1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2020 NXP.
*
* Author: Anson Huang <Anson.Huang@nxp.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#include "thermal_hwmon.h"
#define TER 0x0 /* TMU enable */
#define TPS 0x4
#define TRITSR 0x20 /* TMU immediate temp */
/* TMU calibration data registers */
#define TASR 0x28
#define TASR_BUF_SLOPE_MASK GENMASK(19, 16)
#define TASR_BUF_VREF_MASK GENMASK(4, 0) /* TMU_V1 */
#define TASR_BUF_VERF_SEL_MASK GENMASK(1, 0) /* TMU_V2 */
#define TCALIV(n) (0x30 + ((n) * 4))
#define TCALIV_EN BIT(31)
#define TCALIV_HR_MASK GENMASK(23, 16) /* TMU_V1 */
#define TCALIV_RT_MASK GENMASK(7, 0) /* TMU_V1 */
#define TCALIV_SNSR105C_MASK GENMASK(27, 16) /* TMU_V2 */
#define TCALIV_SNSR25C_MASK GENMASK(11, 0) /* TMU_V2 */
#define TRIM 0x3c
#define TRIM_BJT_CUR_MASK GENMASK(23, 20)
#define TRIM_BGR_MASK GENMASK(31, 28)
#define TRIM_VLSB_MASK GENMASK(15, 12)
#define TRIM_EN_CH BIT(7)
#define TER_ADC_PD BIT(30)
#define TER_EN BIT(31)
#define TRITSR_TEMP0_VAL_MASK GENMASK(7, 0)
#define TRITSR_TEMP1_VAL_MASK GENMASK(23, 16)
#define PROBE_SEL_ALL GENMASK(31, 30)
#define probe_status_offset(x) (30 + x)
#define SIGN_BIT BIT(7)
#define TEMP_VAL_MASK GENMASK(6, 0)
/* TMU OCOTP calibration data bitfields */
#define ANA0_EN BIT(25)
#define ANA0_BUF_VREF_MASK GENMASK(24, 20)
#define ANA0_BUF_SLOPE_MASK GENMASK(19, 16)
#define ANA0_HR_MASK GENMASK(15, 8)
#define ANA0_RT_MASK GENMASK(7, 0)
#define TRIM2_VLSB_MASK GENMASK(23, 20)
#define TRIM2_BGR_MASK GENMASK(19, 16)
#define TRIM2_BJT_CUR_MASK GENMASK(15, 12)
#define TRIM2_BUF_SLOP_SEL_MASK GENMASK(11, 8)
#define TRIM2_BUF_VERF_SEL_MASK GENMASK(7, 6)
#define TRIM3_TCA25_0_LSB_MASK GENMASK(31, 28)
#define TRIM3_TCA40_0_MASK GENMASK(27, 16)
#define TRIM4_TCA40_1_MASK GENMASK(31, 20)
#define TRIM4_TCA105_0_MASK GENMASK(19, 8)
#define TRIM4_TCA25_0_MSB_MASK GENMASK(7, 0)
#define TRIM5_TCA105_1_MASK GENMASK(23, 12)
#define TRIM5_TCA25_1_MASK GENMASK(11, 0)
#define VER1_TEMP_LOW_LIMIT 10000
#define VER2_TEMP_LOW_LIMIT -40000
#define VER2_TEMP_HIGH_LIMIT 125000
#define TMU_VER1 0x1
#define TMU_VER2 0x2
struct thermal_soc_data {
u32 num_sensors;
u32 version;
int (*get_temp)(void *, int *);
};
struct tmu_sensor {
struct imx8mm_tmu *priv;
u32 hw_id;
struct thermal_zone_device *tzd;
};
struct imx8mm_tmu {
void __iomem *base;
struct clk *clk;
const struct thermal_soc_data *socdata;
struct tmu_sensor sensors[];
};
static int imx8mm_tmu_get_temp(void *data, int *temp)
{
struct tmu_sensor *sensor = data;
struct imx8mm_tmu *tmu = sensor->priv;
u32 val;
val = readl_relaxed(tmu->base + TRITSR) & TRITSR_TEMP0_VAL_MASK;
/*
* Do not validate against the V bit (bit 31) due to errata
* ERR051272: TMU: Bit 31 of registers TMU_TSCR/TMU_TRITSR/TMU_TRATSR invalid
*/
*temp = val * 1000;
if (*temp < VER1_TEMP_LOW_LIMIT || *temp > VER2_TEMP_HIGH_LIMIT)
return -EAGAIN;
return 0;
}
static int imx8mp_tmu_get_temp(void *data, int *temp)
{
struct tmu_sensor *sensor = data;
struct imx8mm_tmu *tmu = sensor->priv;
unsigned long val;
bool ready;
val = readl_relaxed(tmu->base + TRITSR);
ready = test_bit(probe_status_offset(sensor->hw_id), &val);
if (!ready)
return -EAGAIN;
val = sensor->hw_id ? FIELD_GET(TRITSR_TEMP1_VAL_MASK, val) :
FIELD_GET(TRITSR_TEMP0_VAL_MASK, val);
if (val & SIGN_BIT) /* negative */
val = (~(val & TEMP_VAL_MASK) + 1);
*temp = val * 1000;
if (*temp < VER2_TEMP_LOW_LIMIT || *temp > VER2_TEMP_HIGH_LIMIT)
return -EAGAIN;
return 0;
}
static int tmu_get_temp(struct thermal_zone_device *tz, int *temp)
{
struct tmu_sensor *sensor = tz->devdata;
struct imx8mm_tmu *tmu = sensor->priv;
return tmu->socdata->get_temp(sensor, temp);
}
static const struct thermal_zone_device_ops tmu_tz_ops = {
.get_temp = tmu_get_temp,
};
static void imx8mm_tmu_enable(struct imx8mm_tmu *tmu, bool enable)
{
u32 val;
val = readl_relaxed(tmu->base + TER);
val = enable ? (val | TER_EN) : (val & ~TER_EN);
if (tmu->socdata->version == TMU_VER2)
val = enable ? (val & ~TER_ADC_PD) : (val | TER_ADC_PD);
writel_relaxed(val, tmu->base + TER);
}
static void imx8mm_tmu_probe_sel_all(struct imx8mm_tmu *tmu)
{
u32 val;
val = readl_relaxed(tmu->base + TPS);
val |= PROBE_SEL_ALL;
writel_relaxed(val, tmu->base + TPS);
}
static int imx8mm_tmu_probe_set_calib_v1(struct platform_device *pdev,
struct imx8mm_tmu *tmu)
{
struct device *dev = &pdev->dev;
u32 ana0;
int ret;
ret = nvmem_cell_read_u32(&pdev->dev, "calib", &ana0);
if (ret) {
dev_warn(dev, "Failed to read OCOTP nvmem cell (%d).\n", ret);
return ret;
}
writel(FIELD_PREP(TASR_BUF_VREF_MASK,
FIELD_GET(ANA0_BUF_VREF_MASK, ana0)) |
FIELD_PREP(TASR_BUF_SLOPE_MASK,
FIELD_GET(ANA0_BUF_SLOPE_MASK, ana0)),
tmu->base + TASR);
writel(FIELD_PREP(TCALIV_RT_MASK, FIELD_GET(ANA0_RT_MASK, ana0)) |
FIELD_PREP(TCALIV_HR_MASK, FIELD_GET(ANA0_HR_MASK, ana0)) |
((ana0 & ANA0_EN) ? TCALIV_EN : 0),
tmu->base + TCALIV(0));
return 0;
}
static int imx8mm_tmu_probe_set_calib_v2(struct platform_device *pdev,
struct imx8mm_tmu *tmu)
{
struct device *dev = &pdev->dev;
struct nvmem_cell *cell;
u32 trim[4] = { 0 };
size_t len;
void *buf;
cell = nvmem_cell_get(dev, "calib");
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
memcpy(trim, buf, min(len, sizeof(trim)));
kfree(buf);
if (len != 16) {
dev_err(dev,
"OCOTP nvmem cell length is %zu, must be 16.\n", len);
return -EINVAL;
}
/* Blank sample hardware */
if (!trim[0] && !trim[1] && !trim[2] && !trim[3]) {
/* Use a default 25C binary codes */
writel(FIELD_PREP(TCALIV_SNSR25C_MASK, 0x63c),
tmu->base + TCALIV(0));
writel(FIELD_PREP(TCALIV_SNSR25C_MASK, 0x63c),
tmu->base + TCALIV(1));
return 0;
}
writel(FIELD_PREP(TASR_BUF_VERF_SEL_MASK,
FIELD_GET(TRIM2_BUF_VERF_SEL_MASK, trim[0])) |
FIELD_PREP(TASR_BUF_SLOPE_MASK,
FIELD_GET(TRIM2_BUF_SLOP_SEL_MASK, trim[0])),
tmu->base + TASR);
writel(FIELD_PREP(TRIM_BJT_CUR_MASK,
FIELD_GET(TRIM2_BJT_CUR_MASK, trim[0])) |
FIELD_PREP(TRIM_BGR_MASK, FIELD_GET(TRIM2_BGR_MASK, trim[0])) |
FIELD_PREP(TRIM_VLSB_MASK, FIELD_GET(TRIM2_VLSB_MASK, trim[0])) |
TRIM_EN_CH,
tmu->base + TRIM);
writel(FIELD_PREP(TCALIV_SNSR25C_MASK,
FIELD_GET(TRIM3_TCA25_0_LSB_MASK, trim[1]) |
(FIELD_GET(TRIM4_TCA25_0_MSB_MASK, trim[2]) << 4)) |
FIELD_PREP(TCALIV_SNSR105C_MASK,
FIELD_GET(TRIM4_TCA105_0_MASK, trim[2])),
tmu->base + TCALIV(0));
writel(FIELD_PREP(TCALIV_SNSR25C_MASK,
FIELD_GET(TRIM5_TCA25_1_MASK, trim[3])) |
FIELD_PREP(TCALIV_SNSR105C_MASK,
FIELD_GET(TRIM5_TCA105_1_MASK, trim[3])),
tmu->base + TCALIV(1));
writel(FIELD_PREP(TCALIV_SNSR25C_MASK,
FIELD_GET(TRIM3_TCA40_0_MASK, trim[1])) |
FIELD_PREP(TCALIV_SNSR105C_MASK,
FIELD_GET(TRIM4_TCA40_1_MASK, trim[2])),
tmu->base + TCALIV(2));
return 0;
}
static int imx8mm_tmu_probe_set_calib(struct platform_device *pdev,
struct imx8mm_tmu *tmu)
{
struct device *dev = &pdev->dev;
/*
* Lack of calibration data OCOTP reference is not considered
* fatal to retain compatibility with old DTs. It is however
* strongly recommended to update such old DTs to get correct
* temperature compensation values for each SoC.
*/
if (!of_find_property(pdev->dev.of_node, "nvmem-cells", NULL)) {
dev_warn(dev,
"No OCOTP nvmem reference found, SoC-specific calibration not loaded. Please update your DT.\n");
return 0;
}
if (tmu->socdata->version == TMU_VER1)
return imx8mm_tmu_probe_set_calib_v1(pdev, tmu);
return imx8mm_tmu_probe_set_calib_v2(pdev, tmu);
}
static int imx8mm_tmu_probe(struct platform_device *pdev)
{
const struct thermal_soc_data *data;
struct imx8mm_tmu *tmu;
int ret;
int i;
data = of_device_get_match_data(&pdev->dev);
tmu = devm_kzalloc(&pdev->dev, struct_size(tmu, sensors,
data->num_sensors), GFP_KERNEL);
if (!tmu)
return -ENOMEM;
tmu->socdata = data;
tmu->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(tmu->base))
return PTR_ERR(tmu->base);
tmu->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(tmu->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(tmu->clk),
"failed to get tmu clock\n");
ret = clk_prepare_enable(tmu->clk);
if (ret) {
dev_err(&pdev->dev, "failed to enable tmu clock: %d\n", ret);
return ret;
}
/* disable the monitor during initialization */
imx8mm_tmu_enable(tmu, false);
for (i = 0; i < data->num_sensors; i++) {
tmu->sensors[i].priv = tmu;
tmu->sensors[i].tzd =
devm_thermal_of_zone_register(&pdev->dev, i,
&tmu->sensors[i],
&tmu_tz_ops);
if (IS_ERR(tmu->sensors[i].tzd)) {
ret = PTR_ERR(tmu->sensors[i].tzd);
dev_err(&pdev->dev,
"failed to register thermal zone sensor[%d]: %d\n",
i, ret);
goto disable_clk;
}
tmu->sensors[i].hw_id = i;
if (devm_thermal_add_hwmon_sysfs(tmu->sensors[i].tzd))
dev_warn(&pdev->dev, "failed to add hwmon sysfs attributes\n");
}
platform_set_drvdata(pdev, tmu);
ret = imx8mm_tmu_probe_set_calib(pdev, tmu);
if (ret)
goto disable_clk;
/* enable all the probes for V2 TMU */
if (tmu->socdata->version == TMU_VER2)
imx8mm_tmu_probe_sel_all(tmu);
/* enable the monitor */
imx8mm_tmu_enable(tmu, true);
return 0;
disable_clk:
clk_disable_unprepare(tmu->clk);
return ret;
}
static int imx8mm_tmu_remove(struct platform_device *pdev)
{
struct imx8mm_tmu *tmu = platform_get_drvdata(pdev);
/* disable TMU */
imx8mm_tmu_enable(tmu, false);
clk_disable_unprepare(tmu->clk);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct thermal_soc_data imx8mm_tmu_data = {
.num_sensors = 1,
.version = TMU_VER1,
.get_temp = imx8mm_tmu_get_temp,
};
static struct thermal_soc_data imx8mp_tmu_data = {
.num_sensors = 2,
.version = TMU_VER2,
.get_temp = imx8mp_tmu_get_temp,
};
static const struct of_device_id imx8mm_tmu_table[] = {
{ .compatible = "fsl,imx8mm-tmu", .data = &imx8mm_tmu_data, },
{ .compatible = "fsl,imx8mp-tmu", .data = &imx8mp_tmu_data, },
{ },
};
MODULE_DEVICE_TABLE(of, imx8mm_tmu_table);
static struct platform_driver imx8mm_tmu = {
.driver = {
.name = "i.mx8mm_thermal",
.of_match_table = imx8mm_tmu_table,
},
.probe = imx8mm_tmu_probe,
.remove = imx8mm_tmu_remove,
};
module_platform_driver(imx8mm_tmu);
MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
MODULE_DESCRIPTION("i.MX8MM Thermal Monitor Unit driver");
MODULE_LICENSE("GPL v2");
|