.  The bitmap in the buf log format structure indicates
 * where to place the logged data.
 */
STATIC void
xlog_recover_do_reg_buffer(
	struct xfs_mount		*mp,
	struct xlog_recover_item	*item,
	struct xfs_buf			*bp,
	struct xfs_buf_log_format	*buf_f,
	xfs_lsn_t			current_lsn)
{
	int			i;
	int			bit;
	int			nbits;
	xfs_failaddr_t		fa;
	const size_t		size_disk_dquot = sizeof(struct xfs_disk_dquot);

	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);

	bit = 0;
	i = 1;  /* 0 is the buf format structure */
	while (1) {
		bit = xfs_next_bit(buf_f->blf_data_map,
				   buf_f->blf_map_size, bit);
		if (bit == -1)
			break;
		nbits = xfs_contig_bits(buf_f->blf_data_map,
					buf_f->blf_map_size, bit);
		ASSERT(nbits > 0);
		ASSERT(item->ri_buf[i].i_addr != NULL);
		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
		ASSERT(BBTOB(bp->b_length) >=
		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));

		/*
		 * The dirty regions logged in the buffer, even though
		 * contiguous, may span multiple chunks. This is because the
		 * dirty region may span a physical page boundary in a buffer
		 * and hence be split into two separate vectors for writing into
		 * the log. Hence we need to trim nbits back to the length of
		 * the current region being copied out of the log.
		 */
		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;

		/*
		 * Do a sanity check if this is a dquot buffer. Just checking
		 * the first dquot in the buffer should do. XXXThis is
		 * probably a good thing to do for other buf types also.
		 */
		fa = NULL;
		if (buf_f->blf_flags &
		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
			if (item->ri_buf[i].i_addr == NULL) {
				xfs_alert(mp,
					"XFS: NULL dquot in %s.", __func__);
				goto next;
			}
			if (item->ri_buf[i].i_len < size_disk_dquot) {
				xfs_alert(mp,
					"XFS: dquot too small (%d) in %s.",
					item->ri_buf[i].i_len, __func__);
				goto next;
			}
			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1);
			if (fa) {
				xfs_alert(mp,
	"dquot corrupt at %pS trying to replay into block 0x%llx",
					fa, xfs_buf_daddr(bp));
				goto next;
			}
		}

		memcpy(xfs_buf_offset(bp,
			(uint)bit << XFS_BLF_SHIFT),	/* dest */
			item->ri_buf[i].i_addr,		/* source */
			nbits<<XFS_BLF_SHIFT);		/* length */
 next:
		i++;
		bit += nbits;
	}

	/* Shouldn't be any more regions */
	ASSERT(i == item->ri_total);

	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
}

/*
 * Perform a dquot buffer recovery.
 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
 * Else, treat it as a regular buffer and do recovery.
 *
 * Return false if the buffer was tossed and true if we recovered the buffer to
 * indicate to the caller if the buffer needs writing.
 */
STATIC bool
xlog_recover_do_dquot_buffer(
	struct xfs_mount		*mp,
	struct xlog			*log,
	struct xlog_recover_item	*item,
	struct xfs_buf			*bp,
	struct xfs_buf_log_format	*buf_f)
{
	uint			type;

	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);

	/*
	 * Filesystems are required to send in quota flags at mount time.
	 */
	if (!mp->m_qflags)
		return false;

	type = 0;
	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
		type |= XFS_DQTYPE_USER;
	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
		type |= XFS_DQTYPE_PROJ;
	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
		type |= XFS_DQTYPE_GROUP;
	/*
	 * This type of quotas was turned off, so ignore this buffer
	 */
	if (log->l_quotaoffs_flag & type)
		return false;

	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
	return true;
}

/*
 * Perform recovery for a buffer full of inodes.  In these buffers, the only
 * data which should be recovered is that which corresponds to the
 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
 * data for the inodes is always logged through the inodes themselves rather
 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
 *
 * The only time when buffers full of inodes are fully recovered is when the
 * buffer is full of newly allocated inodes.  In this case the buffer will
 * not be marked as an inode buffer and so will be sent to
 * xlog_recover_do_reg_buffer() below during recovery.
 */
STATIC int
xlog_recover_do_inode_buffer(
	struct xfs_mount		*mp,
	struct xlog_recover_item	*item,
	struct xfs_buf			*bp,
	struct xfs_buf_log_format	*buf_f)
{
	int				i;
	int				item_index = 0;
	int				bit = 0;
	int				nbits = 0;
	int				reg_buf_offset = 0;
	int				reg_buf_bytes = 0;
	int				next_unlinked_offset;
	int				inodes_per_buf;
	xfs_agino_t			*logged_nextp;
	xfs_agino_t			*buffer_nextp;

	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);

	/*
	 * Post recovery validation only works properly on CRC enabled
	 * filesystems.
	 */
	if (xfs_has_crc(mp))
		bp->b_ops = &xfs_inode_buf_ops;

	inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
	for (i = 0; i < inodes_per_buf; i++) {
		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
			offsetof(struct xfs_dinode, di_next_unlinked);

		while (next_unlinked_offset >=
		       (reg_buf_offset + reg_buf_bytes)) {
			/*
			 * The next di_next_unlinked field is beyond
			 * the current logged region.  Find the next
			 * logged region that contains or is beyond
			 * the current di_next_unlinked field.
			 */
			bit += nbits;
			bit = xfs_next_bit(buf_f->blf_data_map,
					   buf_f->blf_map_size, bit);

			/*
			 * If there are no more logged regions in the
			 * buffer, then we're done.
			 */
			if (bit == -1)
				return 0;

			nbits = xfs_contig_bits(buf_f->blf_data_map,
						buf_f->blf_map_size, bit);
			ASSERT(nbits > 0);
			reg_buf_offset = bit << XFS_BLF_SHIFT;
			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
			item_index++;
		}

		/*
		 * If the current logged region starts after the current
		 * di_next_unlinked field, then move on to the next
		 * di_next_unlinked field.
		 */
		if (next_unlinked_offset < reg_buf_offset)
			continue;

		ASSERT(item->ri_buf[item_index].i_addr != NULL);
		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
		ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));

		/*
		 * The current logged region contains a copy of the
		 * current di_next_unlinked field.  Extract its value
		 * and copy it to the buffer copy.
		 */
		logged_nextp = item->ri_buf[item_index].i_addr +
				next_unlinked_offset - reg_buf_offset;
		if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
			xfs_alert(mp,
		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
		"Trying to replay bad (0) inode di_next_unlinked field.",
				item, bp);
			return -EFSCORRUPTED;
		}

		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
		*buffer_nextp = *logged_nextp;

		/*
		 * If necessary, recalculate the CRC in the on-disk inode. We
		 * have to leave the inode in a consistent state for whoever
		 * reads it next....
		 */
		xfs_dinode_calc_crc(mp,
				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));

	}

	return 0;
}

/*
 * V5 filesystems know the age of the buffer on disk being recovered. We can
 * have newer objects on disk than we are replaying, and so for these cases we
 * don't want to replay the current change as that will make the buffer contents
 * temporarily invalid on disk.
 *
 * The magic number might not match the buffer type we are going to recover
 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
 * extract the LSN of the existing object in the buffer based on it's current
 * magic number.  If we don't recognise the magic number in the buffer, then
 * return a LSN of -1 so that the caller knows it was an unrecognised block and
 * so can recover the buffer.
 *
 * Note: we cannot rely solely on magic number matches to determine that the
 * buffer has a valid LSN - we also need to verify that it belongs to this
 * filesystem, so we need to extract the object's LSN and compare it to that
 * which we read from the superblock. If the UUIDs don't match, then we've got a
 * stale metadata block from an old filesystem instance that we need to recover
 * over the top of.
 */
static xfs_lsn_t
xlog_recover_get_buf_lsn(
	struct xfs_mount	*mp,
	struct xfs_buf		*bp,
	struct xfs_buf_log_format *buf_f)
{
	uint32_t		magic32;
	uint16_t		magic16;
	uint16_t		magicda;
	void			*blk = bp->b_addr;
	uuid_t			*uuid;
	xfs_lsn_t		lsn = -1;
	uint16_t		blft;

	/* v4 filesystems always recover immediately */
	if (!xfs_has_crc(mp))
		goto recover_immediately;

	/*
	 * realtime bitmap and summary file blocks do not have magic numbers or
	 * UUIDs, so we must recover them immediately.
	 */
	blft = xfs_blft_from_flags(buf_f);
	if (blft == XFS_BLFT_RTBITMAP_BUF || blft == XFS_BLFT_RTSUMMARY_BUF)
		goto recover_immediately;

	magic32 = be32_to_cpu(*(__be32 *)blk);
	switch (magic32) {
	case XFS_ABTB_CRC_MAGIC:
	case XFS_ABTC_CRC_MAGIC:
	case XFS_ABTB_MAGIC:
	case XFS_ABTC_MAGIC:
	case XFS_RMAP_CRC_MAGIC:
	case XFS_REFC_CRC_MAGIC:
	case XFS_FIBT_CRC_MAGIC:
	case XFS_FIBT_MAGIC:
	case XFS_IBT_CRC_MAGIC:
	case XFS_IBT_MAGIC: {
		struct xfs_btree_block *btb = blk;

		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
		uuid = &btb->bb_u.s.bb_uuid;
		break;
	}
	case XFS_BMAP_CRC_MAGIC:
	case XFS_BMAP_MAGIC: {
		struct xfs_btree_block *btb = blk;

		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
		uuid = &btb->bb_u.l.bb_uuid;
		break;
	}
	case XFS_AGF_MAGIC:
		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
		uuid = &((struct xfs_agf *)blk)->agf_uuid;
		break;
	case XFS_AGFL_MAGIC:
		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
		break;
	case XFS_AGI_MAGIC:
		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
		uuid = &((struct xfs_agi *)blk)->agi_uuid;
		break;
	case XFS_SYMLINK_MAGIC:
		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
		break;
	case XFS_DIR3_BLOCK_MAGIC:
	case XFS_DIR3_DATA_MAGIC:
	case XFS_DIR3_FREE_MAGIC:
		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
		break;
	case XFS_ATTR3_RMT_MAGIC:
		/*
		 * Remote attr blocks are written synchronously, rather than
		 * being logged. That means they do not contain a valid LSN
		 * (i.e. transactionally ordered) in them, and hence any time we
		 * see a buffer to replay over the top of a remote attribute
		 * block we should simply do so.
		 */
		goto recover_immediately;
	case XFS_SB_MAGIC:
		/*
		 * superblock uuids are magic. We may or may not have a
		 * sb_meta_uuid on disk, but it will be set in the in-core
		 * superblock. We set the uuid pointer for verification
		 * according to the superblock feature mask to ensure we check
		 * the relevant UUID in the superblock.
		 */
		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
		if (xfs_has_metauuid(mp))
			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
		else
			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
		break;
	default:
		break;
	}

	if (lsn != (xfs_lsn_t)-1) {
		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
			goto recover_immediately;
		return lsn;
	}

	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
	switch (magicda) {
	case XFS_DIR3_LEAF1_MAGIC:
	case XFS_DIR3_LEAFN_MAGIC:
	case XFS_ATTR3_LEAF_MAGIC:
	case XFS_DA3_NODE_MAGIC:
		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
		break;
	default:
		break;
	}

	if (lsn != (xfs_lsn_t)-1) {
		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
			goto recover_immediately;
		return lsn;
	}

	/*
	 * We do individual object checks on dquot and inode buffers as they
	 * have their own individual LSN records. Also, we could have a stale
	 * buffer here, so we have to at least recognise these buffer types.
	 *
	 * A notd complexity here is inode unlinked list processing - it logs
	 * the inode directly in the buffer, but we don't know which inodes have
	 * been modified, and there is no global buffer LSN. Hence we need to
	 * recover all inode buffer types immediately. This problem will be
	 * fixed by logical logging of the unlinked list modifications.
	 */
	magic16 = be16_to_cpu(*(__be16 *)blk);
	switch (magic16) {
	case XFS_DQUOT_MAGIC:
	case XFS_DINODE_MAGIC:
		goto recover_immediately;
	default:
		break;
	}

	/* unknown buffer contents, recover immediately */

recover_immediately:
	return (xfs_lsn_t)-1;

}

/*
 * This routine replays a modification made to a buffer at runtime.
 * There are actually two types of buffer, regular and inode, which
 * are handled differently.  Inode buffers are handled differently
 * in that we only recover a specific set of data from them, namely
 * the inode di_next_unlinked fields.  This is because all other inode
 * data is actually logged via inode records and any data we replay
 * here which overlaps that may be stale.
 *
 * When meta-data buffers are freed at run time we log a buffer item
 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
 * of the buffer in the log should not be replayed at recovery time.
 * This is so that if the blocks covered by the buffer are reused for
 * file data before we crash we don't end up replaying old, freed
 * meta-data into a user's file.
 *
 * To handle the cancellation of buffer log items, we make two passes
 * over the log during recovery.  During the first we build a table of
 * those buffers which have been cancelled, and during the second we
 * only replay those buffers which do not have corresponding cancel
 * records in the table.  See xlog_recover_buf_pass[1,2] above
 * for more details on the implementation of the table of cancel records.
 */
STATIC int
xlog_recover_buf_commit_pass2(
	struct xlog			*log,
	struct list_head		*buffer_list,
	struct xlog_recover_item	*item,
	xfs_lsn_t			current_lsn)
{
	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
	struct xfs_mount		*mp = log->l_mp;
	struct xfs_buf			*bp;
	int				error;
	uint				buf_flags;
	xfs_lsn_t			lsn;

	/*
	 * In this pass we only want to recover all the buffers which have
	 * not been cancelled and are not cancellation buffers themselves.
	 */
	if (buf_f->blf_flags & XFS_BLF_CANCEL) {
		if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
				buf_f->blf_len))
			goto cancelled;
	} else {

		if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
				buf_f->blf_len))
			goto cancelled;
	}

	trace_xfs_log_recover_buf_recover(log, buf_f);

	buf_flags = 0;
	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
		buf_flags |= XBF_UNMAPPED;

	error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
			  buf_flags, &bp, NULL);
	if (error)
		return error;

	/*
	 * Recover the buffer only if we get an LSN from it and it's less than
	 * the lsn of the transaction we are replaying.
	 *
	 * Note that we have to be extremely careful of readahead here.
	 * Readahead does not attach verfiers to the buffers so if we don't
	 * actually do any replay after readahead because of the LSN we found
	 * in the buffer if more recent than that current transaction then we
	 * need to attach the verifier directly. Failure to do so can lead to
	 * future recovery actions (e.g. EFI and unlinked list recovery) can
	 * operate on the buffers and they won't get the verifier attached. This
	 * can lead to blocks on disk having the correct content but a stale
	 * CRC.
	 *
	 * It is safe to assume these clean buffers are currently up to date.
	 * If the buffer is dirtied by a later transaction being replayed, then
	 * the verifier will be reset to match whatever recover turns that
	 * buffer into.
	 */
	lsn = xlog_recover_get_buf_lsn(mp, bp, buf_f);
	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
		trace_xfs_log_recover_buf_skip(log, buf_f);
		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
		goto out_release;
	}

	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
		if (error)
			goto out_release;
	} else if (buf_f->blf_flags &
		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
		bool	dirty;

		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
		if (!dirty)
			goto out_release;
	} else {
		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
	}

	/*
	 * Perform delayed write on the buffer.  Asynchronous writes will be
	 * slower when taking into account all the buffers to be flushed.
	 *
	 * Also make sure that only inode buffers with good sizes stay in
	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
	 * or inode_cluster_size bytes, whichever is bigger.  The inode
	 * buffers in the log can be a different size if the log was generated
	 * by an older kernel using unclustered inode buffers or a newer kernel
	 * running with a different inode cluster size.  Regardless, if
	 * the inode buffer size isn't max(blocksize, inode_cluster_size)
	 * for *our* value of inode_cluster_size, then we need to keep
	 * the buffer out of the buffer cache so that the buffer won't
	 * overlap with future reads of those inodes.
	 */
	if (XFS_DINODE_MAGIC ==
	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
	    (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
		xfs_buf_stale(bp);
		error = xfs_bwrite(bp);
	} else {
		ASSERT(bp->b_mount == mp);
		bp->b_flags |= _XBF_LOGRECOVERY;
		xfs_buf_delwri_queue(bp, buffer_list);
	}

out_release:
	xfs_buf_relse(bp);
	return error;
cancelled:
	trace_xfs_log_recover_buf_cancel(log, buf_f);
	return 0;
}

const struct xlog_recover_item_ops xlog_buf_item_ops = {
	.item_type		= XFS_LI_BUF,
	.reorder		= xlog_recover_buf_reorder,
	.ra_pass2		= xlog_recover_buf_ra_pass2,
	.commit_pass1		= xlog_recover_buf_commit_pass1,
	.commit_pass2		= xlog_recover_buf_commit_pass2,
};

#ifdef DEBUG
void
xlog_check_buf_cancel_table(
	struct xlog	*log)
{
	int		i;

	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
		ASSERT(list_empty(&log->l_buf_cancel_table[i]));
}
#endif

int
xlog_alloc_buf_cancel_table(
	struct xlog	*log)
{
	void		*p;
	int		i;

	ASSERT(log->l_buf_cancel_table == NULL);

	p = kmalloc_array(XLOG_BC_TABLE_SIZE, sizeof(struct list_head),
			  GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	log->l_buf_cancel_table = p;
	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);

	return 0;
}

void
xlog_free_buf_cancel_table(
	struct xlog	*log)
{
	int		i;

	if (!log->l_buf_cancel_table)
		return;

	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) {
		struct xfs_buf_cancel	*bc;

		while ((bc = list_first_entry_or_null(
				&log->l_buf_cancel_table[i],
				struct xfs_buf_cancel, bc_list))) {
			list_del(&bc->bc_list);
			kmem_free(bc);
		}
	}

	kmem_free(log->l_buf_cancel_table);
	log->l_buf_cancel_table = NULL;
}