summaryrefslogtreecommitdiff
path: root/fs/btrfs/bio.c
blob: 12b12443efaabb338a93e46ef70421c5881035d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 * Copyright (C) 2022 Christoph Hellwig.
 */

#include <linux/bio.h>
#include "bio.h"
#include "ctree.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
#include "check-integrity.h"
#include "dev-replace.h"
#include "rcu-string.h"
#include "zoned.h"
#include "file-item.h"

static struct bio_set btrfs_bioset;
static struct bio_set btrfs_clone_bioset;
static struct bio_set btrfs_repair_bioset;
static mempool_t btrfs_failed_bio_pool;

struct btrfs_failed_bio {
	struct btrfs_bio *bbio;
	int num_copies;
	atomic_t repair_count;
};

/* Is this a data path I/O that needs storage layer checksum and repair? */
static inline bool is_data_bbio(struct btrfs_bio *bbio)
{
	return bbio->inode && is_data_inode(&bbio->inode->vfs_inode);
}

static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
{
	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
}

/*
 * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
 * is already initialized by the block layer.
 */
void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
		    btrfs_bio_end_io_t end_io, void *private)
{
	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
	bbio->fs_info = fs_info;
	bbio->end_io = end_io;
	bbio->private = private;
	atomic_set(&bbio->pending_ios, 1);
}

/*
 * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
 * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
 *
 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
 * a mempool.
 */
struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
				  struct btrfs_fs_info *fs_info,
				  btrfs_bio_end_io_t end_io, void *private)
{
	struct btrfs_bio *bbio;
	struct bio *bio;

	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
	bbio = btrfs_bio(bio);
	btrfs_bio_init(bbio, fs_info, end_io, private);
	return bbio;
}

static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
					 struct btrfs_bio *orig_bbio,
					 u64 map_length, bool use_append)
{
	struct btrfs_bio *bbio;
	struct bio *bio;

	if (use_append) {
		unsigned int nr_segs;

		bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
				   &btrfs_clone_bioset, map_length);
	} else {
		bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
				GFP_NOFS, &btrfs_clone_bioset);
	}
	bbio = btrfs_bio(bio);
	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
	bbio->inode = orig_bbio->inode;
	bbio->file_offset = orig_bbio->file_offset;
	orig_bbio->file_offset += map_length;
	if (bbio_has_ordered_extent(bbio)) {
		refcount_inc(&orig_bbio->ordered->refs);
		bbio->ordered = orig_bbio->ordered;
	}
	atomic_inc(&orig_bbio->pending_ios);
	return bbio;
}

/* Free a bio that was never submitted to the underlying device. */
static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
{
	if (bbio_has_ordered_extent(bbio))
		btrfs_put_ordered_extent(bbio->ordered);
	bio_put(&bbio->bio);
}

static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
{
	if (bbio_has_ordered_extent(bbio)) {
		struct btrfs_ordered_extent *ordered = bbio->ordered;

		bbio->end_io(bbio);
		btrfs_put_ordered_extent(ordered);
	} else {
		bbio->end_io(bbio);
	}
}

void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
{
	bbio->bio.bi_status = status;
	__btrfs_bio_end_io(bbio);
}

static void btrfs_orig_write_end_io(struct bio *bio);

static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
				       struct btrfs_bio *orig_bbio)
{
	/*
	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
	 * just blindly propagate a write failure here.  Instead increment the
	 * error count in the original I/O context so that it is guaranteed to
	 * be larger than the error tolerance.
	 */
	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;

		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
	} else {
		orig_bbio->bio.bi_status = bbio->bio.bi_status;
	}
}

static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
{
	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
		struct btrfs_bio *orig_bbio = bbio->private;

		if (bbio->bio.bi_status)
			btrfs_bbio_propagate_error(bbio, orig_bbio);
		btrfs_cleanup_bio(bbio);
		bbio = orig_bbio;
	}

	if (atomic_dec_and_test(&bbio->pending_ios))
		__btrfs_bio_end_io(bbio);
}

static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
{
	if (cur_mirror == fbio->num_copies)
		return cur_mirror + 1 - fbio->num_copies;
	return cur_mirror + 1;
}

static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
{
	if (cur_mirror == 1)
		return fbio->num_copies;
	return cur_mirror - 1;
}

static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
{
	if (atomic_dec_and_test(&fbio->repair_count)) {
		btrfs_orig_bbio_end_io(fbio->bbio);
		mempool_free(fbio, &btrfs_failed_bio_pool);
	}
}

static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
				 struct btrfs_device *dev)
{
	struct btrfs_failed_bio *fbio = repair_bbio->private;
	struct btrfs_inode *inode = repair_bbio->inode;
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
	int mirror = repair_bbio->mirror_num;

	if (repair_bbio->bio.bi_status ||
	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;

		mirror = next_repair_mirror(fbio, mirror);
		if (mirror == fbio->bbio->mirror_num) {
			btrfs_debug(fs_info, "no mirror left");
			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
			goto done;
		}

		btrfs_submit_bio(repair_bbio, mirror);
		return;
	}

	do {
		mirror = prev_repair_mirror(fbio, mirror);
		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
				  repair_bbio->file_offset, fs_info->sectorsize,
				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
				  bv->bv_page, bv->bv_offset, mirror);
	} while (mirror != fbio->bbio->mirror_num);

done:
	btrfs_repair_done(fbio);
	bio_put(&repair_bbio->bio);
}

/*
 * Try to kick off a repair read to the next available mirror for a bad sector.
 *
 * This primarily tries to recover good data to serve the actual read request,
 * but also tries to write the good data back to the bad mirror(s) when a
 * read succeeded to restore the redundancy.
 */
static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
						  u32 bio_offset,
						  struct bio_vec *bv,
						  struct btrfs_failed_bio *fbio)
{
	struct btrfs_inode *inode = failed_bbio->inode;
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	const u32 sectorsize = fs_info->sectorsize;
	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
	struct btrfs_bio *repair_bbio;
	struct bio *repair_bio;
	int num_copies;
	int mirror;

	btrfs_debug(fs_info, "repair read error: read error at %llu",
		    failed_bbio->file_offset + bio_offset);

	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
	if (num_copies == 1) {
		btrfs_debug(fs_info, "no copy to repair from");
		failed_bbio->bio.bi_status = BLK_STS_IOERR;
		return fbio;
	}

	if (!fbio) {
		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
		fbio->bbio = failed_bbio;
		fbio->num_copies = num_copies;
		atomic_set(&fbio->repair_count, 1);
	}

	atomic_inc(&fbio->repair_count);

	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
				      &btrfs_repair_bioset);
	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);

	repair_bbio = btrfs_bio(repair_bio);
	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
	repair_bbio->inode = failed_bbio->inode;
	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;

	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
	btrfs_submit_bio(repair_bbio, mirror);
	return fbio;
}

static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
{
	struct btrfs_inode *inode = bbio->inode;
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	u32 sectorsize = fs_info->sectorsize;
	struct bvec_iter *iter = &bbio->saved_iter;
	blk_status_t status = bbio->bio.bi_status;
	struct btrfs_failed_bio *fbio = NULL;
	u32 offset = 0;

	/* Read-repair requires the inode field to be set by the submitter. */
	ASSERT(inode);

	/*
	 * Hand off repair bios to the repair code as there is no upper level
	 * submitter for them.
	 */
	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
		btrfs_end_repair_bio(bbio, dev);
		return;
	}

	/* Clear the I/O error. A failed repair will reset it. */
	bbio->bio.bi_status = BLK_STS_OK;

	while (iter->bi_size) {
		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);

		bv.bv_len = min(bv.bv_len, sectorsize);
		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
			fbio = repair_one_sector(bbio, offset, &bv, fbio);

		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
		offset += sectorsize;
	}

	if (bbio->csum != bbio->csum_inline)
		kfree(bbio->csum);

	if (fbio)
		btrfs_repair_done(fbio);
	else
		btrfs_orig_bbio_end_io(bbio);
}

static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
{
	if (!dev || !dev->bdev)
		return;
	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
		return;

	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
	else if (!(bio->bi_opf & REQ_RAHEAD))
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
	if (bio->bi_opf & REQ_PREFLUSH)
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
}

static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
						struct bio *bio)
{
	if (bio->bi_opf & REQ_META)
		return fs_info->endio_meta_workers;
	return fs_info->endio_workers;
}

static void btrfs_end_bio_work(struct work_struct *work)
{
	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);

	/* Metadata reads are checked and repaired by the submitter. */
	if (is_data_bbio(bbio))
		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
	else
		btrfs_orig_bbio_end_io(bbio);
}

static void btrfs_simple_end_io(struct bio *bio)
{
	struct btrfs_bio *bbio = btrfs_bio(bio);
	struct btrfs_device *dev = bio->bi_private;
	struct btrfs_fs_info *fs_info = bbio->fs_info;

	btrfs_bio_counter_dec(fs_info);

	if (bio->bi_status)
		btrfs_log_dev_io_error(bio, dev);

	if (bio_op(bio) == REQ_OP_READ) {
		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
	} else {
		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
			btrfs_record_physical_zoned(bbio);
		btrfs_orig_bbio_end_io(bbio);
	}
}

static void btrfs_raid56_end_io(struct bio *bio)
{
	struct btrfs_io_context *bioc = bio->bi_private;
	struct btrfs_bio *bbio = btrfs_bio(bio);

	btrfs_bio_counter_dec(bioc->fs_info);
	bbio->mirror_num = bioc->mirror_num;
	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
		btrfs_check_read_bio(bbio, NULL);
	else
		btrfs_orig_bbio_end_io(bbio);

	btrfs_put_bioc(bioc);
}

static void btrfs_orig_write_end_io(struct bio *bio)
{
	struct btrfs_io_stripe *stripe = bio->bi_private;
	struct btrfs_io_context *bioc = stripe->bioc;
	struct btrfs_bio *bbio = btrfs_bio(bio);

	btrfs_bio_counter_dec(bioc->fs_info);

	if (bio->bi_status) {
		atomic_inc(&bioc->error);
		btrfs_log_dev_io_error(bio, stripe->dev);
	}

	/*
	 * Only send an error to the higher layers if it is beyond the tolerance
	 * threshold.
	 */
	if (atomic_read(&bioc->error) > bioc->max_errors)
		bio->bi_status = BLK_STS_IOERR;
	else
		bio->bi_status = BLK_STS_OK;

	btrfs_orig_bbio_end_io(bbio);
	btrfs_put_bioc(bioc);
}

static void btrfs_clone_write_end_io(struct bio *bio)
{
	struct btrfs_io_stripe *stripe = bio->bi_private;

	if (bio->bi_status) {
		atomic_inc(&stripe->bioc->error);
		btrfs_log_dev_io_error(bio, stripe->dev);
	}

	/* Pass on control to the original bio this one was cloned from */
	bio_endio(stripe->bioc->orig_bio);
	bio_put(bio);
}

static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
{
	if (!dev || !dev->bdev ||
	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
		bio_io_error(bio);
		return;
	}

	bio_set_dev(bio, dev->bdev);

	/*
	 * For zone append writing, bi_sector must point the beginning of the
	 * zone
	 */
	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
		u64 zone_start = round_down(physical, dev->fs_info->zone_size);

		ASSERT(btrfs_dev_is_sequential(dev, physical));
		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
	}
	btrfs_debug_in_rcu(dev->fs_info,
	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
		dev->devid, bio->bi_iter.bi_size);

	btrfsic_check_bio(bio);

	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
		blkcg_punt_bio_submit(bio);
	else
		submit_bio(bio);
}

static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
{
	struct bio *orig_bio = bioc->orig_bio, *bio;

	ASSERT(bio_op(orig_bio) != REQ_OP_READ);

	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
	if (dev_nr == bioc->num_stripes - 1) {
		bio = orig_bio;
		bio->bi_end_io = btrfs_orig_write_end_io;
	} else {
		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
		bio_inc_remaining(orig_bio);
		bio->bi_end_io = btrfs_clone_write_end_io;
	}

	bio->bi_private = &bioc->stripes[dev_nr];
	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
	bioc->stripes[dev_nr].bioc = bioc;
	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
}

static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
			       struct btrfs_io_stripe *smap, int mirror_num)
{
	if (!bioc) {
		/* Single mirror read/write fast path. */
		btrfs_bio(bio)->mirror_num = mirror_num;
		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
		if (bio_op(bio) != REQ_OP_READ)
			btrfs_bio(bio)->orig_physical = smap->physical;
		bio->bi_private = smap->dev;
		bio->bi_end_io = btrfs_simple_end_io;
		btrfs_submit_dev_bio(smap->dev, bio);
	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		/* Parity RAID write or read recovery. */
		bio->bi_private = bioc;
		bio->bi_end_io = btrfs_raid56_end_io;
		if (bio_op(bio) == REQ_OP_READ)
			raid56_parity_recover(bio, bioc, mirror_num);
		else
			raid56_parity_write(bio, bioc);
	} else {
		/* Write to multiple mirrors. */
		int total_devs = bioc->num_stripes;

		bioc->orig_bio = bio;
		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
			btrfs_submit_mirrored_bio(bioc, dev_nr);
	}
}

static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
{
	if (bbio->bio.bi_opf & REQ_META)
		return btree_csum_one_bio(bbio);
	return btrfs_csum_one_bio(bbio);
}

/*
 * Async submit bios are used to offload expensive checksumming onto the worker
 * threads.
 */
struct async_submit_bio {
	struct btrfs_bio *bbio;
	struct btrfs_io_context *bioc;
	struct btrfs_io_stripe smap;
	int mirror_num;
	struct btrfs_work work;
};

/*
 * In order to insert checksums into the metadata in large chunks, we wait
 * until bio submission time.   All the pages in the bio are checksummed and
 * sums are attached onto the ordered extent record.
 *
 * At IO completion time the csums attached on the ordered extent record are
 * inserted into the btree.
 */
static void run_one_async_start(struct btrfs_work *work)
{
	struct async_submit_bio *async =
		container_of(work, struct async_submit_bio, work);
	blk_status_t ret;

	ret = btrfs_bio_csum(async->bbio);
	if (ret)
		async->bbio->bio.bi_status = ret;
}

/*
 * In order to insert checksums into the metadata in large chunks, we wait
 * until bio submission time.   All the pages in the bio are checksummed and
 * sums are attached onto the ordered extent record.
 *
 * At IO completion time the csums attached on the ordered extent record are
 * inserted into the tree.
 */
static void run_one_async_done(struct btrfs_work *work)
{
	struct async_submit_bio *async =
		container_of(work, struct async_submit_bio, work);
	struct bio *bio = &async->bbio->bio;

	/* If an error occurred we just want to clean up the bio and move on. */
	if (bio->bi_status) {
		btrfs_orig_bbio_end_io(async->bbio);
		return;
	}

	/*
	 * All of the bios that pass through here are from async helpers.
	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
	 * context.  This changes nothing when cgroups aren't in use.
	 */
	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
	__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
}

static void run_one_async_free(struct btrfs_work *work)
{
	kfree(container_of(work, struct async_submit_bio, work));
}

static bool should_async_write(struct btrfs_bio *bbio)
{
	/* Submit synchronously if the checksum implementation is fast. */
	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
		return false;

	/*
	 * Try to defer the submission to a workqueue to parallelize the
	 * checksum calculation unless the I/O is issued synchronously.
	 */
	if (op_is_sync(bbio->bio.bi_opf))
		return false;

	/* Zoned devices require I/O to be submitted in order. */
	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
		return false;

	return true;
}

/*
 * Submit bio to an async queue.
 *
 * Return true if the work has been succesfuly submitted, else false.
 */
static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
				struct btrfs_io_context *bioc,
				struct btrfs_io_stripe *smap, int mirror_num)
{
	struct btrfs_fs_info *fs_info = bbio->fs_info;
	struct async_submit_bio *async;

	async = kmalloc(sizeof(*async), GFP_NOFS);
	if (!async)
		return false;

	async->bbio = bbio;
	async->bioc = bioc;
	async->smap = *smap;
	async->mirror_num = mirror_num;

	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
			run_one_async_free);
	btrfs_queue_work(fs_info->workers, &async->work);
	return true;
}

static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
{
	struct btrfs_inode *inode = bbio->inode;
	struct btrfs_fs_info *fs_info = bbio->fs_info;
	struct btrfs_bio *orig_bbio = bbio;
	struct bio *bio = &bbio->bio;
	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
	u64 length = bio->bi_iter.bi_size;
	u64 map_length = length;
	bool use_append = btrfs_use_zone_append(bbio);
	struct btrfs_io_context *bioc = NULL;
	struct btrfs_io_stripe smap;
	blk_status_t ret;
	int error;

	btrfs_bio_counter_inc_blocked(fs_info);
	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
				&bioc, &smap, &mirror_num, 1);
	if (error) {
		ret = errno_to_blk_status(error);
		goto fail;
	}

	map_length = min(map_length, length);
	if (use_append)
		map_length = min(map_length, fs_info->max_zone_append_size);

	if (map_length < length) {
		bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
		bio = &bbio->bio;
	}

	/*
	 * Save the iter for the end_io handler and preload the checksums for
	 * data reads.
	 */
	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
		bbio->saved_iter = bio->bi_iter;
		ret = btrfs_lookup_bio_sums(bbio);
		if (ret)
			goto fail_put_bio;
	}

	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
		if (use_append) {
			bio->bi_opf &= ~REQ_OP_WRITE;
			bio->bi_opf |= REQ_OP_ZONE_APPEND;
		}

		/*
		 * Csum items for reloc roots have already been cloned at this
		 * point, so they are handled as part of the no-checksum case.
		 */
		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
		    !btrfs_is_data_reloc_root(inode->root)) {
			if (should_async_write(bbio) &&
			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
				goto done;

			ret = btrfs_bio_csum(bbio);
			if (ret)
				goto fail_put_bio;
		} else if (use_append) {
			ret = btrfs_alloc_dummy_sum(bbio);
			if (ret)
				goto fail_put_bio;
		}
	}

	__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
done:
	return map_length == length;

fail_put_bio:
	if (map_length < length)
		btrfs_cleanup_bio(bbio);
fail:
	btrfs_bio_counter_dec(fs_info);
	btrfs_bio_end_io(orig_bbio, ret);
	/* Do not submit another chunk */
	return true;
}

void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
{
	/* If bbio->inode is not populated, its file_offset must be 0. */
	ASSERT(bbio->inode || bbio->file_offset == 0);

	while (!btrfs_submit_chunk(bbio, mirror_num))
		;
}

/*
 * Submit a repair write.
 *
 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
 * RAID setup.  Here we only want to write the one bad copy, so we do the
 * mapping ourselves and submit the bio directly.
 *
 * The I/O is issued synchronously to block the repair read completion from
 * freeing the bio.
 */
int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
			    u64 length, u64 logical, struct page *page,
			    unsigned int pg_offset, int mirror_num)
{
	struct btrfs_io_stripe smap = { 0 };
	struct bio_vec bvec;
	struct bio bio;
	int ret = 0;

	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
	BUG_ON(!mirror_num);

	if (btrfs_repair_one_zone(fs_info, logical))
		return 0;

	/*
	 * Avoid races with device replace and make sure our bioc has devices
	 * associated to its stripes that don't go away while we are doing the
	 * read repair operation.
	 */
	btrfs_bio_counter_inc_blocked(fs_info);
	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
	if (ret < 0)
		goto out_counter_dec;

	if (!smap.dev->bdev ||
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
		ret = -EIO;
		goto out_counter_dec;
	}

	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
	__bio_add_page(&bio, page, length, pg_offset);

	btrfsic_check_bio(&bio);
	ret = submit_bio_wait(&bio);
	if (ret) {
		/* try to remap that extent elsewhere? */
		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
		goto out_bio_uninit;
	}

	btrfs_info_rl_in_rcu(fs_info,
		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
			     ino, start, btrfs_dev_name(smap.dev),
			     smap.physical >> SECTOR_SHIFT);
	ret = 0;

out_bio_uninit:
	bio_uninit(&bio);
out_counter_dec:
	btrfs_bio_counter_dec(fs_info);
	return ret;
}

/*
 * Submit a btrfs_bio based repair write.
 *
 * If @dev_replace is true, the write would be submitted to dev-replace target.
 */
void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
{
	struct btrfs_fs_info *fs_info = bbio->fs_info;
	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
	u64 length = bbio->bio.bi_iter.bi_size;
	struct btrfs_io_stripe smap = { 0 };
	int ret;

	ASSERT(fs_info);
	ASSERT(mirror_num > 0);
	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
	ASSERT(!bbio->inode);

	btrfs_bio_counter_inc_blocked(fs_info);
	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
	if (ret < 0)
		goto fail;

	if (dev_replace) {
		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
		smap.dev = fs_info->dev_replace.tgtdev;
	}
	__btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
	return;

fail:
	btrfs_bio_counter_dec(fs_info);
	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
}

int __init btrfs_bioset_init(void)
{
	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_bio, bio),
			BIOSET_NEED_BVECS))
		return -ENOMEM;
	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_bio, bio), 0))
		goto out_free_bioset;
	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
			offsetof(struct btrfs_bio, bio),
			BIOSET_NEED_BVECS))
		goto out_free_clone_bioset;
	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
				      sizeof(struct btrfs_failed_bio)))
		goto out_free_repair_bioset;
	return 0;

out_free_repair_bioset:
	bioset_exit(&btrfs_repair_bioset);
out_free_clone_bioset:
	bioset_exit(&btrfs_clone_bioset);
out_free_bioset:
	bioset_exit(&btrfs_bioset);
	return -ENOMEM;
}

void __cold btrfs_bioset_exit(void)
{
	mempool_exit(&btrfs_failed_bio_pool);
	bioset_exit(&btrfs_repair_bioset);
	bioset_exit(&btrfs_clone_bioset);
	bioset_exit(&btrfs_bioset);
}