summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-dw-core.c
blob: 2e50cc0a9291829db61311751c611eb48caf7d2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Designware SPI core controller driver (refer pxa2xx_spi.c)
 *
 * Copyright (c) 2009, Intel Corporation.
 */

#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/preempt.h>
#include <linux/highmem.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/string.h>
#include <linux/of.h>

#include "spi-dw.h"

#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#endif

/* Slave spi_device related */
struct chip_data {
	u32 cr0;
	u32 rx_sample_dly;	/* RX sample delay */
};

#ifdef CONFIG_DEBUG_FS

#define DW_SPI_DBGFS_REG(_name, _off)	\
{					\
	.name = _name,			\
	.offset = _off,			\
}

static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
};

static int dw_spi_debugfs_init(struct dw_spi *dws)
{
	char name[32];

	snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
	dws->debugfs = debugfs_create_dir(name, NULL);
	if (!dws->debugfs)
		return -ENOMEM;

	dws->regset.regs = dw_spi_dbgfs_regs;
	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
	dws->regset.base = dws->regs;
	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);

	return 0;
}

static void dw_spi_debugfs_remove(struct dw_spi *dws)
{
	debugfs_remove_recursive(dws->debugfs);
}

#else
static inline int dw_spi_debugfs_init(struct dw_spi *dws)
{
	return 0;
}

static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
{
}
#endif /* CONFIG_DEBUG_FS */

void dw_spi_set_cs(struct spi_device *spi, bool enable)
{
	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
	bool cs_high = !!(spi->mode & SPI_CS_HIGH);

	/*
	 * DW SPI controller demands any native CS being set in order to
	 * proceed with data transfer. So in order to activate the SPI
	 * communications we must set a corresponding bit in the Slave
	 * Enable register no matter whether the SPI core is configured to
	 * support active-high or active-low CS level.
	 */
	if (cs_high == enable)
		dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
	else
		dw_writel(dws, DW_SPI_SER, 0);
}
EXPORT_SYMBOL_GPL(dw_spi_set_cs);

/* Return the max entries we can fill into tx fifo */
static inline u32 tx_max(struct dw_spi *dws)
{
	u32 tx_room, rxtx_gap;

	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);

	/*
	 * Another concern is about the tx/rx mismatch, we
	 * though to use (dws->fifo_len - rxflr - txflr) as
	 * one maximum value for tx, but it doesn't cover the
	 * data which is out of tx/rx fifo and inside the
	 * shift registers. So a control from sw point of
	 * view is taken.
	 */
	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);

	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
}

/* Return the max entries we should read out of rx fifo */
static inline u32 rx_max(struct dw_spi *dws)
{
	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
}

static void dw_writer(struct dw_spi *dws)
{
	u32 max = tx_max(dws);
	u16 txw = 0;

	while (max--) {
		if (dws->tx) {
			if (dws->n_bytes == 1)
				txw = *(u8 *)(dws->tx);
			else
				txw = *(u16 *)(dws->tx);

			dws->tx += dws->n_bytes;
		}
		dw_write_io_reg(dws, DW_SPI_DR, txw);
		--dws->tx_len;
	}
}

static void dw_reader(struct dw_spi *dws)
{
	u32 max = rx_max(dws);
	u16 rxw;

	while (max--) {
		rxw = dw_read_io_reg(dws, DW_SPI_DR);
		if (dws->rx) {
			if (dws->n_bytes == 1)
				*(u8 *)(dws->rx) = rxw;
			else
				*(u16 *)(dws->rx) = rxw;

			dws->rx += dws->n_bytes;
		}
		--dws->rx_len;
	}
}

int dw_spi_check_status(struct dw_spi *dws, bool raw)
{
	u32 irq_status;
	int ret = 0;

	if (raw)
		irq_status = dw_readl(dws, DW_SPI_RISR);
	else
		irq_status = dw_readl(dws, DW_SPI_ISR);

	if (irq_status & SPI_INT_RXOI) {
		dev_err(&dws->master->dev, "RX FIFO overflow detected\n");
		ret = -EIO;
	}

	if (irq_status & SPI_INT_RXUI) {
		dev_err(&dws->master->dev, "RX FIFO underflow detected\n");
		ret = -EIO;
	}

	if (irq_status & SPI_INT_TXOI) {
		dev_err(&dws->master->dev, "TX FIFO overflow detected\n");
		ret = -EIO;
	}

	/* Generically handle the erroneous situation */
	if (ret) {
		spi_reset_chip(dws);
		if (dws->master->cur_msg)
			dws->master->cur_msg->status = ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(dw_spi_check_status);

static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
{
	u16 irq_status = dw_readl(dws, DW_SPI_ISR);

	if (dw_spi_check_status(dws, false)) {
		spi_finalize_current_transfer(dws->master);
		return IRQ_HANDLED;
	}

	/*
	 * Read data from the Rx FIFO every time we've got a chance executing
	 * this method. If there is nothing left to receive, terminate the
	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
	 * final stage of the transfer. By doing so we'll get the next IRQ
	 * right when the leftover incoming data is received.
	 */
	dw_reader(dws);
	if (!dws->rx_len) {
		spi_mask_intr(dws, 0xff);
		spi_finalize_current_transfer(dws->master);
	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
	}

	/*
	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
	 * disabled after the data transmission is finished so not to
	 * have the TXE IRQ flood at the final stage of the transfer.
	 */
	if (irq_status & SPI_INT_TXEI) {
		dw_writer(dws);
		if (!dws->tx_len)
			spi_mask_intr(dws, SPI_INT_TXEI);
	}

	return IRQ_HANDLED;
}

static irqreturn_t dw_spi_irq(int irq, void *dev_id)
{
	struct spi_controller *master = dev_id;
	struct dw_spi *dws = spi_controller_get_devdata(master);
	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f;

	if (!irq_status)
		return IRQ_NONE;

	if (!master->cur_msg) {
		spi_mask_intr(dws, 0xff);
		return IRQ_HANDLED;
	}

	return dws->transfer_handler(dws);
}

static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
{
	u32 cr0 = 0;

	if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) {
		/* CTRLR0[ 5: 4] Frame Format */
		cr0 |= SSI_MOTO_SPI << SPI_FRF_OFFSET;

		/*
		 * SPI mode (SCPOL|SCPH)
		 * CTRLR0[ 6] Serial Clock Phase
		 * CTRLR0[ 7] Serial Clock Polarity
		 */
		cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET;
		cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET;

		/* CTRLR0[11] Shift Register Loop */
		cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET;
	} else {
		/* CTRLR0[ 7: 6] Frame Format */
		cr0 |= SSI_MOTO_SPI << DWC_SSI_CTRLR0_FRF_OFFSET;

		/*
		 * SPI mode (SCPOL|SCPH)
		 * CTRLR0[ 8] Serial Clock Phase
		 * CTRLR0[ 9] Serial Clock Polarity
		 */
		cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << DWC_SSI_CTRLR0_SCPOL_OFFSET;
		cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << DWC_SSI_CTRLR0_SCPH_OFFSET;

		/* CTRLR0[13] Shift Register Loop */
		cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << DWC_SSI_CTRLR0_SRL_OFFSET;

		if (dws->caps & DW_SPI_CAP_KEEMBAY_MST)
			cr0 |= DWC_SSI_CTRLR0_KEEMBAY_MST;
	}

	return cr0;
}

void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
			  struct dw_spi_cfg *cfg)
{
	struct chip_data *chip = spi_get_ctldata(spi);
	u32 cr0 = chip->cr0;
	u32 speed_hz;
	u16 clk_div;

	/* CTRLR0[ 4/3: 0] Data Frame Size */
	cr0 |= (cfg->dfs - 1);

	if (!(dws->caps & DW_SPI_CAP_DWC_SSI))
		/* CTRLR0[ 9:8] Transfer Mode */
		cr0 |= cfg->tmode << SPI_TMOD_OFFSET;
	else
		/* CTRLR0[11:10] Transfer Mode */
		cr0 |= cfg->tmode << DWC_SSI_CTRLR0_TMOD_OFFSET;

	dw_writel(dws, DW_SPI_CTRLR0, cr0);

	if (cfg->tmode == SPI_TMOD_EPROMREAD || cfg->tmode == SPI_TMOD_RO)
		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);

	/* Note DW APB SSI clock divider doesn't support odd numbers */
	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
	speed_hz = dws->max_freq / clk_div;

	if (dws->current_freq != speed_hz) {
		spi_set_clk(dws, clk_div);
		dws->current_freq = speed_hz;
	}

	/* Update RX sample delay if required */
	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
		dws->cur_rx_sample_dly = chip->rx_sample_dly;
	}
}
EXPORT_SYMBOL_GPL(dw_spi_update_config);

static void dw_spi_irq_setup(struct dw_spi *dws)
{
	u16 level;
	u8 imask;

	/*
	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
	 * will be adjusted at the final stage of the IRQ-based SPI transfer
	 * execution so not to lose the leftover of the incoming data.
	 */
	level = min_t(u16, dws->fifo_len / 2, dws->tx_len);
	dw_writel(dws, DW_SPI_TXFTLR, level);
	dw_writel(dws, DW_SPI_RXFTLR, level - 1);

	imask = SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI |
		SPI_INT_RXFI;
	spi_umask_intr(dws, imask);

	dws->transfer_handler = dw_spi_transfer_handler;
}

/*
 * The iterative procedure of the poll-based transfer is simple: write as much
 * as possible to the Tx FIFO, wait until the pending to receive data is ready
 * to be read, read it from the Rx FIFO and check whether the performed
 * procedure has been successful.
 *
 * Note this method the same way as the IRQ-based transfer won't work well for
 * the SPI devices connected to the controller with native CS due to the
 * automatic CS assertion/de-assertion.
 */
static int dw_spi_poll_transfer(struct dw_spi *dws,
				struct spi_transfer *transfer)
{
	struct spi_delay delay;
	u16 nbits;
	int ret;

	delay.unit = SPI_DELAY_UNIT_SCK;
	nbits = dws->n_bytes * BITS_PER_BYTE;

	do {
		dw_writer(dws);

		delay.value = nbits * (dws->rx_len - dws->tx_len);
		spi_delay_exec(&delay, transfer);

		dw_reader(dws);

		ret = dw_spi_check_status(dws, true);
		if (ret)
			return ret;
	} while (dws->rx_len);

	return 0;
}

static int dw_spi_transfer_one(struct spi_controller *master,
		struct spi_device *spi, struct spi_transfer *transfer)
{
	struct dw_spi *dws = spi_controller_get_devdata(master);
	struct dw_spi_cfg cfg = {
		.tmode = SPI_TMOD_TR,
		.dfs = transfer->bits_per_word,
		.freq = transfer->speed_hz,
	};
	int ret;

	dws->dma_mapped = 0;
	dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
	dws->tx = (void *)transfer->tx_buf;
	dws->tx_len = transfer->len / dws->n_bytes;
	dws->rx = transfer->rx_buf;
	dws->rx_len = dws->tx_len;

	/* Ensure the data above is visible for all CPUs */
	smp_mb();

	spi_enable_chip(dws, 0);

	dw_spi_update_config(dws, spi, &cfg);

	transfer->effective_speed_hz = dws->current_freq;

	/* Check if current transfer is a DMA transaction */
	if (master->can_dma && master->can_dma(master, spi, transfer))
		dws->dma_mapped = master->cur_msg_mapped;

	/* For poll mode just disable all interrupts */
	spi_mask_intr(dws, 0xff);

	if (dws->dma_mapped) {
		ret = dws->dma_ops->dma_setup(dws, transfer);
		if (ret)
			return ret;
	}

	spi_enable_chip(dws, 1);

	if (dws->dma_mapped)
		return dws->dma_ops->dma_transfer(dws, transfer);
	else if (dws->irq == IRQ_NOTCONNECTED)
		return dw_spi_poll_transfer(dws, transfer);

	dw_spi_irq_setup(dws);

	return 1;
}

static void dw_spi_handle_err(struct spi_controller *master,
		struct spi_message *msg)
{
	struct dw_spi *dws = spi_controller_get_devdata(master);

	if (dws->dma_mapped)
		dws->dma_ops->dma_stop(dws);

	spi_reset_chip(dws);
}

static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
	if (op->data.dir == SPI_MEM_DATA_IN)
		op->data.nbytes = clamp_val(op->data.nbytes, 0, SPI_NDF_MASK + 1);

	return 0;
}

static bool dw_spi_supports_mem_op(struct spi_mem *mem,
				   const struct spi_mem_op *op)
{
	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
		return false;

	return spi_mem_default_supports_op(mem, op);
}

static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
{
	unsigned int i, j, len;
	u8 *out;

	/*
	 * Calculate the total length of the EEPROM command transfer and
	 * either use the pre-allocated buffer or create a temporary one.
	 */
	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
	if (op->data.dir == SPI_MEM_DATA_OUT)
		len += op->data.nbytes;

	if (len <= SPI_BUF_SIZE) {
		out = dws->buf;
	} else {
		out = kzalloc(len, GFP_KERNEL);
		if (!out)
			return -ENOMEM;
	}

	/*
	 * Collect the operation code, address and dummy bytes into the single
	 * buffer. If it's a transfer with data to be sent, also copy it into the
	 * single buffer in order to speed the data transmission up.
	 */
	for (i = 0; i < op->cmd.nbytes; ++i)
		out[i] = SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
	for (j = 0; j < op->addr.nbytes; ++i, ++j)
		out[i] = SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
		out[i] = 0x0;

	if (op->data.dir == SPI_MEM_DATA_OUT)
		memcpy(&out[i], op->data.buf.out, op->data.nbytes);

	dws->n_bytes = 1;
	dws->tx = out;
	dws->tx_len = len;
	if (op->data.dir == SPI_MEM_DATA_IN) {
		dws->rx = op->data.buf.in;
		dws->rx_len = op->data.nbytes;
	} else {
		dws->rx = NULL;
		dws->rx_len = 0;
	}

	return 0;
}

static void dw_spi_free_mem_buf(struct dw_spi *dws)
{
	if (dws->tx != dws->buf)
		kfree(dws->tx);
}

static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
{
	u32 room, entries, sts;
	unsigned int len;
	u8 *buf;

	/*
	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
	 * since native CS hasn't been enabled yet and the automatic data
	 * transmission won't start til we do that.
	 */
	len = min(dws->fifo_len, dws->tx_len);
	buf = dws->tx;
	while (len--)
		dw_write_io_reg(dws, DW_SPI_DR, *buf++);

	/*
	 * After setting any bit in the SER register the transmission will
	 * start automatically. We have to keep up with that procedure
	 * otherwise the CS de-assertion will happen whereupon the memory
	 * operation will be pre-terminated.
	 */
	len = dws->tx_len - ((void *)buf - dws->tx);
	dw_spi_set_cs(spi, false);
	while (len) {
		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
		if (!entries) {
			dev_err(&dws->master->dev, "CS de-assertion on Tx\n");
			return -EIO;
		}
		room = min(dws->fifo_len - entries, len);
		for (; room; --room, --len)
			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
	}

	/*
	 * Data fetching will start automatically if the EEPROM-read mode is
	 * activated. We have to keep up with the incoming data pace to
	 * prevent the Rx FIFO overflow causing the inbound data loss.
	 */
	len = dws->rx_len;
	buf = dws->rx;
	while (len) {
		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
		if (!entries) {
			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
			if (sts & SPI_INT_RXOI) {
				dev_err(&dws->master->dev, "FIFO overflow on Rx\n");
				return -EIO;
			}
			continue;
		}
		entries = min(entries, len);
		for (; entries; --entries, --len)
			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
	}

	return 0;
}

static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
{
	return dw_readl(dws, DW_SPI_SR) & SR_BUSY;
}

static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
{
	int retry = SPI_WAIT_RETRIES;
	struct spi_delay delay;
	unsigned long ns, us;
	u32 nents;

	nents = dw_readl(dws, DW_SPI_TXFLR);
	ns = NSEC_PER_SEC / dws->current_freq * nents;
	ns *= dws->n_bytes * BITS_PER_BYTE;
	if (ns <= NSEC_PER_USEC) {
		delay.unit = SPI_DELAY_UNIT_NSECS;
		delay.value = ns;
	} else {
		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
		delay.unit = SPI_DELAY_UNIT_USECS;
		delay.value = clamp_val(us, 0, USHRT_MAX);
	}

	while (dw_spi_ctlr_busy(dws) && retry--)
		spi_delay_exec(&delay, NULL);

	if (retry < 0) {
		dev_err(&dws->master->dev, "Mem op hanged up\n");
		return -EIO;
	}

	return 0;
}

static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
{
	spi_enable_chip(dws, 0);
	dw_spi_set_cs(spi, true);
	spi_enable_chip(dws, 1);
}

/*
 * The SPI memory operation implementation below is the best choice for the
 * devices, which are selected by the native chip-select lane. It's
 * specifically developed to workaround the problem with automatic chip-select
 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
 * unavailable.
 */
static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
	struct dw_spi_cfg cfg;
	unsigned long flags;
	int ret;

	/*
	 * Collect the outbound data into a single buffer to speed the
	 * transmission up at least on the initial stage.
	 */
	ret = dw_spi_init_mem_buf(dws, op);
	if (ret)
		return ret;

	/*
	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
	 * operation. Transmit-only mode is suitable for the rest of them.
	 */
	cfg.dfs = 8;
	cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
	if (op->data.dir == SPI_MEM_DATA_IN) {
		cfg.tmode = SPI_TMOD_EPROMREAD;
		cfg.ndf = op->data.nbytes;
	} else {
		cfg.tmode = SPI_TMOD_TO;
	}

	spi_enable_chip(dws, 0);

	dw_spi_update_config(dws, mem->spi, &cfg);

	spi_mask_intr(dws, 0xff);

	spi_enable_chip(dws, 1);

	/*
	 * DW APB SSI controller has very nasty peculiarities. First originally
	 * (without any vendor-specific modifications) it doesn't provide a
	 * direct way to set and clear the native chip-select signal. Instead
	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
	 * transmission is going on, and automatically de-asserts it back to
	 * the high level if the Tx FIFO doesn't have anything to be pushed
	 * out. Due to that a multi-tasking or heavy IRQs activity might be
	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
	 * getting empty and sudden CS de-assertion, which in the middle of the
	 * transfer will most likely cause the data loss. Secondly the
	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
	 * data being automatically pulled in into the Rx FIFO. So if the
	 * driver software is late in fetching the data from the FIFO before
	 * it's overflown, new incoming data will be lost. In order to make
	 * sure the executed memory operations are CS-atomic and to prevent the
	 * Rx FIFO overflow we have to disable the local interrupts so to block
	 * any preemption during the subsequent IO operations.
	 *
	 * Note. At some circumstances disabling IRQs may not help to prevent
	 * the problems described above. The CS de-assertion and Rx FIFO
	 * overflow may still happen due to the relatively slow system bus or
	 * CPU not working fast enough, so the write-then-read algo implemented
	 * here just won't keep up with the SPI bus data transfer. Such
	 * situation is highly platform specific and is supposed to be fixed by
	 * manually restricting the SPI bus frequency using the
	 * dws->max_mem_freq parameter.
	 */
	local_irq_save(flags);
	preempt_disable();

	ret = dw_spi_write_then_read(dws, mem->spi);

	local_irq_restore(flags);
	preempt_enable();

	/*
	 * Wait for the operation being finished and check the controller
	 * status only if there hasn't been any run-time error detected. In the
	 * former case it's just pointless. In the later one to prevent an
	 * additional error message printing since any hw error flag being set
	 * would be due to an error detected on the data transfer.
	 */
	if (!ret) {
		ret = dw_spi_wait_mem_op_done(dws);
		if (!ret)
			ret = dw_spi_check_status(dws, true);
	}

	dw_spi_stop_mem_op(dws, mem->spi);

	dw_spi_free_mem_buf(dws);

	return ret;
}

/*
 * Initialize the default memory operations if a glue layer hasn't specified
 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
 * controller doesn't have an embedded dirmap interface. Note the memory
 * operations implemented in this driver is the best choice only for the DW APB
 * SSI controller with standard native CS functionality. If a hardware vendor
 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
 * be safer to use the normal SPI-messages-based transfers implementation.
 */
static void dw_spi_init_mem_ops(struct dw_spi *dws)
{
	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
	    !dws->set_cs) {
		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
		if (!dws->max_mem_freq)
			dws->max_mem_freq = dws->max_freq;
	}
}

/* This may be called twice for each spi dev */
static int dw_spi_setup(struct spi_device *spi)
{
	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
	struct chip_data *chip;

	/* Only alloc on first setup */
	chip = spi_get_ctldata(spi);
	if (!chip) {
		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
		u32 rx_sample_dly_ns;

		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
		if (!chip)
			return -ENOMEM;
		spi_set_ctldata(spi, chip);
		/* Get specific / default rx-sample-delay */
		if (device_property_read_u32(&spi->dev,
					     "rx-sample-delay-ns",
					     &rx_sample_dly_ns) != 0)
			/* Use default controller value */
			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
							NSEC_PER_SEC /
							dws->max_freq);
	}

	/*
	 * Update CR0 data each time the setup callback is invoked since
	 * the device parameters could have been changed, for instance, by
	 * the MMC SPI driver or something else.
	 */
	chip->cr0 = dw_spi_prepare_cr0(dws, spi);

	return 0;
}

static void dw_spi_cleanup(struct spi_device *spi)
{
	struct chip_data *chip = spi_get_ctldata(spi);

	kfree(chip);
	spi_set_ctldata(spi, NULL);
}

/* Restart the controller, disable all interrupts, clean rx fifo */
static void spi_hw_init(struct device *dev, struct dw_spi *dws)
{
	spi_reset_chip(dws);

	/*
	 * Try to detect the FIFO depth if not set by interface driver,
	 * the depth could be from 2 to 256 from HW spec
	 */
	if (!dws->fifo_len) {
		u32 fifo;

		for (fifo = 1; fifo < 256; fifo++) {
			dw_writel(dws, DW_SPI_TXFTLR, fifo);
			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
				break;
		}
		dw_writel(dws, DW_SPI_TXFTLR, 0);

		dws->fifo_len = (fifo == 1) ? 0 : fifo;
		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
	}

	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
}

int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
{
	struct spi_controller *master;
	int ret;

	if (!dws)
		return -EINVAL;

	master = spi_alloc_master(dev, 0);
	if (!master)
		return -ENOMEM;

	dws->master = master;
	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);

	spi_controller_set_devdata(master, dws);

	/* Basic HW init */
	spi_hw_init(dev, dws);

	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
			  master);
	if (ret < 0 && ret != -ENOTCONN) {
		dev_err(dev, "can not get IRQ\n");
		goto err_free_master;
	}

	dw_spi_init_mem_ops(dws);

	master->use_gpio_descriptors = true;
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
	master->bits_per_word_mask =  SPI_BPW_RANGE_MASK(4, 16);
	master->bus_num = dws->bus_num;
	master->num_chipselect = dws->num_cs;
	master->setup = dw_spi_setup;
	master->cleanup = dw_spi_cleanup;
	if (dws->set_cs)
		master->set_cs = dws->set_cs;
	else
		master->set_cs = dw_spi_set_cs;
	master->transfer_one = dw_spi_transfer_one;
	master->handle_err = dw_spi_handle_err;
	master->mem_ops = &dws->mem_ops;
	master->max_speed_hz = dws->max_freq;
	master->dev.of_node = dev->of_node;
	master->dev.fwnode = dev->fwnode;
	master->flags = SPI_MASTER_GPIO_SS;
	master->auto_runtime_pm = true;

	/* Get default rx sample delay */
	device_property_read_u32(dev, "rx-sample-delay-ns",
				 &dws->def_rx_sample_dly_ns);

	if (dws->dma_ops && dws->dma_ops->dma_init) {
		ret = dws->dma_ops->dma_init(dev, dws);
		if (ret) {
			dev_warn(dev, "DMA init failed\n");
		} else {
			master->can_dma = dws->dma_ops->can_dma;
			master->flags |= SPI_CONTROLLER_MUST_TX;
		}
	}

	ret = spi_register_controller(master);
	if (ret) {
		dev_err(&master->dev, "problem registering spi master\n");
		goto err_dma_exit;
	}

	dw_spi_debugfs_init(dws);
	return 0;

err_dma_exit:
	if (dws->dma_ops && dws->dma_ops->dma_exit)
		dws->dma_ops->dma_exit(dws);
	spi_enable_chip(dws, 0);
	free_irq(dws->irq, master);
err_free_master:
	spi_controller_put(master);
	return ret;
}
EXPORT_SYMBOL_GPL(dw_spi_add_host);

void dw_spi_remove_host(struct dw_spi *dws)
{
	dw_spi_debugfs_remove(dws);

	spi_unregister_controller(dws->master);

	if (dws->dma_ops && dws->dma_ops->dma_exit)
		dws->dma_ops->dma_exit(dws);

	spi_shutdown_chip(dws);

	free_irq(dws->irq, dws->master);
}
EXPORT_SYMBOL_GPL(dw_spi_remove_host);

int dw_spi_suspend_host(struct dw_spi *dws)
{
	int ret;

	ret = spi_controller_suspend(dws->master);
	if (ret)
		return ret;

	spi_shutdown_chip(dws);
	return 0;
}
EXPORT_SYMBOL_GPL(dw_spi_suspend_host);

int dw_spi_resume_host(struct dw_spi *dws)
{
	spi_hw_init(&dws->master->dev, dws);
	return spi_controller_resume(dws->master);
}
EXPORT_SYMBOL_GPL(dw_spi_resume_host);

MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
MODULE_LICENSE("GPL v2");