summaryrefslogtreecommitdiff
path: root/fs/crypto/fname.c
blob: 1fbe6c24d705278edbe6f54663d3ce4dfdbfadcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
// SPDX-License-Identifier: GPL-2.0
/*
 * This contains functions for filename crypto management
 *
 * Copyright (C) 2015, Google, Inc.
 * Copyright (C) 2015, Motorola Mobility
 *
 * Written by Uday Savagaonkar, 2014.
 * Modified by Jaegeuk Kim, 2015.
 *
 * This has not yet undergone a rigorous security audit.
 */

#include <linux/namei.h>
#include <linux/scatterlist.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include "fscrypt_private.h"

/*
 * struct fscrypt_nokey_name - identifier for directory entry when key is absent
 *
 * When userspace lists an encrypted directory without access to the key, the
 * filesystem must present a unique "no-key name" for each filename that allows
 * it to find the directory entry again if requested.  Naively, that would just
 * mean using the ciphertext filenames.  However, since the ciphertext filenames
 * can contain illegal characters ('\0' and '/'), they must be encoded in some
 * way.  We use base64.  But that can cause names to exceed NAME_MAX (255
 * bytes), so we also need to use a strong hash to abbreviate long names.
 *
 * The filesystem may also need another kind of hash, the "dirhash", to quickly
 * find the directory entry.  Since filesystems normally compute the dirhash
 * over the on-disk filename (i.e. the ciphertext), it's not computable from
 * no-key names that abbreviate the ciphertext using the strong hash to fit in
 * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
 * plaintext (but it may still be available in the on-disk directory entry);
 * casefolded directories use this type of dirhash.  At least in these cases,
 * each no-key name must include the name's dirhash too.
 *
 * To meet all these requirements, we base64-encode the following
 * variable-length structure.  It contains the dirhash, or 0's if the filesystem
 * didn't provide one; up to 149 bytes of the ciphertext name; and for
 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
 *
 * This ensures that each no-key name contains everything needed to find the
 * directory entry again, contains only legal characters, doesn't exceed
 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
 * take the performance hit of SHA-256 on very long filenames (which are rare).
 */
struct fscrypt_nokey_name {
	u32 dirhash[2];
	u8 bytes[149];
	u8 sha256[SHA256_DIGEST_SIZE];
}; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */

/*
 * Decoded size of max-size nokey name, i.e. a name that was abbreviated using
 * the strong hash and thus includes the 'sha256' field.  This isn't simply
 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
 */
#define FSCRYPT_NOKEY_NAME_MAX	offsetofend(struct fscrypt_nokey_name, sha256)

static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
{
	if (str->len == 1 && str->name[0] == '.')
		return true;

	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
		return true;

	return false;
}

/**
 * fscrypt_fname_encrypt() - encrypt a filename
 * @inode: inode of the parent directory (for regular filenames)
 *	   or of the symlink (for symlink targets)
 * @iname: the filename to encrypt
 * @out: (output) the encrypted filename
 * @olen: size of the encrypted filename.  It must be at least @iname->len.
 *	  Any extra space is filled with NUL padding before encryption.
 *
 * Return: 0 on success, -errno on failure
 */
int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
			  u8 *out, unsigned int olen)
{
	struct skcipher_request *req = NULL;
	DECLARE_CRYPTO_WAIT(wait);
	const struct fscrypt_info *ci = inode->i_crypt_info;
	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
	union fscrypt_iv iv;
	struct scatterlist sg;
	int res;

	/*
	 * Copy the filename to the output buffer for encrypting in-place and
	 * pad it with the needed number of NUL bytes.
	 */
	if (WARN_ON(olen < iname->len))
		return -ENOBUFS;
	memcpy(out, iname->name, iname->len);
	memset(out + iname->len, 0, olen - iname->len);

	/* Initialize the IV */
	fscrypt_generate_iv(&iv, 0, ci);

	/* Set up the encryption request */
	req = skcipher_request_alloc(tfm, GFP_NOFS);
	if (!req)
		return -ENOMEM;
	skcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			crypto_req_done, &wait);
	sg_init_one(&sg, out, olen);
	skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);

	/* Do the encryption */
	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
	skcipher_request_free(req);
	if (res < 0) {
		fscrypt_err(inode, "Filename encryption failed: %d", res);
		return res;
	}

	return 0;
}

/**
 * fname_decrypt() - decrypt a filename
 * @inode: inode of the parent directory (for regular filenames)
 *	   or of the symlink (for symlink targets)
 * @iname: the encrypted filename to decrypt
 * @oname: (output) the decrypted filename.  The caller must have allocated
 *	   enough space for this, e.g. using fscrypt_fname_alloc_buffer().
 *
 * Return: 0 on success, -errno on failure
 */
static int fname_decrypt(const struct inode *inode,
			 const struct fscrypt_str *iname,
			 struct fscrypt_str *oname)
{
	struct skcipher_request *req = NULL;
	DECLARE_CRYPTO_WAIT(wait);
	struct scatterlist src_sg, dst_sg;
	const struct fscrypt_info *ci = inode->i_crypt_info;
	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
	union fscrypt_iv iv;
	int res;

	/* Allocate request */
	req = skcipher_request_alloc(tfm, GFP_NOFS);
	if (!req)
		return -ENOMEM;
	skcipher_request_set_callback(req,
		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
		crypto_req_done, &wait);

	/* Initialize IV */
	fscrypt_generate_iv(&iv, 0, ci);

	/* Create decryption request */
	sg_init_one(&src_sg, iname->name, iname->len);
	sg_init_one(&dst_sg, oname->name, oname->len);
	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
	skcipher_request_free(req);
	if (res < 0) {
		fscrypt_err(inode, "Filename decryption failed: %d", res);
		return res;
	}

	oname->len = strnlen(oname->name, iname->len);
	return 0;
}

static const char lookup_table[65] =
	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";

#define BASE64_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)

/**
 * base64_encode() - base64-encode some bytes
 * @src: the bytes to encode
 * @len: number of bytes to encode
 * @dst: (output) the base64-encoded string.  Not NUL-terminated.
 *
 * Encodes the input string using characters from the set [A-Za-z0-9+,].
 * The encoded string is roughly 4/3 times the size of the input string.
 *
 * Return: length of the encoded string
 */
static int base64_encode(const u8 *src, int len, char *dst)
{
	int i, bits = 0, ac = 0;
	char *cp = dst;

	for (i = 0; i < len; i++) {
		ac += src[i] << bits;
		bits += 8;
		do {
			*cp++ = lookup_table[ac & 0x3f];
			ac >>= 6;
			bits -= 6;
		} while (bits >= 6);
	}
	if (bits)
		*cp++ = lookup_table[ac & 0x3f];
	return cp - dst;
}

static int base64_decode(const char *src, int len, u8 *dst)
{
	int i, bits = 0, ac = 0;
	const char *p;
	u8 *cp = dst;

	for (i = 0; i < len; i++) {
		p = strchr(lookup_table, src[i]);
		if (p == NULL || src[i] == 0)
			return -2;
		ac += (p - lookup_table) << bits;
		bits += 6;
		if (bits >= 8) {
			*cp++ = ac & 0xff;
			ac >>= 8;
			bits -= 8;
		}
	}
	if (ac)
		return -1;
	return cp - dst;
}

bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
				  u32 orig_len, u32 max_len,
				  u32 *encrypted_len_ret)
{
	int padding = 4 << (fscrypt_policy_flags(policy) &
			    FSCRYPT_POLICY_FLAGS_PAD_MASK);
	u32 encrypted_len;

	if (orig_len > max_len)
		return false;
	encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
	encrypted_len = round_up(encrypted_len, padding);
	*encrypted_len_ret = min(encrypted_len, max_len);
	return true;
}

/**
 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
 *		       used to present
 * @crypto_str: (output) buffer to allocate
 *
 * Allocate a buffer that is large enough to hold any decrypted or encoded
 * filename (null-terminated), for the given maximum encrypted filename length.
 *
 * Return: 0 on success, -errno on failure
 */
int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
			       struct fscrypt_str *crypto_str)
{
	const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX);
	u32 max_presented_len;

	max_presented_len = max(max_encoded_len, max_encrypted_len);

	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
	if (!crypto_str->name)
		return -ENOMEM;
	crypto_str->len = max_presented_len;
	return 0;
}
EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);

/**
 * fscrypt_fname_free_buffer() - free a buffer for presented filenames
 * @crypto_str: the buffer to free
 *
 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
 */
void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
{
	if (!crypto_str)
		return;
	kfree(crypto_str->name);
	crypto_str->name = NULL;
}
EXPORT_SYMBOL(fscrypt_fname_free_buffer);

/**
 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
 *				 user-presentable form
 * @inode: inode of the parent directory (for regular filenames)
 *	   or of the symlink (for symlink targets)
 * @hash: first part of the name's dirhash, if applicable.  This only needs to
 *	  be provided if the filename is located in an indexed directory whose
 *	  encryption key may be unavailable.  Not needed for symlink targets.
 * @minor_hash: second part of the name's dirhash, if applicable
 * @iname: encrypted filename to convert.  May also be "." or "..", which
 *	   aren't actually encrypted.
 * @oname: output buffer for the user-presentable filename.  The caller must
 *	   have allocated enough space for this, e.g. using
 *	   fscrypt_fname_alloc_buffer().
 *
 * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
 * encode it for presentation in fscrypt_nokey_name format.
 * See struct fscrypt_nokey_name for details.
 *
 * Return: 0 on success, -errno on failure
 */
int fscrypt_fname_disk_to_usr(const struct inode *inode,
			      u32 hash, u32 minor_hash,
			      const struct fscrypt_str *iname,
			      struct fscrypt_str *oname)
{
	const struct qstr qname = FSTR_TO_QSTR(iname);
	struct fscrypt_nokey_name nokey_name;
	u32 size; /* size of the unencoded no-key name */

	if (fscrypt_is_dot_dotdot(&qname)) {
		oname->name[0] = '.';
		oname->name[iname->len - 1] = '.';
		oname->len = iname->len;
		return 0;
	}

	if (iname->len < FS_CRYPTO_BLOCK_SIZE)
		return -EUCLEAN;

	if (fscrypt_has_encryption_key(inode))
		return fname_decrypt(inode, iname, oname);

	/*
	 * Sanity check that struct fscrypt_nokey_name doesn't have padding
	 * between fields and that its encoded size never exceeds NAME_MAX.
	 */
	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
		     offsetof(struct fscrypt_nokey_name, bytes));
	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
		     offsetof(struct fscrypt_nokey_name, sha256));
	BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX);

	if (hash) {
		nokey_name.dirhash[0] = hash;
		nokey_name.dirhash[1] = minor_hash;
	} else {
		nokey_name.dirhash[0] = 0;
		nokey_name.dirhash[1] = 0;
	}
	if (iname->len <= sizeof(nokey_name.bytes)) {
		memcpy(nokey_name.bytes, iname->name, iname->len);
		size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
	} else {
		memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
		/* Compute strong hash of remaining part of name. */
		sha256(&iname->name[sizeof(nokey_name.bytes)],
		       iname->len - sizeof(nokey_name.bytes),
		       nokey_name.sha256);
		size = FSCRYPT_NOKEY_NAME_MAX;
	}
	oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name);
	return 0;
}
EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);

/**
 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
 * @dir: the directory that will be searched
 * @iname: the user-provided filename being searched for
 * @lookup: 1 if we're allowed to proceed without the key because it's
 *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
 *	proceed without the key because we're going to create the dir_entry.
 * @fname: the filename information to be filled in
 *
 * Given a user-provided filename @iname, this function sets @fname->disk_name
 * to the name that would be stored in the on-disk directory entry, if possible.
 * If the directory is unencrypted this is simply @iname.  Else, if we have the
 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
 * get the disk_name.
 *
 * Else, for keyless @lookup operations, @iname should be a no-key name, so we
 * decode it to get the struct fscrypt_nokey_name.  Non-@lookup operations will
 * be impossible in this case, so we fail them with ENOKEY.
 *
 * If successful, fscrypt_free_filename() must be called later to clean up.
 *
 * Return: 0 on success, -errno on failure
 */
int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
			      int lookup, struct fscrypt_name *fname)
{
	struct fscrypt_nokey_name *nokey_name;
	int ret;

	memset(fname, 0, sizeof(struct fscrypt_name));
	fname->usr_fname = iname;

	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
		fname->disk_name.name = (unsigned char *)iname->name;
		fname->disk_name.len = iname->len;
		return 0;
	}
	ret = fscrypt_get_encryption_info(dir);
	if (ret)
		return ret;

	if (fscrypt_has_encryption_key(dir)) {
		if (!fscrypt_fname_encrypted_size(&dir->i_crypt_info->ci_policy,
						  iname->len,
						  dir->i_sb->s_cop->max_namelen,
						  &fname->crypto_buf.len))
			return -ENAMETOOLONG;
		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
						 GFP_NOFS);
		if (!fname->crypto_buf.name)
			return -ENOMEM;

		ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
					    fname->crypto_buf.len);
		if (ret)
			goto errout;
		fname->disk_name.name = fname->crypto_buf.name;
		fname->disk_name.len = fname->crypto_buf.len;
		return 0;
	}
	if (!lookup)
		return -ENOKEY;
	fname->is_nokey_name = true;

	/*
	 * We don't have the key and we are doing a lookup; decode the
	 * user-supplied name
	 */

	if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX))
		return -ENOENT;

	fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
	if (fname->crypto_buf.name == NULL)
		return -ENOMEM;

	ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name);
	if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
	    (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
	     ret != FSCRYPT_NOKEY_NAME_MAX)) {
		ret = -ENOENT;
		goto errout;
	}
	fname->crypto_buf.len = ret;

	nokey_name = (void *)fname->crypto_buf.name;
	fname->hash = nokey_name->dirhash[0];
	fname->minor_hash = nokey_name->dirhash[1];
	if (ret != FSCRYPT_NOKEY_NAME_MAX) {
		/* The full ciphertext filename is available. */
		fname->disk_name.name = nokey_name->bytes;
		fname->disk_name.len =
			ret - offsetof(struct fscrypt_nokey_name, bytes);
	}
	return 0;

errout:
	kfree(fname->crypto_buf.name);
	return ret;
}
EXPORT_SYMBOL(fscrypt_setup_filename);

/**
 * fscrypt_match_name() - test whether the given name matches a directory entry
 * @fname: the name being searched for
 * @de_name: the name from the directory entry
 * @de_name_len: the length of @de_name in bytes
 *
 * Normally @fname->disk_name will be set, and in that case we simply compare
 * that to the name stored in the directory entry.  The only exception is that
 * if we don't have the key for an encrypted directory and the name we're
 * looking for is very long, then we won't have the full disk_name and instead
 * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
 *
 * Return: %true if the name matches, otherwise %false.
 */
bool fscrypt_match_name(const struct fscrypt_name *fname,
			const u8 *de_name, u32 de_name_len)
{
	const struct fscrypt_nokey_name *nokey_name =
		(const void *)fname->crypto_buf.name;
	u8 digest[SHA256_DIGEST_SIZE];

	if (likely(fname->disk_name.name)) {
		if (de_name_len != fname->disk_name.len)
			return false;
		return !memcmp(de_name, fname->disk_name.name, de_name_len);
	}
	if (de_name_len <= sizeof(nokey_name->bytes))
		return false;
	if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
		return false;
	sha256(&de_name[sizeof(nokey_name->bytes)],
	       de_name_len - sizeof(nokey_name->bytes), digest);
	return !memcmp(digest, nokey_name->sha256, sizeof(digest));
}
EXPORT_SYMBOL_GPL(fscrypt_match_name);

/**
 * fscrypt_fname_siphash() - calculate the SipHash of a filename
 * @dir: the parent directory
 * @name: the filename to calculate the SipHash of
 *
 * Given a plaintext filename @name and a directory @dir which uses SipHash as
 * its dirhash method and has had its fscrypt key set up, this function
 * calculates the SipHash of that name using the directory's secret dirhash key.
 *
 * Return: the SipHash of @name using the hash key of @dir
 */
u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
{
	const struct fscrypt_info *ci = dir->i_crypt_info;

	WARN_ON(!ci->ci_dirhash_key_initialized);

	return siphash(name->name, name->len, &ci->ci_dirhash_key);
}
EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);

/*
 * Validate dentries in encrypted directories to make sure we aren't potentially
 * caching stale dentries after a key has been added.
 */
int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
{
	struct dentry *dir;
	int err;
	int valid;

	/*
	 * Plaintext names are always valid, since fscrypt doesn't support
	 * reverting to no-key names without evicting the directory's inode
	 * -- which implies eviction of the dentries in the directory.
	 */
	if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
		return 1;

	/*
	 * No-key name; valid if the directory's key is still unavailable.
	 *
	 * Although fscrypt forbids rename() on no-key names, we still must use
	 * dget_parent() here rather than use ->d_parent directly.  That's
	 * because a corrupted fs image may contain directory hard links, which
	 * the VFS handles by moving the directory's dentry tree in the dcache
	 * each time ->lookup() finds the directory and it already has a dentry
	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
	 * a reference to some ->d_parent to prevent it from being freed.
	 */

	if (flags & LOOKUP_RCU)
		return -ECHILD;

	dir = dget_parent(dentry);
	err = fscrypt_get_encryption_info(d_inode(dir));
	valid = !fscrypt_has_encryption_key(d_inode(dir));
	dput(dir);

	if (err < 0)
		return err;

	return valid;
}
EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);

const struct dentry_operations fscrypt_d_ops = {
	.d_revalidate = fscrypt_d_revalidate,
};