summaryrefslogtreecommitdiff
path: root/drivers/pci/vc.c
blob: 9ae9fb9339e80b6136c3281bcd55cd7acbfba429 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
// SPDX-License-Identifier: GPL-2.0
/*
 * PCI Virtual Channel support
 *
 * Copyright (C) 2013 Red Hat, Inc.  All rights reserved.
 *     Author: Alex Williamson <alex.williamson@redhat.com>
 */

#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pci_regs.h>
#include <linux/types.h>

#include "pci.h"

/**
 * pci_vc_save_restore_dwords - Save or restore a series of dwords
 * @dev: device
 * @pos: starting config space position
 * @buf: buffer to save to or restore from
 * @dwords: number of dwords to save/restore
 * @save: whether to save or restore
 */
static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
				       u32 *buf, int dwords, bool save)
{
	int i;

	for (i = 0; i < dwords; i++, buf++) {
		if (save)
			pci_read_config_dword(dev, pos + (i * 4), buf);
		else
			pci_write_config_dword(dev, pos + (i * 4), *buf);
	}
}

/**
 * pci_vc_load_arb_table - load and wait for VC arbitration table
 * @dev: device
 * @pos: starting position of VC capability (VC/VC9/MFVC)
 *
 * Set Load VC Arbitration Table bit requesting hardware to apply the VC
 * Arbitration Table (previously loaded).  When the VC Arbitration Table
 * Status clears, hardware has latched the table into VC arbitration logic.
 */
static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
{
	u16 ctrl;

	pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
	pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
			      ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
	if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
				 PCI_VC_PORT_STATUS_TABLE))
		return;

	pci_err(dev, "VC arbitration table failed to load\n");
}

/**
 * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
 * @dev: device
 * @pos: starting position of VC capability (VC/VC9/MFVC)
 * @res: VC resource number, ie. VCn (0-7)
 *
 * Set Load Port Arbitration Table bit requesting hardware to apply the Port
 * Arbitration Table (previously loaded).  When the Port Arbitration Table
 * Status clears, hardware has latched the table into port arbitration logic.
 */
static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
{
	int ctrl_pos, status_pos;
	u32 ctrl;

	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);

	pci_read_config_dword(dev, ctrl_pos, &ctrl);
	pci_write_config_dword(dev, ctrl_pos,
			       ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);

	if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
		return;

	pci_err(dev, "VC%d port arbitration table failed to load\n", res);
}

/**
 * pci_vc_enable - Enable virtual channel
 * @dev: device
 * @pos: starting position of VC capability (VC/VC9/MFVC)
 * @res: VC res number, ie. VCn (0-7)
 *
 * A VC is enabled by setting the enable bit in matching resource control
 * registers on both sides of a link.  We therefore need to find the opposite
 * end of the link.  To keep this simple we enable from the downstream device.
 * RC devices do not have an upstream device, nor does it seem that VC9 do
 * (spec is unclear).  Once we find the upstream device, match the VC ID to
 * get the correct resource, disable and enable on both ends.
 */
static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
{
	int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
	u32 ctrl, header, cap1, ctrl2;
	struct pci_dev *link = NULL;

	/* Enable VCs from the downstream device */
	if (!pci_is_pcie(dev) || !pcie_downstream_port(dev))
		return;

	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);

	pci_read_config_dword(dev, ctrl_pos, &ctrl);
	id = ctrl & PCI_VC_RES_CTRL_ID;

	pci_read_config_dword(dev, pos, &header);

	/* If there is no opposite end of the link, skip to enable */
	if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
	    pci_is_root_bus(dev->bus))
		goto enable;

	pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
	if (!pos2)
		goto enable;

	pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
	evcc = cap1 & PCI_VC_CAP1_EVCC;

	/* VC0 is hardwired enabled, so we can start with 1 */
	for (i = 1; i < evcc + 1; i++) {
		ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
				(i * PCI_CAP_VC_PER_VC_SIZEOF);
		status_pos2 = pos2 + PCI_VC_RES_STATUS +
				(i * PCI_CAP_VC_PER_VC_SIZEOF);
		pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
		if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
			link = dev->bus->self;
			break;
		}
	}

	if (!link)
		goto enable;

	/* Disable if enabled */
	if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
		ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
		pci_write_config_dword(link, ctrl_pos2, ctrl2);
	}

	/* Enable on both ends */
	ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
	pci_write_config_dword(link, ctrl_pos2, ctrl2);
enable:
	ctrl |= PCI_VC_RES_CTRL_ENABLE;
	pci_write_config_dword(dev, ctrl_pos, ctrl);

	if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
		pci_err(dev, "VC%d negotiation stuck pending\n", id);

	if (link && !pci_wait_for_pending(link, status_pos2,
					  PCI_VC_RES_STATUS_NEGO))
		pci_err(link, "VC%d negotiation stuck pending\n", id);
}

/**
 * pci_vc_do_save_buffer - Size, save, or restore VC state
 * @dev: device
 * @pos: starting position of VC capability (VC/VC9/MFVC)
 * @save_state: buffer for save/restore
 * @name: for error message
 * @save: if provided a buffer, this indicates what to do with it
 *
 * Walking Virtual Channel config space to size, save, or restore it
 * is complicated, so we do it all from one function to reduce code and
 * guarantee ordering matches in the buffer.  When called with NULL
 * @save_state, return the size of the necessary save buffer.  When called
 * with a non-NULL @save_state, @save determines whether we save to the
 * buffer or restore from it.
 */
static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
				 struct pci_cap_saved_state *save_state,
				 bool save)
{
	u32 cap1;
	char evcc, lpevcc, parb_size;
	int i, len = 0;
	u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;

	/* Sanity check buffer size for save/restore */
	if (buf && save_state->cap.size !=
	    pci_vc_do_save_buffer(dev, pos, NULL, save)) {
		pci_err(dev, "VC save buffer size does not match @0x%x\n", pos);
		return -ENOMEM;
	}

	pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
	/* Extended VC Count (not counting VC0) */
	evcc = cap1 & PCI_VC_CAP1_EVCC;
	/* Low Priority Extended VC Count (not counting VC0) */
	lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
	/* Port Arbitration Table Entry Size (bits) */
	parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);

	/*
	 * Port VC Control Register contains VC Arbitration Select, which
	 * cannot be modified when more than one LPVC is in operation.  We
	 * therefore save/restore it first, as only VC0 should be enabled
	 * after device reset.
	 */
	if (buf) {
		if (save)
			pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
					     (u16 *)buf);
		else
			pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
					      *(u16 *)buf);
		buf += 4;
	}
	len += 4;

	/*
	 * If we have any Low Priority VCs and a VC Arbitration Table Offset
	 * in Port VC Capability Register 2 then save/restore it next.
	 */
	if (lpevcc) {
		u32 cap2;
		int vcarb_offset;

		pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
		vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;

		if (vcarb_offset) {
			int size, vcarb_phases = 0;

			if (cap2 & PCI_VC_CAP2_128_PHASE)
				vcarb_phases = 128;
			else if (cap2 & PCI_VC_CAP2_64_PHASE)
				vcarb_phases = 64;
			else if (cap2 & PCI_VC_CAP2_32_PHASE)
				vcarb_phases = 32;

			/* Fixed 4 bits per phase per lpevcc (plus VC0) */
			size = ((lpevcc + 1) * vcarb_phases * 4) / 8;

			if (size && buf) {
				pci_vc_save_restore_dwords(dev,
							   pos + vcarb_offset,
							   (u32 *)buf,
							   size / 4, save);
				/*
				 * On restore, we need to signal hardware to
				 * re-load the VC Arbitration Table.
				 */
				if (!save)
					pci_vc_load_arb_table(dev, pos);

				buf += size;
			}
			len += size;
		}
	}

	/*
	 * In addition to each VC Resource Control Register, we may have a
	 * Port Arbitration Table attached to each VC.  The Port Arbitration
	 * Table Offset in each VC Resource Capability Register tells us if
	 * it exists.  The entry size is global from the Port VC Capability
	 * Register1 above.  The number of phases is determined per VC.
	 */
	for (i = 0; i < evcc + 1; i++) {
		u32 cap;
		int parb_offset;

		pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
				      (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
		parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
		if (parb_offset) {
			int size, parb_phases = 0;

			if (cap & PCI_VC_RES_CAP_256_PHASE)
				parb_phases = 256;
			else if (cap & (PCI_VC_RES_CAP_128_PHASE |
					PCI_VC_RES_CAP_128_PHASE_TB))
				parb_phases = 128;
			else if (cap & PCI_VC_RES_CAP_64_PHASE)
				parb_phases = 64;
			else if (cap & PCI_VC_RES_CAP_32_PHASE)
				parb_phases = 32;

			size = (parb_size * parb_phases) / 8;

			if (size && buf) {
				pci_vc_save_restore_dwords(dev,
							   pos + parb_offset,
							   (u32 *)buf,
							   size / 4, save);
				buf += size;
			}
			len += size;
		}

		/* VC Resource Control Register */
		if (buf) {
			int ctrl_pos = pos + PCI_VC_RES_CTRL +
						(i * PCI_CAP_VC_PER_VC_SIZEOF);
			if (save)
				pci_read_config_dword(dev, ctrl_pos,
						      (u32 *)buf);
			else {
				u32 tmp, ctrl = *(u32 *)buf;
				/*
				 * For an FLR case, the VC config may remain.
				 * Preserve enable bit, restore the rest.
				 */
				pci_read_config_dword(dev, ctrl_pos, &tmp);
				tmp &= PCI_VC_RES_CTRL_ENABLE;
				tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
				pci_write_config_dword(dev, ctrl_pos, tmp);
				/* Load port arbitration table if used */
				if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
					pci_vc_load_port_arb_table(dev, pos, i);
				/* Re-enable if needed */
				if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
					pci_vc_enable(dev, pos, i);
			}
			buf += 4;
		}
		len += 4;
	}

	return buf ? 0 : len;
}

static struct {
	u16 id;
	const char *name;
} vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
		{ PCI_EXT_CAP_ID_VC, "VC" },
		{ PCI_EXT_CAP_ID_VC9, "VC9" } };

/**
 * pci_save_vc_state - Save VC state to pre-allocate save buffer
 * @dev: device
 *
 * For each type of VC capability, VC/VC9/MFVC, find the capability and
 * save it to the pre-allocated save buffer.
 */
int pci_save_vc_state(struct pci_dev *dev)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
		int pos, ret;
		struct pci_cap_saved_state *save_state;

		pos = pci_find_ext_capability(dev, vc_caps[i].id);
		if (!pos)
			continue;

		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
		if (!save_state) {
			pci_err(dev, "%s buffer not found in %s\n",
				vc_caps[i].name, __func__);
			return -ENOMEM;
		}

		ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
		if (ret) {
			pci_err(dev, "%s save unsuccessful %s\n",
				vc_caps[i].name, __func__);
			return ret;
		}
	}

	return 0;
}

/**
 * pci_restore_vc_state - Restore VC state from save buffer
 * @dev: device
 *
 * For each type of VC capability, VC/VC9/MFVC, find the capability and
 * restore it from the previously saved buffer.
 */
void pci_restore_vc_state(struct pci_dev *dev)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
		int pos;
		struct pci_cap_saved_state *save_state;

		pos = pci_find_ext_capability(dev, vc_caps[i].id);
		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
		if (!save_state || !pos)
			continue;

		pci_vc_do_save_buffer(dev, pos, save_state, false);
	}
}

/**
 * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
 * @dev: device
 *
 * For each type of VC capability, VC/VC9/MFVC, find the capability, size
 * it, and allocate a buffer for save/restore.
 */

void pci_allocate_vc_save_buffers(struct pci_dev *dev)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
		int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);

		if (!pos)
			continue;

		len = pci_vc_do_save_buffer(dev, pos, NULL, false);
		if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
			pci_err(dev, "unable to preallocate %s save buffer\n",
				vc_caps[i].name);
	}
}