1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel Low Power Subsystem PWM controller driver
*
* Copyright (C) 2014, Intel Corporation
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
* Author: Chew Kean Ho <kean.ho.chew@intel.com>
* Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
* Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
* Author: Alan Cox <alan@linux.intel.com>
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/time.h>
#include "pwm-lpss.h"
#define PWM 0x00000000
#define PWM_ENABLE BIT(31)
#define PWM_SW_UPDATE BIT(30)
#define PWM_BASE_UNIT_SHIFT 8
#define PWM_ON_TIME_DIV_MASK 0x000000ff
/* Size of each PWM register space if multiple */
#define PWM_SIZE 0x400
static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
{
return container_of(chip, struct pwm_lpss_chip, chip);
}
static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
{
struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
}
static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
{
struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
}
static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
{
struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
const unsigned int ms = 500 * USEC_PER_MSEC;
u32 val;
int err;
/*
* PWM Configuration register has SW_UPDATE bit that is set when a new
* configuration is written to the register. The bit is automatically
* cleared at the start of the next output cycle by the IP block.
*
* If one writes a new configuration to the register while it still has
* the bit enabled, PWM may freeze. That is, while one can still write
* to the register, it won't have an effect. Thus, we try to sleep long
* enough that the bit gets cleared and make sure the bit is not
* enabled while we update the configuration.
*/
err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
if (err)
dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
return err;
}
static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
{
return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
}
static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
unsigned long long on_time_div;
unsigned long c = lpwm->info->clk_rate, base_unit_range;
unsigned long long base_unit, freq = NSEC_PER_SEC;
u32 orig_ctrl, ctrl;
do_div(freq, period_ns);
/*
* The equation is:
* base_unit = round(base_unit_range * freq / c)
*/
base_unit_range = BIT(lpwm->info->base_unit_bits);
freq *= base_unit_range;
base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
/* base_unit must not be 0 and we also want to avoid overflowing it */
base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
on_time_div = 255ULL * duty_ns;
do_div(on_time_div, period_ns);
on_time_div = 255ULL - on_time_div;
orig_ctrl = ctrl = pwm_lpss_read(pwm);
ctrl &= ~PWM_ON_TIME_DIV_MASK;
ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
ctrl |= on_time_div;
if (orig_ctrl != ctrl) {
pwm_lpss_write(pwm, ctrl);
pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
}
}
static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
{
if (cond)
pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
}
static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
struct pwm_device *pwm,
const struct pwm_state *state,
bool enable)
{
int ret;
ret = pwm_lpss_is_updating(pwm);
if (ret)
return ret;
pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
pwm_lpss_cond_enable(pwm, enable && lpwm->info->bypass == false);
ret = pwm_lpss_wait_for_update(pwm);
if (ret)
return ret;
pwm_lpss_cond_enable(pwm, enable && lpwm->info->bypass == true);
return 0;
}
static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct pwm_lpss_chip *lpwm = to_lpwm(chip);
int ret = 0;
if (state->enabled) {
if (!pwm_is_enabled(pwm)) {
pm_runtime_get_sync(chip->dev);
ret = pwm_lpss_prepare_enable(lpwm, pwm, state, true);
if (ret)
pm_runtime_put(chip->dev);
} else {
ret = pwm_lpss_prepare_enable(lpwm, pwm, state, false);
}
} else if (pwm_is_enabled(pwm)) {
pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
pm_runtime_put(chip->dev);
}
return ret;
}
static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct pwm_lpss_chip *lpwm = to_lpwm(chip);
unsigned long base_unit_range;
unsigned long long base_unit, freq, on_time_div;
u32 ctrl;
pm_runtime_get_sync(chip->dev);
base_unit_range = BIT(lpwm->info->base_unit_bits);
ctrl = pwm_lpss_read(pwm);
on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
freq = base_unit * lpwm->info->clk_rate;
do_div(freq, base_unit_range);
if (freq == 0)
state->period = NSEC_PER_SEC;
else
state->period = NSEC_PER_SEC / (unsigned long)freq;
on_time_div *= state->period;
do_div(on_time_div, 255);
state->duty_cycle = on_time_div;
state->polarity = PWM_POLARITY_NORMAL;
state->enabled = !!(ctrl & PWM_ENABLE);
pm_runtime_put(chip->dev);
}
static const struct pwm_ops pwm_lpss_ops = {
.apply = pwm_lpss_apply,
.get_state = pwm_lpss_get_state,
.owner = THIS_MODULE,
};
struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
const struct pwm_lpss_boardinfo *info)
{
struct pwm_lpss_chip *lpwm;
unsigned long c;
int i, ret;
u32 ctrl;
if (WARN_ON(info->npwm > MAX_PWMS))
return ERR_PTR(-ENODEV);
lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
if (!lpwm)
return ERR_PTR(-ENOMEM);
lpwm->regs = devm_ioremap_resource(dev, r);
if (IS_ERR(lpwm->regs))
return ERR_CAST(lpwm->regs);
lpwm->info = info;
c = lpwm->info->clk_rate;
if (!c)
return ERR_PTR(-EINVAL);
lpwm->chip.dev = dev;
lpwm->chip.ops = &pwm_lpss_ops;
lpwm->chip.base = -1;
lpwm->chip.npwm = info->npwm;
ret = pwmchip_add(&lpwm->chip);
if (ret) {
dev_err(dev, "failed to add PWM chip: %d\n", ret);
return ERR_PTR(ret);
}
for (i = 0; i < lpwm->info->npwm; i++) {
ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
if (ctrl & PWM_ENABLE)
pm_runtime_get(dev);
}
return lpwm;
}
EXPORT_SYMBOL_GPL(pwm_lpss_probe);
int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
{
int i;
for (i = 0; i < lpwm->info->npwm; i++) {
if (pwm_is_enabled(&lpwm->chip.pwms[i]))
pm_runtime_put(lpwm->chip.dev);
}
return pwmchip_remove(&lpwm->chip);
}
EXPORT_SYMBOL_GPL(pwm_lpss_remove);
int pwm_lpss_suspend(struct device *dev)
{
struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
int i;
for (i = 0; i < lpwm->info->npwm; i++)
lpwm->saved_ctrl[i] = readl(lpwm->regs + i * PWM_SIZE + PWM);
return 0;
}
EXPORT_SYMBOL_GPL(pwm_lpss_suspend);
int pwm_lpss_resume(struct device *dev)
{
struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
int i;
for (i = 0; i < lpwm->info->npwm; i++)
writel(lpwm->saved_ctrl[i], lpwm->regs + i * PWM_SIZE + PWM);
return 0;
}
EXPORT_SYMBOL_GPL(pwm_lpss_resume);
MODULE_DESCRIPTION("PWM driver for Intel LPSS");
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
MODULE_LICENSE("GPL v2");
|