summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/ice/ice_ptp.c
blob: 5e41e99e91a56e3c0447798881e884b7c2d5bd33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021, Intel Corporation. */

#include "ice.h"
#include "ice_lib.h"
#include "ice_trace.h"

#define E810_OUT_PROP_DELAY_NS 1

#define UNKNOWN_INCVAL_E822 0x100000000ULL

static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
	/* name    idx   func         chan */
	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
};

/**
 * ice_get_sma_config_e810t
 * @hw: pointer to the hw struct
 * @ptp_pins: pointer to the ptp_pin_desc struture
 *
 * Read the configuration of the SMA control logic and put it into the
 * ptp_pin_desc structure
 */
static int
ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
{
	u8 data, i;
	int status;

	/* Read initial pin state */
	status = ice_read_sma_ctrl_e810t(hw, &data);
	if (status)
		return status;

	/* initialize with defaults */
	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
		snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
			 "%s", ice_pin_desc_e810t[i].name);
		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
	}

	/* Parse SMA1/UFL1 */
	switch (data & ICE_SMA1_MASK_E810T) {
	case ICE_SMA1_MASK_E810T:
	default:
		ptp_pins[SMA1].func = PTP_PF_NONE;
		ptp_pins[UFL1].func = PTP_PF_NONE;
		break;
	case ICE_SMA1_DIR_EN_E810T:
		ptp_pins[SMA1].func = PTP_PF_PEROUT;
		ptp_pins[UFL1].func = PTP_PF_NONE;
		break;
	case ICE_SMA1_TX_EN_E810T:
		ptp_pins[SMA1].func = PTP_PF_EXTTS;
		ptp_pins[UFL1].func = PTP_PF_NONE;
		break;
	case 0:
		ptp_pins[SMA1].func = PTP_PF_EXTTS;
		ptp_pins[UFL1].func = PTP_PF_PEROUT;
		break;
	}

	/* Parse SMA2/UFL2 */
	switch (data & ICE_SMA2_MASK_E810T) {
	case ICE_SMA2_MASK_E810T:
	default:
		ptp_pins[SMA2].func = PTP_PF_NONE;
		ptp_pins[UFL2].func = PTP_PF_NONE;
		break;
	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
		ptp_pins[SMA2].func = PTP_PF_EXTTS;
		ptp_pins[UFL2].func = PTP_PF_NONE;
		break;
	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
		ptp_pins[SMA2].func = PTP_PF_PEROUT;
		ptp_pins[UFL2].func = PTP_PF_NONE;
		break;
	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
		ptp_pins[SMA2].func = PTP_PF_NONE;
		ptp_pins[UFL2].func = PTP_PF_EXTTS;
		break;
	case ICE_SMA2_DIR_EN_E810T:
		ptp_pins[SMA2].func = PTP_PF_PEROUT;
		ptp_pins[UFL2].func = PTP_PF_EXTTS;
		break;
	}

	return 0;
}

/**
 * ice_ptp_set_sma_config_e810t
 * @hw: pointer to the hw struct
 * @ptp_pins: pointer to the ptp_pin_desc struture
 *
 * Set the configuration of the SMA control logic based on the configuration in
 * num_pins parameter
 */
static int
ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
			     const struct ptp_pin_desc *ptp_pins)
{
	int status;
	u8 data;

	/* SMA1 and UFL1 cannot be set to TX at the same time */
	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
		return -EINVAL;

	/* SMA2 and UFL2 cannot be set to RX at the same time */
	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
		return -EINVAL;

	/* Read initial pin state value */
	status = ice_read_sma_ctrl_e810t(hw, &data);
	if (status)
		return status;

	/* Set the right sate based on the desired configuration */
	data &= ~ICE_SMA1_MASK_E810T;
	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
	    ptp_pins[UFL1].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
		data |= ICE_SMA1_MASK_E810T;
	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
		   ptp_pins[UFL1].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
		data |= ICE_SMA1_TX_EN_E810T;
	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
		/* U.FL 1 TX will always enable SMA 1 RX */
		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
		   ptp_pins[UFL1].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
		data |= ICE_SMA1_DIR_EN_E810T;
	}

	data &= ~ICE_SMA2_MASK_E810T;
	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
	    ptp_pins[UFL2].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
		data |= ICE_SMA2_MASK_E810T;
	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
			ptp_pins[UFL2].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
		data |= (ICE_SMA2_TX_EN_E810T |
			 ICE_SMA2_UFL2_RX_DIS_E810T);
	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
		   ptp_pins[UFL2].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
		data |= (ICE_SMA2_DIR_EN_E810T |
			 ICE_SMA2_UFL2_RX_DIS_E810T);
	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
		data |= ICE_SMA2_DIR_EN_E810T;
	}

	return ice_write_sma_ctrl_e810t(hw, data);
}

/**
 * ice_ptp_set_sma_e810t
 * @info: the driver's PTP info structure
 * @pin: pin index in kernel structure
 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
 *
 * Set the configuration of a single SMA pin
 */
static int
ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
		      enum ptp_pin_function func)
{
	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
	struct ice_pf *pf = ptp_info_to_pf(info);
	struct ice_hw *hw = &pf->hw;
	int err;

	if (pin < SMA1 || func > PTP_PF_PEROUT)
		return -EOPNOTSUPP;

	err = ice_get_sma_config_e810t(hw, ptp_pins);
	if (err)
		return err;

	/* Disable the same function on the other pin sharing the channel */
	if (pin == SMA1 && ptp_pins[UFL1].func == func)
		ptp_pins[UFL1].func = PTP_PF_NONE;
	if (pin == UFL1 && ptp_pins[SMA1].func == func)
		ptp_pins[SMA1].func = PTP_PF_NONE;

	if (pin == SMA2 && ptp_pins[UFL2].func == func)
		ptp_pins[UFL2].func = PTP_PF_NONE;
	if (pin == UFL2 && ptp_pins[SMA2].func == func)
		ptp_pins[SMA2].func = PTP_PF_NONE;

	/* Set up new pin function in the temp table */
	ptp_pins[pin].func = func;

	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
}

/**
 * ice_verify_pin_e810t
 * @info: the driver's PTP info structure
 * @pin: Pin index
 * @func: Assigned function
 * @chan: Assigned channel
 *
 * Verify if pin supports requested pin function. If the Check pins consistency.
 * Reconfigure the SMA logic attached to the given pin to enable its
 * desired functionality
 */
static int
ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
		     enum ptp_pin_function func, unsigned int chan)
{
	/* Don't allow channel reassignment */
	if (chan != ice_pin_desc_e810t[pin].chan)
		return -EOPNOTSUPP;

	/* Check if functions are properly assigned */
	switch (func) {
	case PTP_PF_NONE:
		break;
	case PTP_PF_EXTTS:
		if (pin == UFL1)
			return -EOPNOTSUPP;
		break;
	case PTP_PF_PEROUT:
		if (pin == UFL2 || pin == GNSS)
			return -EOPNOTSUPP;
		break;
	case PTP_PF_PHYSYNC:
		return -EOPNOTSUPP;
	}

	return ice_ptp_set_sma_e810t(info, pin, func);
}

/**
 * ice_set_tx_tstamp - Enable or disable Tx timestamping
 * @pf: The PF pointer to search in
 * @on: bool value for whether timestamps are enabled or disabled
 */
static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
{
	struct ice_vsi *vsi;
	u32 val;
	u16 i;

	vsi = ice_get_main_vsi(pf);
	if (!vsi)
		return;

	/* Set the timestamp enable flag for all the Tx rings */
	ice_for_each_txq(vsi, i) {
		if (!vsi->tx_rings[i])
			continue;
		vsi->tx_rings[i]->ptp_tx = on;
	}

	/* Configure the Tx timestamp interrupt */
	val = rd32(&pf->hw, PFINT_OICR_ENA);
	if (on)
		val |= PFINT_OICR_TSYN_TX_M;
	else
		val &= ~PFINT_OICR_TSYN_TX_M;
	wr32(&pf->hw, PFINT_OICR_ENA, val);

	pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
}

/**
 * ice_set_rx_tstamp - Enable or disable Rx timestamping
 * @pf: The PF pointer to search in
 * @on: bool value for whether timestamps are enabled or disabled
 */
static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
{
	struct ice_vsi *vsi;
	u16 i;

	vsi = ice_get_main_vsi(pf);
	if (!vsi)
		return;

	/* Set the timestamp flag for all the Rx rings */
	ice_for_each_rxq(vsi, i) {
		if (!vsi->rx_rings[i])
			continue;
		vsi->rx_rings[i]->ptp_rx = on;
	}

	pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
					       HWTSTAMP_FILTER_NONE;
}

/**
 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
 * @pf: Board private structure
 * @ena: bool value to enable or disable time stamp
 *
 * This function will configure timestamping during PTP initialization
 * and deinitialization
 */
void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
{
	ice_set_tx_tstamp(pf, ena);
	ice_set_rx_tstamp(pf, ena);
}

/**
 * ice_get_ptp_clock_index - Get the PTP clock index
 * @pf: the PF pointer
 *
 * Determine the clock index of the PTP clock associated with this device. If
 * this is the PF controlling the clock, just use the local access to the
 * clock device pointer.
 *
 * Otherwise, read from the driver shared parameters to determine the clock
 * index value.
 *
 * Returns: the index of the PTP clock associated with this device, or -1 if
 * there is no associated clock.
 */
int ice_get_ptp_clock_index(struct ice_pf *pf)
{
	struct device *dev = ice_pf_to_dev(pf);
	enum ice_aqc_driver_params param_idx;
	struct ice_hw *hw = &pf->hw;
	u8 tmr_idx;
	u32 value;
	int err;

	/* Use the ptp_clock structure if we're the main PF */
	if (pf->ptp.clock)
		return ptp_clock_index(pf->ptp.clock);

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
	if (!tmr_idx)
		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
	else
		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;

	err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
	if (err) {
		dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
			err, ice_aq_str(hw->adminq.sq_last_status));
		return -1;
	}

	/* The PTP clock index is an integer, and will be between 0 and
	 * INT_MAX. The highest bit of the driver shared parameter is used to
	 * indicate whether or not the currently stored clock index is valid.
	 */
	if (!(value & PTP_SHARED_CLK_IDX_VALID))
		return -1;

	return value & ~PTP_SHARED_CLK_IDX_VALID;
}

/**
 * ice_set_ptp_clock_index - Set the PTP clock index
 * @pf: the PF pointer
 *
 * Set the PTP clock index for this device into the shared driver parameters,
 * so that other PFs associated with this device can read it.
 *
 * If the PF is unable to store the clock index, it will log an error, but
 * will continue operating PTP.
 */
static void ice_set_ptp_clock_index(struct ice_pf *pf)
{
	struct device *dev = ice_pf_to_dev(pf);
	enum ice_aqc_driver_params param_idx;
	struct ice_hw *hw = &pf->hw;
	u8 tmr_idx;
	u32 value;
	int err;

	if (!pf->ptp.clock)
		return;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
	if (!tmr_idx)
		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
	else
		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;

	value = (u32)ptp_clock_index(pf->ptp.clock);
	if (value > INT_MAX) {
		dev_err(dev, "PTP Clock index is too large to store\n");
		return;
	}
	value |= PTP_SHARED_CLK_IDX_VALID;

	err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
	if (err) {
		dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
			err, ice_aq_str(hw->adminq.sq_last_status));
	}
}

/**
 * ice_clear_ptp_clock_index - Clear the PTP clock index
 * @pf: the PF pointer
 *
 * Clear the PTP clock index for this device. Must be called when
 * unregistering the PTP clock, in order to ensure other PFs stop reporting
 * a clock object that no longer exists.
 */
static void ice_clear_ptp_clock_index(struct ice_pf *pf)
{
	struct device *dev = ice_pf_to_dev(pf);
	enum ice_aqc_driver_params param_idx;
	struct ice_hw *hw = &pf->hw;
	u8 tmr_idx;
	int err;

	/* Do not clear the index if we don't own the timer */
	if (!hw->func_caps.ts_func_info.src_tmr_owned)
		return;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
	if (!tmr_idx)
		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
	else
		param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;

	err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
	if (err) {
		dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
			err, ice_aq_str(hw->adminq.sq_last_status));
	}
}

/**
 * ice_ptp_read_src_clk_reg - Read the source clock register
 * @pf: Board private structure
 * @sts: Optional parameter for holding a pair of system timestamps from
 *       the system clock. Will be ignored if NULL is given.
 */
static u64
ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
{
	struct ice_hw *hw = &pf->hw;
	u32 hi, lo, lo2;
	u8 tmr_idx;

	tmr_idx = ice_get_ptp_src_clock_index(hw);
	/* Read the system timestamp pre PHC read */
	ptp_read_system_prets(sts);

	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));

	/* Read the system timestamp post PHC read */
	ptp_read_system_postts(sts);

	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));

	if (lo2 < lo) {
		/* if TIME_L rolled over read TIME_L again and update
		 * system timestamps
		 */
		ptp_read_system_prets(sts);
		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
		ptp_read_system_postts(sts);
		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
	}

	return ((u64)hi << 32) | lo;
}

/**
 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
 * @cached_phc_time: recently cached copy of PHC time
 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
 *
 * Hardware captures timestamps which contain only 32 bits of nominal
 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
 * Note that the captured timestamp values may be 40 bits, but the lower
 * 8 bits are sub-nanoseconds and generally discarded.
 *
 * Extend the 32bit nanosecond timestamp using the following algorithm and
 * assumptions:
 *
 * 1) have a recently cached copy of the PHC time
 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
 *    seconds) before or after the PHC time was captured.
 * 3) calculate the delta between the cached time and the timestamp
 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
 *    captured after the PHC time. In this case, the full timestamp is just
 *    the cached PHC time plus the delta.
 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
 *    timestamp was captured *before* the PHC time, i.e. because the PHC
 *    cache was updated after the timestamp was captured by hardware. In this
 *    case, the full timestamp is the cached time minus the inverse delta.
 *
 * This algorithm works even if the PHC time was updated after a Tx timestamp
 * was requested, but before the Tx timestamp event was reported from
 * hardware.
 *
 * This calculation primarily relies on keeping the cached PHC time up to
 * date. If the timestamp was captured more than 2^31 nanoseconds after the
 * PHC time, it is possible that the lower 32bits of PHC time have
 * overflowed more than once, and we might generate an incorrect timestamp.
 *
 * This is prevented by (a) periodically updating the cached PHC time once
 * a second, and (b) discarding any Tx timestamp packet if it has waited for
 * a timestamp for more than one second.
 */
static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
{
	u32 delta, phc_time_lo;
	u64 ns;

	/* Extract the lower 32 bits of the PHC time */
	phc_time_lo = (u32)cached_phc_time;

	/* Calculate the delta between the lower 32bits of the cached PHC
	 * time and the in_tstamp value
	 */
	delta = (in_tstamp - phc_time_lo);

	/* Do not assume that the in_tstamp is always more recent than the
	 * cached PHC time. If the delta is large, it indicates that the
	 * in_tstamp was taken in the past, and should be converted
	 * forward.
	 */
	if (delta > (U32_MAX / 2)) {
		/* reverse the delta calculation here */
		delta = (phc_time_lo - in_tstamp);
		ns = cached_phc_time - delta;
	} else {
		ns = cached_phc_time + delta;
	}

	return ns;
}

/**
 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
 * @pf: Board private structure
 * @in_tstamp: Ingress/egress 40b timestamp value
 *
 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
 *
 *  *--------------------------------------------------------------*
 *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
 *  *--------------------------------------------------------------*
 *
 * The low bit is an indicator of whether the timestamp is valid. The next
 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
 *
 * It is assumed that the caller verifies the timestamp is valid prior to
 * calling this function.
 *
 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
 * time stored in the device private PTP structure as the basis for timestamp
 * extension.
 *
 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
 * algorithm.
 */
static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
{
	const u64 mask = GENMASK_ULL(31, 0);
	unsigned long discard_time;

	/* Discard the hardware timestamp if the cached PHC time is too old */
	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
	if (time_is_before_jiffies(discard_time)) {
		pf->ptp.tx_hwtstamp_discarded++;
		return 0;
	}

	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
				     (in_tstamp >> 8) & mask);
}

/**
 * ice_ptp_tx_tstamp - Process Tx timestamps for a port
 * @tx: the PTP Tx timestamp tracker
 *
 * Process timestamps captured by the PHY associated with this port. To do
 * this, loop over each index with a waiting skb.
 *
 * If a given index has a valid timestamp, perform the following steps:
 *
 * 1) copy the timestamp out of the PHY register
 * 4) clear the timestamp valid bit in the PHY register
 * 5) unlock the index by clearing the associated in_use bit.
 * 2) extend the 40b timestamp value to get a 64bit timestamp
 * 3) send that timestamp to the stack
 *
 * After looping, if we still have waiting SKBs, return true. This may cause us
 * effectively poll even when not strictly necessary. We do this because it's
 * possible a new timestamp was requested around the same time as the interrupt.
 * In some cases hardware might not interrupt us again when the timestamp is
 * captured.
 *
 * Note that we only take the tracking lock when clearing the bit and when
 * checking if we need to re-queue this task. The only place where bits can be
 * set is the hard xmit routine where an SKB has a request flag set. The only
 * places where we clear bits are this work function, or the periodic cleanup
 * thread. If the cleanup thread clears a bit we're processing we catch it
 * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
 * starts a new timestamp, we might not begin processing it right away but we
 * will notice it at the end when we re-queue the task. If a Tx thread starts
 * a new timestamp just after this function exits without re-queuing,
 * the interrupt when the timestamp finishes should trigger. Avoiding holding
 * the lock for the entire function is important in order to ensure that Tx
 * threads do not get blocked while waiting for the lock.
 */
static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
{
	struct ice_ptp_port *ptp_port;
	bool ts_handled = true;
	struct ice_pf *pf;
	u8 idx;

	if (!tx->init)
		return false;

	ptp_port = container_of(tx, struct ice_ptp_port, tx);
	pf = ptp_port_to_pf(ptp_port);

	for_each_set_bit(idx, tx->in_use, tx->len) {
		struct skb_shared_hwtstamps shhwtstamps = {};
		u8 phy_idx = idx + tx->quad_offset;
		u64 raw_tstamp, tstamp;
		struct sk_buff *skb;
		int err;

		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);

		err = ice_read_phy_tstamp(&pf->hw, tx->quad, phy_idx,
					  &raw_tstamp);
		if (err)
			continue;

		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);

		/* Check if the timestamp is invalid or stale */
		if (!(raw_tstamp & ICE_PTP_TS_VALID) ||
		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
			continue;

		/* The timestamp is valid, so we'll go ahead and clear this
		 * index and then send the timestamp up to the stack.
		 */
		spin_lock(&tx->lock);
		tx->tstamps[idx].cached_tstamp = raw_tstamp;
		clear_bit(idx, tx->in_use);
		skb = tx->tstamps[idx].skb;
		tx->tstamps[idx].skb = NULL;
		spin_unlock(&tx->lock);

		/* it's (unlikely but) possible we raced with the cleanup
		 * thread for discarding old timestamp requests.
		 */
		if (!skb)
			continue;

		/* Extend the timestamp using cached PHC time */
		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
		if (tstamp) {
			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
			ice_trace(tx_tstamp_complete, skb, idx);
		}

		skb_tstamp_tx(skb, &shhwtstamps);
		dev_kfree_skb_any(skb);
	}

	/* Check if we still have work to do. If so, re-queue this task to
	 * poll for remaining timestamps.
	 */
	spin_lock(&tx->lock);
	if (!bitmap_empty(tx->in_use, tx->len))
		ts_handled = false;
	spin_unlock(&tx->lock);

	return ts_handled;
}

/**
 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
 * @tx: Tx tracking structure to initialize
 *
 * Assumes that the length has already been initialized. Do not call directly,
 * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
 */
static int
ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
{
	tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
	if (!tx->tstamps)
		return -ENOMEM;

	tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
	if (!tx->in_use) {
		kfree(tx->tstamps);
		tx->tstamps = NULL;
		return -ENOMEM;
	}

	spin_lock_init(&tx->lock);

	tx->init = 1;

	return 0;
}

/**
 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
 * @pf: Board private structure
 * @tx: the tracker to flush
 */
static void
ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
{
	u8 idx;

	for (idx = 0; idx < tx->len; idx++) {
		u8 phy_idx = idx + tx->quad_offset;

		spin_lock(&tx->lock);
		if (tx->tstamps[idx].skb) {
			dev_kfree_skb_any(tx->tstamps[idx].skb);
			tx->tstamps[idx].skb = NULL;
			pf->ptp.tx_hwtstamp_flushed++;
		}
		clear_bit(idx, tx->in_use);
		spin_unlock(&tx->lock);

		/* Clear any potential residual timestamp in the PHY block */
		if (!pf->hw.reset_ongoing)
			ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
	}
}

/**
 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
 * @pf: Board private structure
 * @tx: Tx tracking structure to release
 *
 * Free memory associated with the Tx timestamp tracker.
 */
static void
ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
{
	tx->init = 0;

	ice_ptp_flush_tx_tracker(pf, tx);

	kfree(tx->tstamps);
	tx->tstamps = NULL;

	bitmap_free(tx->in_use);
	tx->in_use = NULL;

	tx->len = 0;
}

/**
 * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
 * @pf: Board private structure
 * @tx: the Tx tracking structure to initialize
 * @port: the port this structure tracks
 *
 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
 * the timestamp block is shared for all ports in the same quad. To avoid
 * ports using the same timestamp index, logically break the block of
 * registers into chunks based on the port number.
 */
static int
ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
{
	tx->quad = port / ICE_PORTS_PER_QUAD;
	tx->quad_offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT;
	tx->len = INDEX_PER_PORT;

	return ice_ptp_alloc_tx_tracker(tx);
}

/**
 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
 * @pf: Board private structure
 * @tx: the Tx tracking structure to initialize
 *
 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
 * port has its own block of timestamps, independent of the other ports.
 */
static int
ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
{
	tx->quad = pf->hw.port_info->lport;
	tx->quad_offset = 0;
	tx->len = INDEX_PER_QUAD;

	return ice_ptp_alloc_tx_tracker(tx);
}

/**
 * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
 * @pf: pointer to the PF struct
 * @tx: PTP Tx tracker to clean up
 *
 * Loop through the Tx timestamp requests and see if any of them have been
 * waiting for a long time. Discard any SKBs that have been waiting for more
 * than 2 seconds. This is long enough to be reasonably sure that the
 * timestamp will never be captured. This might happen if the packet gets
 * discarded before it reaches the PHY timestamping block.
 */
static void ice_ptp_tx_tstamp_cleanup(struct ice_pf *pf, struct ice_ptp_tx *tx)
{
	struct ice_hw *hw = &pf->hw;
	u8 idx;

	if (!tx->init)
		return;

	for_each_set_bit(idx, tx->in_use, tx->len) {
		struct sk_buff *skb;
		u64 raw_tstamp;

		/* Check if this SKB has been waiting for too long */
		if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
			continue;

		/* Read tstamp to be able to use this register again */
		ice_read_phy_tstamp(hw, tx->quad, idx + tx->quad_offset,
				    &raw_tstamp);

		spin_lock(&tx->lock);
		skb = tx->tstamps[idx].skb;
		tx->tstamps[idx].skb = NULL;
		clear_bit(idx, tx->in_use);
		spin_unlock(&tx->lock);

		/* Count the number of Tx timestamps which have timed out */
		pf->ptp.tx_hwtstamp_timeouts++;

		/* Free the SKB after we've cleared the bit */
		dev_kfree_skb_any(skb);
	}
}

/**
 * ice_ptp_update_cached_phctime - Update the cached PHC time values
 * @pf: Board specific private structure
 *
 * This function updates the system time values which are cached in the PF
 * structure and the Rx rings.
 *
 * This function must be called periodically to ensure that the cached value
 * is never more than 2 seconds old.
 *
 * Note that the cached copy in the PF PTP structure is always updated, even
 * if we can't update the copy in the Rx rings.
 *
 * Return:
 * * 0 - OK, successfully updated
 * * -EAGAIN - PF was busy, need to reschedule the update
 */
static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
{
	struct device *dev = ice_pf_to_dev(pf);
	unsigned long update_before;
	u64 systime;
	int i;

	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
	if (pf->ptp.cached_phc_time &&
	    time_is_before_jiffies(update_before)) {
		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;

		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
			 jiffies_to_msecs(time_taken));
		pf->ptp.late_cached_phc_updates++;
	}

	/* Read the current PHC time */
	systime = ice_ptp_read_src_clk_reg(pf, NULL);

	/* Update the cached PHC time stored in the PF structure */
	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);

	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
		return -EAGAIN;

	ice_for_each_vsi(pf, i) {
		struct ice_vsi *vsi = pf->vsi[i];
		int j;

		if (!vsi)
			continue;

		if (vsi->type != ICE_VSI_PF)
			continue;

		ice_for_each_rxq(vsi, j) {
			if (!vsi->rx_rings[j])
				continue;
			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
		}
	}
	clear_bit(ICE_CFG_BUSY, pf->state);

	return 0;
}

/**
 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
 * @pf: Board specific private structure
 *
 * This function must be called when the cached PHC time is no longer valid,
 * such as after a time adjustment. It discards any outstanding Tx timestamps,
 * and updates the cached PHC time for both the PF and Rx rings. If updating
 * the PHC time cannot be done immediately, a warning message is logged and
 * the work item is scheduled.
 *
 * These steps are required in order to ensure that we do not accidentally
 * report a timestamp extended by the wrong PHC cached copy. Note that we
 * do not directly update the cached timestamp here because it is possible
 * this might produce an error when ICE_CFG_BUSY is set. If this occurred, we
 * would have to try again. During that time window, timestamps might be
 * requested and returned with an invalid extension. Thus, on failure to
 * immediately update the cached PHC time we would need to zero the value
 * anyways. For this reason, we just zero the value immediately and queue the
 * update work item.
 */
static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
{
	struct device *dev = ice_pf_to_dev(pf);
	int err;

	/* Update the cached PHC time immediately if possible, otherwise
	 * schedule the work item to execute soon.
	 */
	err = ice_ptp_update_cached_phctime(pf);
	if (err) {
		/* If another thread is updating the Rx rings, we won't
		 * properly reset them here. This could lead to reporting of
		 * invalid timestamps, but there isn't much we can do.
		 */
		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
			 __func__);

		/* Queue the work item to update the Rx rings when possible */
		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
					   msecs_to_jiffies(10));
	}

	/* Flush any outstanding Tx timestamps */
	ice_ptp_flush_tx_tracker(pf, &pf->ptp.port.tx);
}

/**
 * ice_ptp_read_time - Read the time from the device
 * @pf: Board private structure
 * @ts: timespec structure to hold the current time value
 * @sts: Optional parameter for holding a pair of system timestamps from
 *       the system clock. Will be ignored if NULL is given.
 *
 * This function reads the source clock registers and stores them in a timespec.
 * However, since the registers are 64 bits of nanoseconds, we must convert the
 * result to a timespec before we can return.
 */
static void
ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
		  struct ptp_system_timestamp *sts)
{
	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);

	*ts = ns_to_timespec64(time_ns);
}

/**
 * ice_ptp_write_init - Set PHC time to provided value
 * @pf: Board private structure
 * @ts: timespec structure that holds the new time value
 *
 * Set the PHC time to the specified time provided in the timespec.
 */
static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
{
	u64 ns = timespec64_to_ns(ts);
	struct ice_hw *hw = &pf->hw;

	return ice_ptp_init_time(hw, ns);
}

/**
 * ice_ptp_write_adj - Adjust PHC clock time atomically
 * @pf: Board private structure
 * @adj: Adjustment in nanoseconds
 *
 * Perform an atomic adjustment of the PHC time by the specified number of
 * nanoseconds.
 */
static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
{
	struct ice_hw *hw = &pf->hw;

	return ice_ptp_adj_clock(hw, adj);
}

/**
 * ice_base_incval - Get base timer increment value
 * @pf: Board private structure
 *
 * Look up the base timer increment value for this device. The base increment
 * value is used to define the nominal clock tick rate. This increment value
 * is programmed during device initialization. It is also used as the basis
 * for calculating adjustments using scaled_ppm.
 */
static u64 ice_base_incval(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	u64 incval;

	if (ice_is_e810(hw))
		incval = ICE_PTP_NOMINAL_INCVAL_E810;
	else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
		incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
	else
		incval = UNKNOWN_INCVAL_E822;

	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
		incval);

	return incval;
}

/**
 * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad
 * @pf: The PF private data structure
 * @quad: The quad (0-4)
 */
static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad)
{
	struct ice_hw *hw = &pf->hw;

	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
	ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
}

/**
 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
 * @port: PTP port for which Tx FIFO is checked
 */
static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
{
	int quad = port->port_num / ICE_PORTS_PER_QUAD;
	int offs = port->port_num % ICE_PORTS_PER_QUAD;
	struct ice_pf *pf;
	struct ice_hw *hw;
	u32 val, phy_sts;
	int err;

	pf = ptp_port_to_pf(port);
	hw = &pf->hw;

	if (port->tx_fifo_busy_cnt == FIFO_OK)
		return 0;

	/* need to read FIFO state */
	if (offs == 0 || offs == 1)
		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
					     &val);
	else
		err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
					     &val);

	if (err) {
		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
			port->port_num, err);
		return err;
	}

	if (offs & 0x1)
		phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
	else
		phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;

	if (phy_sts & FIFO_EMPTY) {
		port->tx_fifo_busy_cnt = FIFO_OK;
		return 0;
	}

	port->tx_fifo_busy_cnt++;

	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
		port->tx_fifo_busy_cnt, port->port_num);

	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
		dev_dbg(ice_pf_to_dev(pf),
			"Port %d Tx FIFO still not empty; resetting quad %d\n",
			port->port_num, quad);
		ice_ptp_reset_ts_memory_quad(pf, quad);
		port->tx_fifo_busy_cnt = FIFO_OK;
		return 0;
	}

	return -EAGAIN;
}

/**
 * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid
 * @port: the PTP port to check
 *
 * Checks whether the Tx offset for the PHY associated with this port is
 * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
 * not.
 */
static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port)
{
	struct ice_pf *pf = ptp_port_to_pf(port);
	struct device *dev = ice_pf_to_dev(pf);
	struct ice_hw *hw = &pf->hw;
	u32 val;
	int err;

	err = ice_ptp_check_tx_fifo(port);
	if (err)
		return err;

	err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS,
				    &val);
	if (err) {
		dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n",
			port->port_num, err);
		return -EAGAIN;
	}

	if (!(val & P_REG_TX_OV_STATUS_OV_M))
		return -EAGAIN;

	return 0;
}

/**
 * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid
 * @port: the PTP port to check
 *
 * Checks whether the Rx offset for the PHY associated with this port is
 * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
 * not.
 */
static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port)
{
	struct ice_pf *pf = ptp_port_to_pf(port);
	struct device *dev = ice_pf_to_dev(pf);
	struct ice_hw *hw = &pf->hw;
	int err;
	u32 val;

	err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS,
				    &val);
	if (err) {
		dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n",
			port->port_num, err);
		return err;
	}

	if (!(val & P_REG_RX_OV_STATUS_OV_M))
		return -EAGAIN;

	return 0;
}

/**
 * ice_ptp_check_offset_valid - Check port offset valid bit
 * @port: Port for which offset valid bit is checked
 *
 * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the
 * offset is not ready.
 */
static int ice_ptp_check_offset_valid(struct ice_ptp_port *port)
{
	int tx_err, rx_err;

	/* always check both Tx and Rx offset validity */
	tx_err = ice_ptp_check_tx_offset_valid(port);
	rx_err = ice_ptp_check_rx_offset_valid(port);

	if (tx_err || rx_err)
		return -EAGAIN;

	return 0;
}

/**
 * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets
 * @work: Pointer to the kthread_work structure for this task
 *
 * Check whether both the Tx and Rx offsets are valid for enabling the vernier
 * calibration.
 *
 * Once we have valid offsets from hardware, update the total Tx and Rx
 * offsets, and exit bypass mode. This enables more precise timestamps using
 * the extra data measured during the vernier calibration process.
 */
static void ice_ptp_wait_for_offset_valid(struct kthread_work *work)
{
	struct ice_ptp_port *port;
	int err;
	struct device *dev;
	struct ice_pf *pf;
	struct ice_hw *hw;

	port = container_of(work, struct ice_ptp_port, ov_work.work);
	pf = ptp_port_to_pf(port);
	hw = &pf->hw;
	dev = ice_pf_to_dev(pf);

	if (ice_is_reset_in_progress(pf->state))
		return;

	if (ice_ptp_check_offset_valid(port)) {
		/* Offsets not ready yet, try again later */
		kthread_queue_delayed_work(pf->ptp.kworker,
					   &port->ov_work,
					   msecs_to_jiffies(100));
		return;
	}

	/* Offsets are valid, so it is safe to exit bypass mode */
	err = ice_phy_exit_bypass_e822(hw, port->port_num);
	if (err) {
		dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n",
			 port->port_num, err);
		return;
	}
}

/**
 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
 * @ptp_port: PTP port to stop
 */
static int
ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
{
	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
	u8 port = ptp_port->port_num;
	struct ice_hw *hw = &pf->hw;
	int err;

	if (ice_is_e810(hw))
		return 0;

	mutex_lock(&ptp_port->ps_lock);

	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);

	err = ice_stop_phy_timer_e822(hw, port, true);
	if (err)
		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
			port, err);

	mutex_unlock(&ptp_port->ps_lock);

	return err;
}

/**
 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
 * @ptp_port: PTP port for which the PHY start is set
 *
 * Start the PHY timestamping block, and initiate Vernier timestamping
 * calibration. If timestamping cannot be calibrated (such as if link is down)
 * then disable the timestamping block instead.
 */
static int
ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
{
	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
	u8 port = ptp_port->port_num;
	struct ice_hw *hw = &pf->hw;
	int err;

	if (ice_is_e810(hw))
		return 0;

	if (!ptp_port->link_up)
		return ice_ptp_port_phy_stop(ptp_port);

	mutex_lock(&ptp_port->ps_lock);

	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);

	/* temporarily disable Tx timestamps while calibrating PHY offset */
	ptp_port->tx.calibrating = true;
	ptp_port->tx_fifo_busy_cnt = 0;

	/* Start the PHY timer in bypass mode */
	err = ice_start_phy_timer_e822(hw, port, true);
	if (err)
		goto out_unlock;

	/* Enable Tx timestamps right away */
	ptp_port->tx.calibrating = false;

	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);

out_unlock:
	if (err)
		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
			port, err);

	mutex_unlock(&ptp_port->ps_lock);

	return err;
}

/**
 * ice_ptp_link_change - Set or clear port registers for timestamping
 * @pf: Board private structure
 * @port: Port for which the PHY start is set
 * @linkup: Link is up or down
 */
int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
{
	struct ice_ptp_port *ptp_port;

	if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
		return 0;

	if (port >= ICE_NUM_EXTERNAL_PORTS)
		return -EINVAL;

	ptp_port = &pf->ptp.port;
	if (ptp_port->port_num != port)
		return -EINVAL;

	/* Update cached link err for this port immediately */
	ptp_port->link_up = linkup;

	if (!test_bit(ICE_FLAG_PTP, pf->flags))
		/* PTP is not setup */
		return -EAGAIN;

	return ice_ptp_port_phy_restart(ptp_port);
}

/**
 * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads
 * @pf: The PF private data structure
 */
static void ice_ptp_reset_ts_memory(struct ice_pf *pf)
{
	int quad;

	quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD;
	ice_ptp_reset_ts_memory_quad(pf, quad);
}

/**
 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
 * @pf: PF private structure
 * @ena: bool value to enable or disable interrupt
 * @threshold: Minimum number of packets at which intr is triggered
 *
 * Utility function to enable or disable Tx timestamp interrupt and threshold
 */
static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
{
	struct ice_hw *hw = &pf->hw;
	int err = 0;
	int quad;
	u32 val;

	ice_ptp_reset_ts_memory(pf);

	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
		err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
					     &val);
		if (err)
			break;

		if (ena) {
			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
			val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
				Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
		} else {
			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
		}

		err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
					      val);
		if (err)
			break;
	}

	if (err)
		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
			err);
	return err;
}

/**
 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
 * @pf: Board private structure
 */
static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
{
	ice_ptp_port_phy_restart(&pf->ptp.port);
}

/**
 * ice_ptp_adjfine - Adjust clock increment rate
 * @info: the driver's PTP info structure
 * @scaled_ppm: Parts per million with 16-bit fractional field
 *
 * Adjust the frequency of the clock by the indicated scaled ppm from the
 * base frequency.
 */
static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
{
	struct ice_pf *pf = ptp_info_to_pf(info);
	struct ice_hw *hw = &pf->hw;
	u64 incval, diff;
	int neg_adj = 0;
	int err;

	incval = ice_base_incval(pf);

	if (scaled_ppm < 0) {
		neg_adj = 1;
		scaled_ppm = -scaled_ppm;
	}

	diff = mul_u64_u64_div_u64(incval, (u64)scaled_ppm,
				   1000000ULL << 16);
	if (neg_adj)
		incval -= diff;
	else
		incval += diff;

	err = ice_ptp_write_incval_locked(hw, incval);
	if (err) {
		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
			err);
		return -EIO;
	}

	return 0;
}

/**
 * ice_ptp_extts_work - Workqueue task function
 * @work: external timestamp work structure
 *
 * Service for PTP external clock event
 */
static void ice_ptp_extts_work(struct kthread_work *work)
{
	struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
	struct ptp_clock_event event;
	struct ice_hw *hw = &pf->hw;
	u8 chan, tmr_idx;
	u32 hi, lo;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
	/* Event time is captured by one of the two matched registers
	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
	 * Event is defined in GLTSYN_EVNT_0 register
	 */
	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
		/* Check if channel is enabled */
		if (pf->ptp.ext_ts_irq & (1 << chan)) {
			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
			event.timestamp = (((u64)hi) << 32) | lo;
			event.type = PTP_CLOCK_EXTTS;
			event.index = chan;

			/* Fire event */
			ptp_clock_event(pf->ptp.clock, &event);
			pf->ptp.ext_ts_irq &= ~(1 << chan);
		}
	}
}

/**
 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
 * @pf: Board private structure
 * @ena: true to enable; false to disable
 * @chan: GPIO channel (0-3)
 * @gpio_pin: GPIO pin
 * @extts_flags: request flags from the ptp_extts_request.flags
 */
static int
ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
		  unsigned int extts_flags)
{
	u32 func, aux_reg, gpio_reg, irq_reg;
	struct ice_hw *hw = &pf->hw;
	u8 tmr_idx;

	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
		return -EINVAL;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;

	irq_reg = rd32(hw, PFINT_OICR_ENA);

	if (ena) {
		/* Enable the interrupt */
		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;

#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)

		/* set event level to requested edge */
		if (extts_flags & PTP_FALLING_EDGE)
			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
		if (extts_flags & PTP_RISING_EDGE)
			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;

		/* Write GPIO CTL reg.
		 * 0x1 is input sampled by EVENT register(channel)
		 * + num_in_channels * tmr_idx
		 */
		func = 1 + chan + (tmr_idx * 3);
		gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
			    GLGEN_GPIO_CTL_PIN_FUNC_M);
		pf->ptp.ext_ts_chan |= (1 << chan);
	} else {
		/* clear the values we set to reset defaults */
		aux_reg = 0;
		gpio_reg = 0;
		pf->ptp.ext_ts_chan &= ~(1 << chan);
		if (!pf->ptp.ext_ts_chan)
			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
	}

	wr32(hw, PFINT_OICR_ENA, irq_reg);
	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);

	return 0;
}

/**
 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
 * @pf: Board private structure
 * @chan: GPIO channel (0-3)
 * @config: desired periodic clk configuration. NULL will disable channel
 * @store: If set to true the values will be stored
 *
 * Configure the internal clock generator modules to generate the clock wave of
 * specified period.
 */
static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
			      struct ice_perout_channel *config, bool store)
{
	u64 current_time, period, start_time, phase;
	struct ice_hw *hw = &pf->hw;
	u32 func, val, gpio_pin;
	u8 tmr_idx;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;

	/* 0. Reset mode & out_en in AUX_OUT */
	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);

	/* If we're disabling the output, clear out CLKO and TGT and keep
	 * output level low
	 */
	if (!config || !config->ena) {
		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);

		val = GLGEN_GPIO_CTL_PIN_DIR_M;
		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);

		/* Store the value if requested */
		if (store)
			memset(&pf->ptp.perout_channels[chan], 0,
			       sizeof(struct ice_perout_channel));

		return 0;
	}
	period = config->period;
	start_time = config->start_time;
	div64_u64_rem(start_time, period, &phase);
	gpio_pin = config->gpio_pin;

	/* 1. Write clkout with half of required period value */
	if (period & 0x1) {
		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
		goto err;
	}

	period >>= 1;

	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
	 */
#define MIN_PULSE 3
	if (period <= MIN_PULSE || period > U32_MAX) {
		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
			MIN_PULSE * 2);
		goto err;
	}

	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));

	/* Allow time for programming before start_time is hit */
	current_time = ice_ptp_read_src_clk_reg(pf, NULL);

	/* if start time is in the past start the timer at the nearest second
	 * maintaining phase
	 */
	if (start_time < current_time)
		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;

	if (ice_is_e810(hw))
		start_time -= E810_OUT_PROP_DELAY_NS;
	else
		start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));

	/* 2. Write TARGET time */
	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));

	/* 3. Write AUX_OUT register */
	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);

	/* 4. write GPIO CTL reg */
	func = 8 + chan + (tmr_idx * 4);
	val = GLGEN_GPIO_CTL_PIN_DIR_M |
	      ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);

	/* Store the value if requested */
	if (store) {
		memcpy(&pf->ptp.perout_channels[chan], config,
		       sizeof(struct ice_perout_channel));
		pf->ptp.perout_channels[chan].start_time = phase;
	}

	return 0;
err:
	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
	return -EFAULT;
}

/**
 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
 * @pf: pointer to the PF structure
 *
 * Disable all currently configured clock outputs. This is necessary before
 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
 * re-enable the clocks again.
 */
static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
{
	uint i;

	for (i = 0; i < pf->ptp.info.n_per_out; i++)
		if (pf->ptp.perout_channels[i].ena)
			ice_ptp_cfg_clkout(pf, i, NULL, false);
}

/**
 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
 * @pf: pointer to the PF structure
 *
 * Enable all currently configured clock outputs. Use this after
 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
 * their configuration.
 */
static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
{
	uint i;

	for (i = 0; i < pf->ptp.info.n_per_out; i++)
		if (pf->ptp.perout_channels[i].ena)
			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
					   false);
}

/**
 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
 * @info: the driver's PTP info structure
 * @rq: The requested feature to change
 * @on: Enable/disable flag
 */
static int
ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
			 struct ptp_clock_request *rq, int on)
{
	struct ice_pf *pf = ptp_info_to_pf(info);
	struct ice_perout_channel clk_cfg = {0};
	bool sma_pres = false;
	unsigned int chan;
	u32 gpio_pin;
	int err;

	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
		sma_pres = true;

	switch (rq->type) {
	case PTP_CLK_REQ_PEROUT:
		chan = rq->perout.index;
		if (sma_pres) {
			if (chan == ice_pin_desc_e810t[SMA1].chan)
				clk_cfg.gpio_pin = GPIO_20;
			else if (chan == ice_pin_desc_e810t[SMA2].chan)
				clk_cfg.gpio_pin = GPIO_22;
			else
				return -1;
		} else if (ice_is_e810t(&pf->hw)) {
			if (chan == 0)
				clk_cfg.gpio_pin = GPIO_20;
			else
				clk_cfg.gpio_pin = GPIO_22;
		} else if (chan == PPS_CLK_GEN_CHAN) {
			clk_cfg.gpio_pin = PPS_PIN_INDEX;
		} else {
			clk_cfg.gpio_pin = chan;
		}

		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
				   rq->perout.period.nsec);
		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
				       rq->perout.start.nsec);
		clk_cfg.ena = !!on;

		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
		break;
	case PTP_CLK_REQ_EXTTS:
		chan = rq->extts.index;
		if (sma_pres) {
			if (chan < ice_pin_desc_e810t[SMA2].chan)
				gpio_pin = GPIO_21;
			else
				gpio_pin = GPIO_23;
		} else if (ice_is_e810t(&pf->hw)) {
			if (chan == 0)
				gpio_pin = GPIO_21;
			else
				gpio_pin = GPIO_23;
		} else {
			gpio_pin = chan;
		}

		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
					rq->extts.flags);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return err;
}

/**
 * ice_ptp_gettimex64 - Get the time of the clock
 * @info: the driver's PTP info structure
 * @ts: timespec64 structure to hold the current time value
 * @sts: Optional parameter for holding a pair of system timestamps from
 *       the system clock. Will be ignored if NULL is given.
 *
 * Read the device clock and return the correct value on ns, after converting it
 * into a timespec struct.
 */
static int
ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
		   struct ptp_system_timestamp *sts)
{
	struct ice_pf *pf = ptp_info_to_pf(info);
	struct ice_hw *hw = &pf->hw;

	if (!ice_ptp_lock(hw)) {
		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
		return -EBUSY;
	}

	ice_ptp_read_time(pf, ts, sts);
	ice_ptp_unlock(hw);

	return 0;
}

/**
 * ice_ptp_settime64 - Set the time of the clock
 * @info: the driver's PTP info structure
 * @ts: timespec64 structure that holds the new time value
 *
 * Set the device clock to the user input value. The conversion from timespec
 * to ns happens in the write function.
 */
static int
ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
{
	struct ice_pf *pf = ptp_info_to_pf(info);
	struct timespec64 ts64 = *ts;
	struct ice_hw *hw = &pf->hw;
	int err;

	/* For Vernier mode, we need to recalibrate after new settime
	 * Start with disabling timestamp block
	 */
	if (pf->ptp.port.link_up)
		ice_ptp_port_phy_stop(&pf->ptp.port);

	if (!ice_ptp_lock(hw)) {
		err = -EBUSY;
		goto exit;
	}

	/* Disable periodic outputs */
	ice_ptp_disable_all_clkout(pf);

	err = ice_ptp_write_init(pf, &ts64);
	ice_ptp_unlock(hw);

	if (!err)
		ice_ptp_reset_cached_phctime(pf);

	/* Reenable periodic outputs */
	ice_ptp_enable_all_clkout(pf);

	/* Recalibrate and re-enable timestamp block */
	if (pf->ptp.port.link_up)
		ice_ptp_port_phy_restart(&pf->ptp.port);
exit:
	if (err) {
		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
		return err;
	}

	return 0;
}

/**
 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
 * @info: the driver's PTP info structure
 * @delta: Offset in nanoseconds to adjust the time by
 */
static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
{
	struct timespec64 now, then;
	int ret;

	then = ns_to_timespec64(delta);
	ret = ice_ptp_gettimex64(info, &now, NULL);
	if (ret)
		return ret;
	now = timespec64_add(now, then);

	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
}

/**
 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
 * @info: the driver's PTP info structure
 * @delta: Offset in nanoseconds to adjust the time by
 */
static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
{
	struct ice_pf *pf = ptp_info_to_pf(info);
	struct ice_hw *hw = &pf->hw;
	struct device *dev;
	int err;

	dev = ice_pf_to_dev(pf);

	/* Hardware only supports atomic adjustments using signed 32-bit
	 * integers. For any adjustment outside this range, perform
	 * a non-atomic get->adjust->set flow.
	 */
	if (delta > S32_MAX || delta < S32_MIN) {
		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
		return ice_ptp_adjtime_nonatomic(info, delta);
	}

	if (!ice_ptp_lock(hw)) {
		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
		return -EBUSY;
	}

	/* Disable periodic outputs */
	ice_ptp_disable_all_clkout(pf);

	err = ice_ptp_write_adj(pf, delta);

	/* Reenable periodic outputs */
	ice_ptp_enable_all_clkout(pf);

	ice_ptp_unlock(hw);

	if (err) {
		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
		return err;
	}

	ice_ptp_reset_cached_phctime(pf);

	return 0;
}

#ifdef CONFIG_ICE_HWTS
/**
 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
 * @device: Current device time
 * @system: System counter value read synchronously with device time
 * @ctx: Context provided by timekeeping code
 *
 * Read device and system (ART) clock simultaneously and return the corrected
 * clock values in ns.
 */
static int
ice_ptp_get_syncdevicetime(ktime_t *device,
			   struct system_counterval_t *system,
			   void *ctx)
{
	struct ice_pf *pf = (struct ice_pf *)ctx;
	struct ice_hw *hw = &pf->hw;
	u32 hh_lock, hh_art_ctl;
	int i;

	/* Get the HW lock */
	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
	if (hh_lock & PFHH_SEM_BUSY_M) {
		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
		return -EFAULT;
	}

	/* Start the ART and device clock sync sequence */
	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
	wr32(hw, GLHH_ART_CTL, hh_art_ctl);

#define MAX_HH_LOCK_TRIES 100

	for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
		/* Wait for sync to complete */
		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
			udelay(1);
			continue;
		} else {
			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
			u64 hh_ts;

			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
			/* Read ART time */
			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
			*system = convert_art_ns_to_tsc(hh_ts);
			/* Read Device source clock time */
			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
			*device = ns_to_ktime(hh_ts);
			break;
		}
	}
	/* Release HW lock */
	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);

	if (i == MAX_HH_LOCK_TRIES)
		return -ETIMEDOUT;

	return 0;
}

/**
 * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
 * @info: the driver's PTP info structure
 * @cts: The memory to fill the cross timestamp info
 *
 * Capture a cross timestamp between the ART and the device PTP hardware
 * clock. Fill the cross timestamp information and report it back to the
 * caller.
 *
 * This is only valid for E822 devices which have support for generating the
 * cross timestamp via PCIe PTM.
 *
 * In order to correctly correlate the ART timestamp back to the TSC time, the
 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
 */
static int
ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
			    struct system_device_crosststamp *cts)
{
	struct ice_pf *pf = ptp_info_to_pf(info);

	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
					     pf, NULL, cts);
}
#endif /* CONFIG_ICE_HWTS */

/**
 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
 * @pf: Board private structure
 * @ifr: ioctl data
 *
 * Copy the timestamping config to user buffer
 */
int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
{
	struct hwtstamp_config *config;

	if (!test_bit(ICE_FLAG_PTP, pf->flags))
		return -EIO;

	config = &pf->ptp.tstamp_config;

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}

/**
 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
 * @pf: Board private structure
 * @config: hwtstamp settings requested or saved
 */
static int
ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
{
	switch (config->tx_type) {
	case HWTSTAMP_TX_OFF:
		ice_set_tx_tstamp(pf, false);
		break;
	case HWTSTAMP_TX_ON:
		ice_set_tx_tstamp(pf, true);
		break;
	default:
		return -ERANGE;
	}

	switch (config->rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		ice_set_rx_tstamp(pf, false);
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_NTP_ALL:
	case HWTSTAMP_FILTER_ALL:
		ice_set_rx_tstamp(pf, true);
		break;
	default:
		return -ERANGE;
	}

	return 0;
}

/**
 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
 * @pf: Board private structure
 * @ifr: ioctl data
 *
 * Get the user config and store it
 */
int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
{
	struct hwtstamp_config config;
	int err;

	if (!test_bit(ICE_FLAG_PTP, pf->flags))
		return -EAGAIN;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	err = ice_ptp_set_timestamp_mode(pf, &config);
	if (err)
		return err;

	/* Return the actual configuration set */
	config = pf->ptp.tstamp_config;

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
}

/**
 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
 * @rx_ring: Ring to get the VSI info
 * @rx_desc: Receive descriptor
 * @skb: Particular skb to send timestamp with
 *
 * The driver receives a notification in the receive descriptor with timestamp.
 * The timestamp is in ns, so we must convert the result first.
 */
void
ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
		    union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
{
	struct skb_shared_hwtstamps *hwtstamps;
	u64 ts_ns, cached_time;
	u32 ts_high;

	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
		return;

	cached_time = READ_ONCE(rx_ring->cached_phctime);

	/* Do not report a timestamp if we don't have a cached PHC time */
	if (!cached_time)
		return;

	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
	 * PHC value, rather than accessing the PF. This also allows us to
	 * simply pass the upper 32bits of nanoseconds directly. Calling
	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
	 * bits itself.
	 */
	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);

	hwtstamps = skb_hwtstamps(skb);
	memset(hwtstamps, 0, sizeof(*hwtstamps));
	hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
}

/**
 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
 * @pf: pointer to the PF structure
 * @info: PTP clock info structure
 *
 * Disable the OS access to the SMA pins. Called to clear out the OS
 * indications of pin support when we fail to setup the E810-T SMA control
 * register.
 */
static void
ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
{
	struct device *dev = ice_pf_to_dev(pf);

	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");

	info->enable = NULL;
	info->verify = NULL;
	info->n_pins = 0;
	info->n_ext_ts = 0;
	info->n_per_out = 0;
}

/**
 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
 * @pf: pointer to the PF structure
 * @info: PTP clock info structure
 *
 * Finish setting up the SMA pins by allocating pin_config, and setting it up
 * according to the current status of the SMA. On failure, disable all of the
 * extended SMA pin support.
 */
static void
ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
{
	struct device *dev = ice_pf_to_dev(pf);
	int err;

	/* Allocate memory for kernel pins interface */
	info->pin_config = devm_kcalloc(dev, info->n_pins,
					sizeof(*info->pin_config), GFP_KERNEL);
	if (!info->pin_config) {
		ice_ptp_disable_sma_pins_e810t(pf, info);
		return;
	}

	/* Read current SMA status */
	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
	if (err)
		ice_ptp_disable_sma_pins_e810t(pf, info);
}

/**
 * ice_ptp_setup_pins_e810t - Setup PTP pins in sysfs
 * @pf: pointer to the PF instance
 * @info: PTP clock capabilities
 */
static void
ice_ptp_setup_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
{
	/* Check if SMA controller is in the netlist */
	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL) &&
	    !ice_is_pca9575_present(&pf->hw))
		ice_clear_feature_support(pf, ICE_F_SMA_CTRL);

	if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
		info->n_ext_ts = N_EXT_TS_E810_NO_SMA;
		info->n_per_out = N_PER_OUT_E810T_NO_SMA;
		return;
	}

	info->n_per_out = N_PER_OUT_E810T;

	if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS)) {
		info->n_ext_ts = N_EXT_TS_E810;
		info->n_pins = NUM_PTP_PINS_E810T;
		info->verify = ice_verify_pin_e810t;
	}

	/* Complete setup of the SMA pins */
	ice_ptp_setup_sma_pins_e810t(pf, info);
}

/**
 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
 * @pf: pointer to the PF instance
 * @info: PTP clock capabilities
 */
static void ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
{
	info->n_per_out = N_PER_OUT_E810;

	if (!ice_is_feature_supported(pf, ICE_F_PTP_EXTTS))
		return;

	info->n_ext_ts = N_EXT_TS_E810;
}

/**
 * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
 * @pf: Board private structure
 * @info: PTP info to fill
 *
 * Assign functions to the PTP capabiltiies structure for E822 devices.
 * Functions which operate across all device families should be set directly
 * in ice_ptp_set_caps. Only add functions here which are distinct for E822
 * devices.
 */
static void
ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
{
#ifdef CONFIG_ICE_HWTS
	if (boot_cpu_has(X86_FEATURE_ART) &&
	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
		info->getcrosststamp = ice_ptp_getcrosststamp_e822;
#endif /* CONFIG_ICE_HWTS */
}

/**
 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
 * @pf: Board private structure
 * @info: PTP info to fill
 *
 * Assign functions to the PTP capabiltiies structure for E810 devices.
 * Functions which operate across all device families should be set directly
 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
 * devices.
 */
static void
ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
{
	info->enable = ice_ptp_gpio_enable_e810;

	if (ice_is_e810t(&pf->hw))
		ice_ptp_setup_pins_e810t(pf, info);
	else
		ice_ptp_setup_pins_e810(pf, info);
}

/**
 * ice_ptp_set_caps - Set PTP capabilities
 * @pf: Board private structure
 */
static void ice_ptp_set_caps(struct ice_pf *pf)
{
	struct ptp_clock_info *info = &pf->ptp.info;
	struct device *dev = ice_pf_to_dev(pf);

	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
		 dev_driver_string(dev), dev_name(dev));
	info->owner = THIS_MODULE;
	info->max_adj = 999999999;
	info->adjtime = ice_ptp_adjtime;
	info->adjfine = ice_ptp_adjfine;
	info->gettimex64 = ice_ptp_gettimex64;
	info->settime64 = ice_ptp_settime64;

	if (ice_is_e810(&pf->hw))
		ice_ptp_set_funcs_e810(pf, info);
	else
		ice_ptp_set_funcs_e822(pf, info);
}

/**
 * ice_ptp_create_clock - Create PTP clock device for userspace
 * @pf: Board private structure
 *
 * This function creates a new PTP clock device. It only creates one if we
 * don't already have one. Will return error if it can't create one, but success
 * if we already have a device. Should be used by ice_ptp_init to create clock
 * initially, and prevent global resets from creating new clock devices.
 */
static long ice_ptp_create_clock(struct ice_pf *pf)
{
	struct ptp_clock_info *info;
	struct ptp_clock *clock;
	struct device *dev;

	/* No need to create a clock device if we already have one */
	if (pf->ptp.clock)
		return 0;

	ice_ptp_set_caps(pf);

	info = &pf->ptp.info;
	dev = ice_pf_to_dev(pf);

	/* Attempt to register the clock before enabling the hardware. */
	clock = ptp_clock_register(info, dev);
	if (IS_ERR(clock))
		return PTR_ERR(clock);

	pf->ptp.clock = clock;

	return 0;
}

/**
 * ice_ptp_request_ts - Request an available Tx timestamp index
 * @tx: the PTP Tx timestamp tracker to request from
 * @skb: the SKB to associate with this timestamp request
 */
s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
{
	u8 idx;

	/* Check if this tracker is initialized */
	if (!tx->init || tx->calibrating)
		return -1;

	spin_lock(&tx->lock);
	/* Find and set the first available index */
	idx = find_first_zero_bit(tx->in_use, tx->len);
	if (idx < tx->len) {
		/* We got a valid index that no other thread could have set. Store
		 * a reference to the skb and the start time to allow discarding old
		 * requests.
		 */
		set_bit(idx, tx->in_use);
		tx->tstamps[idx].start = jiffies;
		tx->tstamps[idx].skb = skb_get(skb);
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		ice_trace(tx_tstamp_request, skb, idx);
	}

	spin_unlock(&tx->lock);

	/* return the appropriate PHY timestamp register index, -1 if no
	 * indexes were available.
	 */
	if (idx >= tx->len)
		return -1;
	else
		return idx + tx->quad_offset;
}

/**
 * ice_ptp_process_ts - Process the PTP Tx timestamps
 * @pf: Board private structure
 *
 * Returns true if timestamps are processed.
 */
bool ice_ptp_process_ts(struct ice_pf *pf)
{
	if (pf->ptp.port.tx.init)
		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);

	return false;
}

static void ice_ptp_periodic_work(struct kthread_work *work)
{
	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
	int err;

	if (!test_bit(ICE_FLAG_PTP, pf->flags))
		return;

	err = ice_ptp_update_cached_phctime(pf);

	ice_ptp_tx_tstamp_cleanup(pf, &pf->ptp.port.tx);

	/* Run twice a second or reschedule if phc update failed */
	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
				   msecs_to_jiffies(err ? 10 : 500));
}

/**
 * ice_ptp_reset - Initialize PTP hardware clock support after reset
 * @pf: Board private structure
 */
void ice_ptp_reset(struct ice_pf *pf)
{
	struct ice_ptp *ptp = &pf->ptp;
	struct ice_hw *hw = &pf->hw;
	struct timespec64 ts;
	int err, itr = 1;
	u64 time_diff;

	if (test_bit(ICE_PFR_REQ, pf->state))
		goto pfr;

	if (!hw->func_caps.ts_func_info.src_tmr_owned)
		goto reset_ts;

	err = ice_ptp_init_phc(hw);
	if (err)
		goto err;

	/* Acquire the global hardware lock */
	if (!ice_ptp_lock(hw)) {
		err = -EBUSY;
		goto err;
	}

	/* Write the increment time value to PHY and LAN */
	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
	if (err) {
		ice_ptp_unlock(hw);
		goto err;
	}

	/* Write the initial Time value to PHY and LAN using the cached PHC
	 * time before the reset and time difference between stopping and
	 * starting the clock.
	 */
	if (ptp->cached_phc_time) {
		time_diff = ktime_get_real_ns() - ptp->reset_time;
		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
	} else {
		ts = ktime_to_timespec64(ktime_get_real());
	}
	err = ice_ptp_write_init(pf, &ts);
	if (err) {
		ice_ptp_unlock(hw);
		goto err;
	}

	/* Release the global hardware lock */
	ice_ptp_unlock(hw);

	if (!ice_is_e810(hw)) {
		/* Enable quad interrupts */
		err = ice_ptp_tx_ena_intr(pf, true, itr);
		if (err)
			goto err;
	}

reset_ts:
	/* Restart the PHY timestamping block */
	ice_ptp_reset_phy_timestamping(pf);

pfr:
	/* Init Tx structures */
	if (ice_is_e810(&pf->hw)) {
		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
	} else {
		kthread_init_delayed_work(&ptp->port.ov_work,
					  ice_ptp_wait_for_offset_valid);
		err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
					   ptp->port.port_num);
	}
	if (err)
		goto err;

	set_bit(ICE_FLAG_PTP, pf->flags);

	/* Start periodic work going */
	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);

	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
	return;

err:
	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
}

/**
 * ice_ptp_prepare_for_reset - Prepare PTP for reset
 * @pf: Board private structure
 */
void ice_ptp_prepare_for_reset(struct ice_pf *pf)
{
	struct ice_ptp *ptp = &pf->ptp;
	u8 src_tmr;

	clear_bit(ICE_FLAG_PTP, pf->flags);

	/* Disable timestamping for both Tx and Rx */
	ice_ptp_cfg_timestamp(pf, false);

	kthread_cancel_delayed_work_sync(&ptp->work);
	kthread_cancel_work_sync(&ptp->extts_work);

	if (test_bit(ICE_PFR_REQ, pf->state))
		return;

	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);

	/* Disable periodic outputs */
	ice_ptp_disable_all_clkout(pf);

	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);

	/* Disable source clock */
	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);

	/* Acquire PHC and system timer to restore after reset */
	ptp->reset_time = ktime_get_real_ns();
}

/**
 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
 * @pf: Board private structure
 *
 * Setup and initialize a PTP clock device that represents the device hardware
 * clock. Save the clock index for other functions connected to the same
 * hardware resource.
 */
static int ice_ptp_init_owner(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	struct timespec64 ts;
	int err, itr = 1;

	err = ice_ptp_init_phc(hw);
	if (err) {
		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
			err);
		return err;
	}

	/* Acquire the global hardware lock */
	if (!ice_ptp_lock(hw)) {
		err = -EBUSY;
		goto err_exit;
	}

	/* Write the increment time value to PHY and LAN */
	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
	if (err) {
		ice_ptp_unlock(hw);
		goto err_exit;
	}

	ts = ktime_to_timespec64(ktime_get_real());
	/* Write the initial Time value to PHY and LAN */
	err = ice_ptp_write_init(pf, &ts);
	if (err) {
		ice_ptp_unlock(hw);
		goto err_exit;
	}

	/* Release the global hardware lock */
	ice_ptp_unlock(hw);

	if (!ice_is_e810(hw)) {
		/* Enable quad interrupts */
		err = ice_ptp_tx_ena_intr(pf, true, itr);
		if (err)
			goto err_exit;
	}

	/* Ensure we have a clock device */
	err = ice_ptp_create_clock(pf);
	if (err)
		goto err_clk;

	/* Store the PTP clock index for other PFs */
	ice_set_ptp_clock_index(pf);

	return 0;

err_clk:
	pf->ptp.clock = NULL;
err_exit:
	return err;
}

/**
 * ice_ptp_init_work - Initialize PTP work threads
 * @pf: Board private structure
 * @ptp: PF PTP structure
 */
static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
{
	struct kthread_worker *kworker;

	/* Initialize work functions */
	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
	kthread_init_work(&ptp->extts_work, ice_ptp_extts_work);

	/* Allocate a kworker for handling work required for the ports
	 * connected to the PTP hardware clock.
	 */
	kworker = kthread_create_worker(0, "ice-ptp-%s",
					dev_name(ice_pf_to_dev(pf)));
	if (IS_ERR(kworker))
		return PTR_ERR(kworker);

	ptp->kworker = kworker;

	/* Start periodic work going */
	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);

	return 0;
}

/**
 * ice_ptp_init_port - Initialize PTP port structure
 * @pf: Board private structure
 * @ptp_port: PTP port structure
 */
static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
{
	mutex_init(&ptp_port->ps_lock);

	if (ice_is_e810(&pf->hw))
		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);

	kthread_init_delayed_work(&ptp_port->ov_work,
				  ice_ptp_wait_for_offset_valid);
	return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
}

/**
 * ice_ptp_init - Initialize PTP hardware clock support
 * @pf: Board private structure
 *
 * Set up the device for interacting with the PTP hardware clock for all
 * functions, both the function that owns the clock hardware, and the
 * functions connected to the clock hardware.
 *
 * The clock owner will allocate and register a ptp_clock with the
 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
 * items used for asynchronous work such as Tx timestamps and periodic work.
 */
void ice_ptp_init(struct ice_pf *pf)
{
	struct ice_ptp *ptp = &pf->ptp;
	struct ice_hw *hw = &pf->hw;
	int err;

	/* If this function owns the clock hardware, it must allocate and
	 * configure the PTP clock device to represent it.
	 */
	if (hw->func_caps.ts_func_info.src_tmr_owned) {
		err = ice_ptp_init_owner(pf);
		if (err)
			goto err;
	}

	ptp->port.port_num = hw->pf_id;
	err = ice_ptp_init_port(pf, &ptp->port);
	if (err)
		goto err;

	/* Start the PHY timestamping block */
	ice_ptp_reset_phy_timestamping(pf);

	set_bit(ICE_FLAG_PTP, pf->flags);
	err = ice_ptp_init_work(pf, ptp);
	if (err)
		goto err;

	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
	return;

err:
	/* If we registered a PTP clock, release it */
	if (pf->ptp.clock) {
		ptp_clock_unregister(ptp->clock);
		pf->ptp.clock = NULL;
	}
	clear_bit(ICE_FLAG_PTP, pf->flags);
	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
}

/**
 * ice_ptp_release - Disable the driver/HW support and unregister the clock
 * @pf: Board private structure
 *
 * This function handles the cleanup work required from the initialization by
 * clearing out the important information and unregistering the clock
 */
void ice_ptp_release(struct ice_pf *pf)
{
	if (!test_bit(ICE_FLAG_PTP, pf->flags))
		return;

	/* Disable timestamping for both Tx and Rx */
	ice_ptp_cfg_timestamp(pf, false);

	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);

	clear_bit(ICE_FLAG_PTP, pf->flags);

	kthread_cancel_delayed_work_sync(&pf->ptp.work);

	ice_ptp_port_phy_stop(&pf->ptp.port);
	mutex_destroy(&pf->ptp.port.ps_lock);
	if (pf->ptp.kworker) {
		kthread_destroy_worker(pf->ptp.kworker);
		pf->ptp.kworker = NULL;
	}

	if (!pf->ptp.clock)
		return;

	/* Disable periodic outputs */
	ice_ptp_disable_all_clkout(pf);

	ice_clear_ptp_clock_index(pf);
	ptp_clock_unregister(pf->ptp.clock);
	pf->ptp.clock = NULL;

	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
}