1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2020 Linaro Limited
*
* Author: Daniel Lezcano <daniel.lezcano@linaro.org>
*
* The powercap based Dynamic Thermal Power Management framework
* provides to the userspace a consistent API to set the power limit
* on some devices.
*
* DTPM defines the functions to create a tree of constraints. Each
* parent node is a virtual description of the aggregation of the
* children. It propagates the constraints set at its level to its
* children and collect the children power information. The leaves of
* the tree are the real devices which have the ability to get their
* current power consumption and set their power limit.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/dtpm.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/powercap.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#define DTPM_POWER_LIMIT_FLAG 0
static const char *constraint_name[] = {
"Instantaneous",
};
static DEFINE_MUTEX(dtpm_lock);
static struct powercap_control_type *pct;
static struct dtpm *root;
static int get_time_window_us(struct powercap_zone *pcz, int cid, u64 *window)
{
return -ENOSYS;
}
static int set_time_window_us(struct powercap_zone *pcz, int cid, u64 window)
{
return -ENOSYS;
}
static int get_max_power_range_uw(struct powercap_zone *pcz, u64 *max_power_uw)
{
struct dtpm *dtpm = to_dtpm(pcz);
mutex_lock(&dtpm_lock);
*max_power_uw = dtpm->power_max - dtpm->power_min;
mutex_unlock(&dtpm_lock);
return 0;
}
static int __get_power_uw(struct dtpm *dtpm, u64 *power_uw)
{
struct dtpm *child;
u64 power;
int ret = 0;
if (dtpm->ops) {
*power_uw = dtpm->ops->get_power_uw(dtpm);
return 0;
}
*power_uw = 0;
list_for_each_entry(child, &dtpm->children, sibling) {
ret = __get_power_uw(child, &power);
if (ret)
break;
*power_uw += power;
}
return ret;
}
static int get_power_uw(struct powercap_zone *pcz, u64 *power_uw)
{
struct dtpm *dtpm = to_dtpm(pcz);
int ret;
mutex_lock(&dtpm_lock);
ret = __get_power_uw(dtpm, power_uw);
mutex_unlock(&dtpm_lock);
return ret;
}
static void __dtpm_rebalance_weight(struct dtpm *dtpm)
{
struct dtpm *child;
list_for_each_entry(child, &dtpm->children, sibling) {
pr_debug("Setting weight '%d' for '%s'\n",
child->weight, child->zone.name);
child->weight = DIV64_U64_ROUND_CLOSEST(
child->power_max * 1024, dtpm->power_max);
__dtpm_rebalance_weight(child);
}
}
static void __dtpm_sub_power(struct dtpm *dtpm)
{
struct dtpm *parent = dtpm->parent;
while (parent) {
parent->power_min -= dtpm->power_min;
parent->power_max -= dtpm->power_max;
parent->power_limit -= dtpm->power_limit;
parent = parent->parent;
}
}
static void __dtpm_add_power(struct dtpm *dtpm)
{
struct dtpm *parent = dtpm->parent;
while (parent) {
parent->power_min += dtpm->power_min;
parent->power_max += dtpm->power_max;
parent->power_limit += dtpm->power_limit;
parent = parent->parent;
}
}
static int __dtpm_update_power(struct dtpm *dtpm)
{
int ret;
__dtpm_sub_power(dtpm);
ret = dtpm->ops->update_power_uw(dtpm);
if (ret)
pr_err("Failed to update power for '%s': %d\n",
dtpm->zone.name, ret);
if (!test_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags))
dtpm->power_limit = dtpm->power_max;
__dtpm_add_power(dtpm);
if (root)
__dtpm_rebalance_weight(root);
return ret;
}
/**
* dtpm_update_power - Update the power on the dtpm
* @dtpm: a pointer to a dtpm structure to update
*
* Function to update the power values of the dtpm node specified in
* parameter. These new values will be propagated to the tree.
*
* Return: zero on success, -EINVAL if the values are inconsistent
*/
int dtpm_update_power(struct dtpm *dtpm)
{
int ret;
mutex_lock(&dtpm_lock);
ret = __dtpm_update_power(dtpm);
mutex_unlock(&dtpm_lock);
return ret;
}
/**
* dtpm_release_zone - Cleanup when the node is released
* @pcz: a pointer to a powercap_zone structure
*
* Do some housecleaning and update the weight on the tree. The
* release will be denied if the node has children. This function must
* be called by the specific release callback of the different
* backends.
*
* Return: 0 on success, -EBUSY if there are children
*/
int dtpm_release_zone(struct powercap_zone *pcz)
{
struct dtpm *dtpm = to_dtpm(pcz);
struct dtpm *parent = dtpm->parent;
mutex_lock(&dtpm_lock);
if (!list_empty(&dtpm->children)) {
mutex_unlock(&dtpm_lock);
return -EBUSY;
}
if (parent)
list_del(&dtpm->sibling);
__dtpm_sub_power(dtpm);
mutex_unlock(&dtpm_lock);
if (dtpm->ops)
dtpm->ops->release(dtpm);
if (root == dtpm)
root = NULL;
kfree(dtpm);
return 0;
}
static int __get_power_limit_uw(struct dtpm *dtpm, int cid, u64 *power_limit)
{
*power_limit = dtpm->power_limit;
return 0;
}
static int get_power_limit_uw(struct powercap_zone *pcz,
int cid, u64 *power_limit)
{
struct dtpm *dtpm = to_dtpm(pcz);
int ret;
mutex_lock(&dtpm_lock);
ret = __get_power_limit_uw(dtpm, cid, power_limit);
mutex_unlock(&dtpm_lock);
return ret;
}
/*
* Set the power limit on the nodes, the power limit is distributed
* given the weight of the children.
*
* The dtpm node lock must be held when calling this function.
*/
static int __set_power_limit_uw(struct dtpm *dtpm, int cid, u64 power_limit)
{
struct dtpm *child;
int ret = 0;
u64 power;
/*
* A max power limitation means we remove the power limit,
* otherwise we set a constraint and flag the dtpm node.
*/
if (power_limit == dtpm->power_max) {
clear_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
} else {
set_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
}
pr_debug("Setting power limit for '%s': %llu uW\n",
dtpm->zone.name, power_limit);
/*
* Only leaves of the dtpm tree has ops to get/set the power
*/
if (dtpm->ops) {
dtpm->power_limit = dtpm->ops->set_power_uw(dtpm, power_limit);
} else {
dtpm->power_limit = 0;
list_for_each_entry(child, &dtpm->children, sibling) {
/*
* Integer division rounding will inevitably
* lead to a different min or max value when
* set several times. In order to restore the
* initial value, we force the child's min or
* max power every time if the constraint is
* at the boundaries.
*/
if (power_limit == dtpm->power_max) {
power = child->power_max;
} else if (power_limit == dtpm->power_min) {
power = child->power_min;
} else {
power = DIV_ROUND_CLOSEST_ULL(
power_limit * child->weight, 1024);
}
pr_debug("Setting power limit for '%s': %llu uW\n",
child->zone.name, power);
ret = __set_power_limit_uw(child, cid, power);
if (!ret)
ret = __get_power_limit_uw(child, cid, &power);
if (ret)
break;
dtpm->power_limit += power;
}
}
return ret;
}
static int set_power_limit_uw(struct powercap_zone *pcz,
int cid, u64 power_limit)
{
struct dtpm *dtpm = to_dtpm(pcz);
int ret;
mutex_lock(&dtpm_lock);
/*
* Don't allow values outside of the power range previously
* set when initializing the power numbers.
*/
power_limit = clamp_val(power_limit, dtpm->power_min, dtpm->power_max);
ret = __set_power_limit_uw(dtpm, cid, power_limit);
pr_debug("%s: power limit: %llu uW, power max: %llu uW\n",
dtpm->zone.name, dtpm->power_limit, dtpm->power_max);
mutex_unlock(&dtpm_lock);
return ret;
}
static const char *get_constraint_name(struct powercap_zone *pcz, int cid)
{
return constraint_name[cid];
}
static int get_max_power_uw(struct powercap_zone *pcz, int id, u64 *max_power)
{
struct dtpm *dtpm = to_dtpm(pcz);
mutex_lock(&dtpm_lock);
*max_power = dtpm->power_max;
mutex_unlock(&dtpm_lock);
return 0;
}
static struct powercap_zone_constraint_ops constraint_ops = {
.set_power_limit_uw = set_power_limit_uw,
.get_power_limit_uw = get_power_limit_uw,
.set_time_window_us = set_time_window_us,
.get_time_window_us = get_time_window_us,
.get_max_power_uw = get_max_power_uw,
.get_name = get_constraint_name,
};
static struct powercap_zone_ops zone_ops = {
.get_max_power_range_uw = get_max_power_range_uw,
.get_power_uw = get_power_uw,
.release = dtpm_release_zone,
};
/**
* dtpm_init - Allocate and initialize a dtpm struct
* @dtpm: The dtpm struct pointer to be initialized
* @ops: The dtpm device specific ops, NULL for a virtual node
*/
void dtpm_init(struct dtpm *dtpm, struct dtpm_ops *ops)
{
if (dtpm) {
INIT_LIST_HEAD(&dtpm->children);
INIT_LIST_HEAD(&dtpm->sibling);
dtpm->weight = 1024;
dtpm->ops = ops;
}
}
/**
* dtpm_unregister - Unregister a dtpm node from the hierarchy tree
* @dtpm: a pointer to a dtpm structure corresponding to the node to be removed
*
* Call the underlying powercap unregister function. That will call
* the release callback of the powercap zone.
*/
void dtpm_unregister(struct dtpm *dtpm)
{
powercap_unregister_zone(pct, &dtpm->zone);
pr_info("Unregistered dtpm node '%s'\n", dtpm->zone.name);
}
/**
* dtpm_register - Register a dtpm node in the hierarchy tree
* @name: a string specifying the name of the node
* @dtpm: a pointer to a dtpm structure corresponding to the new node
* @parent: a pointer to a dtpm structure corresponding to the parent node
*
* Create a dtpm node in the tree. If no parent is specified, the node
* is the root node of the hierarchy. If the root node already exists,
* then the registration will fail. The powercap controller must be
* initialized before calling this function.
*
* The dtpm structure must be initialized with the power numbers
* before calling this function.
*
* Return: zero on success, a negative value in case of error:
* -EAGAIN: the function is called before the framework is initialized.
* -EBUSY: the root node is already inserted
* -EINVAL: * there is no root node yet and @parent is specified
* * no all ops are defined
* * parent have ops which are reserved for leaves
* Other negative values are reported back from the powercap framework
*/
int dtpm_register(const char *name, struct dtpm *dtpm, struct dtpm *parent)
{
struct powercap_zone *pcz;
if (!pct)
return -EAGAIN;
if (root && !parent)
return -EBUSY;
if (!root && parent)
return -EINVAL;
if (parent && parent->ops)
return -EINVAL;
if (!dtpm)
return -EINVAL;
if (dtpm->ops && !(dtpm->ops->set_power_uw &&
dtpm->ops->get_power_uw &&
dtpm->ops->update_power_uw &&
dtpm->ops->release))
return -EINVAL;
pcz = powercap_register_zone(&dtpm->zone, pct, name,
parent ? &parent->zone : NULL,
&zone_ops, MAX_DTPM_CONSTRAINTS,
&constraint_ops);
if (IS_ERR(pcz))
return PTR_ERR(pcz);
mutex_lock(&dtpm_lock);
if (parent) {
list_add_tail(&dtpm->sibling, &parent->children);
dtpm->parent = parent;
} else {
root = dtpm;
}
if (dtpm->ops && !dtpm->ops->update_power_uw(dtpm)) {
__dtpm_add_power(dtpm);
dtpm->power_limit = dtpm->power_max;
}
pr_info("Registered dtpm node '%s' / %llu-%llu uW, \n",
dtpm->zone.name, dtpm->power_min, dtpm->power_max);
mutex_unlock(&dtpm_lock);
return 0;
}
static int __init init_dtpm(void)
{
pct = powercap_register_control_type(NULL, "dtpm", NULL);
if (IS_ERR(pct)) {
pr_err("Failed to register control type\n");
return PTR_ERR(pct);
}
return 0;
}
late_initcall(init_dtpm);
|