summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/tegra_nand.c
blob: 9f7de36be893c0f080a5375d0c38650769159ee5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
 * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
 * Copyright (C) 2012 Avionic Design GmbH
 */

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>

#define COMMAND					0x00
#define   COMMAND_GO				BIT(31)
#define   COMMAND_CLE				BIT(30)
#define   COMMAND_ALE				BIT(29)
#define   COMMAND_PIO				BIT(28)
#define   COMMAND_TX				BIT(27)
#define   COMMAND_RX				BIT(26)
#define   COMMAND_SEC_CMD			BIT(25)
#define   COMMAND_AFT_DAT			BIT(24)
#define   COMMAND_TRANS_SIZE(size)		((((size) - 1) & 0xf) << 20)
#define   COMMAND_A_VALID			BIT(19)
#define   COMMAND_B_VALID			BIT(18)
#define   COMMAND_RD_STATUS_CHK			BIT(17)
#define   COMMAND_RBSY_CHK			BIT(16)
#define   COMMAND_CE(x)				BIT(8 + ((x) & 0x7))
#define   COMMAND_CLE_SIZE(size)		((((size) - 1) & 0x3) << 4)
#define   COMMAND_ALE_SIZE(size)		((((size) - 1) & 0xf) << 0)

#define STATUS					0x04

#define ISR					0x08
#define   ISR_CORRFAIL_ERR			BIT(24)
#define   ISR_UND				BIT(7)
#define   ISR_OVR				BIT(6)
#define   ISR_CMD_DONE				BIT(5)
#define   ISR_ECC_ERR				BIT(4)

#define IER					0x0c
#define   IER_ERR_TRIG_VAL(x)			(((x) & 0xf) << 16)
#define   IER_UND				BIT(7)
#define   IER_OVR				BIT(6)
#define   IER_CMD_DONE				BIT(5)
#define   IER_ECC_ERR				BIT(4)
#define   IER_GIE				BIT(0)

#define CONFIG					0x10
#define   CONFIG_HW_ECC				BIT(31)
#define   CONFIG_ECC_SEL			BIT(30)
#define   CONFIG_ERR_COR			BIT(29)
#define   CONFIG_PIPE_EN			BIT(28)
#define   CONFIG_TVAL_4				(0 << 24)
#define   CONFIG_TVAL_6				(1 << 24)
#define   CONFIG_TVAL_8				(2 << 24)
#define   CONFIG_SKIP_SPARE			BIT(23)
#define   CONFIG_BUS_WIDTH_16			BIT(21)
#define   CONFIG_COM_BSY			BIT(20)
#define   CONFIG_PS_256				(0 << 16)
#define   CONFIG_PS_512				(1 << 16)
#define   CONFIG_PS_1024			(2 << 16)
#define   CONFIG_PS_2048			(3 << 16)
#define   CONFIG_PS_4096			(4 << 16)
#define   CONFIG_SKIP_SPARE_SIZE_4		(0 << 14)
#define   CONFIG_SKIP_SPARE_SIZE_8		(1 << 14)
#define   CONFIG_SKIP_SPARE_SIZE_12		(2 << 14)
#define   CONFIG_SKIP_SPARE_SIZE_16		(3 << 14)
#define   CONFIG_TAG_BYTE_SIZE(x)			((x) & 0xff)

#define TIMING_1				0x14
#define   TIMING_TRP_RESP(x)			(((x) & 0xf) << 28)
#define   TIMING_TWB(x)				(((x) & 0xf) << 24)
#define   TIMING_TCR_TAR_TRR(x)			(((x) & 0xf) << 20)
#define   TIMING_TWHR(x)			(((x) & 0xf) << 16)
#define   TIMING_TCS(x)				(((x) & 0x3) << 14)
#define   TIMING_TWH(x)				(((x) & 0x3) << 12)
#define   TIMING_TWP(x)				(((x) & 0xf) <<  8)
#define   TIMING_TRH(x)				(((x) & 0x3) <<  4)
#define   TIMING_TRP(x)				(((x) & 0xf) <<  0)

#define RESP					0x18

#define TIMING_2				0x1c
#define   TIMING_TADL(x)			((x) & 0xf)

#define CMD_REG1				0x20
#define CMD_REG2				0x24
#define ADDR_REG1				0x28
#define ADDR_REG2				0x2c

#define DMA_MST_CTRL				0x30
#define   DMA_MST_CTRL_GO			BIT(31)
#define   DMA_MST_CTRL_IN			(0 << 30)
#define   DMA_MST_CTRL_OUT			BIT(30)
#define   DMA_MST_CTRL_PERF_EN			BIT(29)
#define   DMA_MST_CTRL_IE_DONE			BIT(28)
#define   DMA_MST_CTRL_REUSE			BIT(27)
#define   DMA_MST_CTRL_BURST_1			(2 << 24)
#define   DMA_MST_CTRL_BURST_4			(3 << 24)
#define   DMA_MST_CTRL_BURST_8			(4 << 24)
#define   DMA_MST_CTRL_BURST_16			(5 << 24)
#define   DMA_MST_CTRL_IS_DONE			BIT(20)
#define   DMA_MST_CTRL_EN_A			BIT(2)
#define   DMA_MST_CTRL_EN_B			BIT(1)

#define DMA_CFG_A				0x34
#define DMA_CFG_B				0x38

#define FIFO_CTRL				0x3c
#define   FIFO_CTRL_CLR_ALL			BIT(3)

#define DATA_PTR				0x40
#define TAG_PTR					0x44
#define ECC_PTR					0x48

#define DEC_STATUS				0x4c
#define   DEC_STATUS_A_ECC_FAIL			BIT(1)
#define   DEC_STATUS_ERR_COUNT_MASK		0x00ff0000
#define   DEC_STATUS_ERR_COUNT_SHIFT		16

#define HWSTATUS_CMD				0x50
#define HWSTATUS_MASK				0x54
#define   HWSTATUS_RDSTATUS_MASK(x)		(((x) & 0xff) << 24)
#define   HWSTATUS_RDSTATUS_VALUE(x)		(((x) & 0xff) << 16)
#define   HWSTATUS_RBSY_MASK(x)			(((x) & 0xff) << 8)
#define   HWSTATUS_RBSY_VALUE(x)		(((x) & 0xff) << 0)

#define BCH_CONFIG				0xcc
#define   BCH_ENABLE				BIT(0)
#define   BCH_TVAL_4				(0 << 4)
#define   BCH_TVAL_8				(1 << 4)
#define   BCH_TVAL_14				(2 << 4)
#define   BCH_TVAL_16				(3 << 4)

#define DEC_STAT_RESULT				0xd0
#define DEC_STAT_BUF				0xd4
#define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK	0xff000000
#define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT	24
#define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK	0x00ff0000
#define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT	16
#define   DEC_STAT_BUF_MAX_CORR_CNT_MASK	0x00001f00
#define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT	8

#define OFFSET(val, off)	((val) < (off) ? 0 : (val) - (off))

#define SKIP_SPARE_BYTES	4
#define BITS_PER_STEP_RS	18
#define BITS_PER_STEP_BCH	13

#define INT_MASK		(IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
#define HWSTATUS_CMD_DEFAULT	NAND_STATUS_READY
#define HWSTATUS_MASK_DEFAULT	(HWSTATUS_RDSTATUS_MASK(1) | \
				HWSTATUS_RDSTATUS_VALUE(0) | \
				HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
				HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))

struct tegra_nand_controller {
	struct nand_hw_control controller;
	struct device *dev;
	void __iomem *regs;
	int irq;
	struct clk *clk;
	struct completion command_complete;
	struct completion dma_complete;
	bool last_read_error;
	int cur_cs;
	struct nand_chip *chip;
};

struct tegra_nand_chip {
	struct nand_chip chip;
	struct gpio_desc *wp_gpio;
	struct mtd_oob_region ecc;
	u32 config;
	u32 config_ecc;
	u32 bch_config;
	int cs[1];
};

static inline struct tegra_nand_controller *
			to_tegra_ctrl(struct nand_hw_control *hw_ctrl)
{
	return container_of(hw_ctrl, struct tegra_nand_controller, controller);
}

static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
{
	return container_of(chip, struct tegra_nand_chip, chip);
}

static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
				       struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
					  BITS_PER_BYTE);

	if (section > 0)
		return -ERANGE;

	oobregion->offset = SKIP_SPARE_BYTES;
	oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);

	return 0;
}

static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
					struct mtd_oob_region *oobregion)
{
	return -ERANGE;
}

static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
	.ecc = tegra_nand_ooblayout_rs_ecc,
	.free = tegra_nand_ooblayout_no_free,
};

static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
					struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
					  BITS_PER_BYTE);

	if (section > 0)
		return -ERANGE;

	oobregion->offset = SKIP_SPARE_BYTES;
	oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);

	return 0;
}

static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
	.ecc = tegra_nand_ooblayout_bch_ecc,
	.free = tegra_nand_ooblayout_no_free,
};

static irqreturn_t tegra_nand_irq(int irq, void *data)
{
	struct tegra_nand_controller *ctrl = data;
	u32 isr, dma;

	isr = readl_relaxed(ctrl->regs + ISR);
	dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
	dev_dbg(ctrl->dev, "isr %08x\n", isr);

	if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
		return IRQ_NONE;

	/*
	 * The bit name is somewhat missleading: This is also set when
	 * HW ECC was successful. The data sheet states:
	 * Correctable OR Un-correctable errors occurred in the DMA transfer...
	 */
	if (isr & ISR_CORRFAIL_ERR)
		ctrl->last_read_error = true;

	if (isr & ISR_CMD_DONE)
		complete(&ctrl->command_complete);

	if (isr & ISR_UND)
		dev_err(ctrl->dev, "FIFO underrun\n");

	if (isr & ISR_OVR)
		dev_err(ctrl->dev, "FIFO overrun\n");

	/* handle DMA interrupts */
	if (dma & DMA_MST_CTRL_IS_DONE) {
		writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
		complete(&ctrl->dma_complete);
	}

	/* clear interrupts */
	writel_relaxed(isr, ctrl->regs + ISR);

	return IRQ_HANDLED;
}

static const char * const tegra_nand_reg_names[] = {
	"COMMAND",
	"STATUS",
	"ISR",
	"IER",
	"CONFIG",
	"TIMING",
	NULL,
	"TIMING2",
	"CMD_REG1",
	"CMD_REG2",
	"ADDR_REG1",
	"ADDR_REG2",
	"DMA_MST_CTRL",
	"DMA_CFG_A",
	"DMA_CFG_B",
	"FIFO_CTRL",
};

static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
{
	u32 reg;
	int i;

	dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
	for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
		const char *reg_name = tegra_nand_reg_names[i];

		if (!reg_name)
			continue;

		reg = readl_relaxed(ctrl->regs + (i * 4));
		dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
	}
}

static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
{
	u32 isr, dma;

	disable_irq(ctrl->irq);

	/* Abort current command/DMA operation */
	writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
	writel_relaxed(0, ctrl->regs + COMMAND);

	/* clear interrupts */
	isr = readl_relaxed(ctrl->regs + ISR);
	writel_relaxed(isr, ctrl->regs + ISR);
	dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
	writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);

	reinit_completion(&ctrl->command_complete);
	reinit_completion(&ctrl->dma_complete);

	enable_irq(ctrl->irq);
}

static int tegra_nand_cmd(struct nand_chip *chip,
			  const struct nand_subop *subop)
{
	const struct nand_op_instr *instr;
	const struct nand_op_instr *instr_data_in = NULL;
	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
	unsigned int op_id, size = 0, offset = 0;
	bool first_cmd = true;
	u32 reg, cmd = 0;
	int ret;

	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
		unsigned int naddrs, i;
		const u8 *addrs;
		u32 addr1 = 0, addr2 = 0;

		instr = &subop->instrs[op_id];

		switch (instr->type) {
		case NAND_OP_CMD_INSTR:
			if (first_cmd) {
				cmd |= COMMAND_CLE;
				writel_relaxed(instr->ctx.cmd.opcode,
					       ctrl->regs + CMD_REG1);
			} else {
				cmd |= COMMAND_SEC_CMD;
				writel_relaxed(instr->ctx.cmd.opcode,
					       ctrl->regs + CMD_REG2);
			}
			first_cmd = false;
			break;

		case NAND_OP_ADDR_INSTR:
			offset = nand_subop_get_addr_start_off(subop, op_id);
			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
			addrs = &instr->ctx.addr.addrs[offset];

			cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
				addr1 |= *addrs++ << (BITS_PER_BYTE * i);
			naddrs -= i;
			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
				addr2 |= *addrs++ << (BITS_PER_BYTE * i);

			writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
			writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
			break;

		case NAND_OP_DATA_IN_INSTR:
			size = nand_subop_get_data_len(subop, op_id);
			offset = nand_subop_get_data_start_off(subop, op_id);

			cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
				COMMAND_RX | COMMAND_A_VALID;

			instr_data_in = instr;
			break;

		case NAND_OP_DATA_OUT_INSTR:
			size = nand_subop_get_data_len(subop, op_id);
			offset = nand_subop_get_data_start_off(subop, op_id);

			cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
				COMMAND_TX | COMMAND_A_VALID;
			memcpy(&reg, instr->ctx.data.buf.out + offset, size);

			writel_relaxed(reg, ctrl->regs + RESP);
			break;

		case NAND_OP_WAITRDY_INSTR:
			cmd |= COMMAND_RBSY_CHK;
			break;
		}
	}

	cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
	writel_relaxed(cmd, ctrl->regs + COMMAND);
	ret = wait_for_completion_timeout(&ctrl->command_complete,
					  msecs_to_jiffies(500));
	if (!ret) {
		dev_err(ctrl->dev, "COMMAND timeout\n");
		tegra_nand_dump_reg(ctrl);
		tegra_nand_controller_abort(ctrl);
		return -ETIMEDOUT;
	}

	if (instr_data_in) {
		reg = readl_relaxed(ctrl->regs + RESP);
		memcpy(instr_data_in->ctx.data.buf.in + offset, &reg, size);
	}

	return 0;
}

static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
	);

static int tegra_nand_exec_op(struct nand_chip *chip,
			      const struct nand_operation *op,
			      bool check_only)
{
	return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
				      check_only);
}

static void tegra_nand_select_chip(struct mtd_info *mtd, int die_nr)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct tegra_nand_chip *nand = to_tegra_chip(chip);
	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);

	if (die_nr < 0 || die_nr > 1) {
		ctrl->cur_cs = -1;
		return;
	}

	ctrl->cur_cs = nand->cs[die_nr];
}

static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
			      struct nand_chip *chip, bool enable)
{
	struct tegra_nand_chip *nand = to_tegra_chip(chip);

	if (chip->ecc.algo == NAND_ECC_BCH && enable)
		writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
	else
		writel_relaxed(0, ctrl->regs + BCH_CONFIG);

	if (enable)
		writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
	else
		writel_relaxed(nand->config, ctrl->regs + CONFIG);
}

static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
				void *buf, void *oob_buf, int oob_len, int page,
				bool read)
{
	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
	enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
	dma_addr_t dma_addr = 0, dma_addr_oob = 0;
	u32 addr1, cmd, dma_ctrl;
	int ret;

	if (read) {
		writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
		writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
	} else {
		writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
		writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
	}
	cmd = COMMAND_CLE | COMMAND_SEC_CMD;

	/* Lower 16-bits are column, by default 0 */
	addr1 = page << 16;

	if (!buf)
		addr1 |= mtd->writesize;
	writel_relaxed(addr1, ctrl->regs + ADDR_REG1);

	if (chip->options & NAND_ROW_ADDR_3) {
		writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
		cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
	} else {
		cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
	}

	if (buf) {
		dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
		ret = dma_mapping_error(ctrl->dev, dma_addr);
		if (ret) {
			dev_err(ctrl->dev, "dma mapping error\n");
			return -EINVAL;
		}

		writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
		writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
	}

	if (oob_buf) {
		dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
					      dir);
		ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
		if (ret) {
			dev_err(ctrl->dev, "dma mapping error\n");
			ret = -EINVAL;
			goto err_unmap_dma_page;
		}

		writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
		writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
	}

	dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
		   DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
		   DMA_MST_CTRL_BURST_16;

	if (buf)
		dma_ctrl |= DMA_MST_CTRL_EN_A;
	if (oob_buf)
		dma_ctrl |= DMA_MST_CTRL_EN_B;

	if (read)
		dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
	else
		dma_ctrl |= DMA_MST_CTRL_OUT;

	writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);

	cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
	       COMMAND_CE(ctrl->cur_cs);

	if (buf)
		cmd |= COMMAND_A_VALID;
	if (oob_buf)
		cmd |= COMMAND_B_VALID;

	if (read)
		cmd |= COMMAND_RX;
	else
		cmd |= COMMAND_TX | COMMAND_AFT_DAT;

	writel_relaxed(cmd, ctrl->regs + COMMAND);

	ret = wait_for_completion_timeout(&ctrl->command_complete,
					  msecs_to_jiffies(500));
	if (!ret) {
		dev_err(ctrl->dev, "COMMAND timeout\n");
		tegra_nand_dump_reg(ctrl);
		tegra_nand_controller_abort(ctrl);
		ret = -ETIMEDOUT;
		goto err_unmap_dma;
	}

	ret = wait_for_completion_timeout(&ctrl->dma_complete,
					  msecs_to_jiffies(500));
	if (!ret) {
		dev_err(ctrl->dev, "DMA timeout\n");
		tegra_nand_dump_reg(ctrl);
		tegra_nand_controller_abort(ctrl);
		ret = -ETIMEDOUT;
		goto err_unmap_dma;
	}
	ret = 0;

err_unmap_dma:
	if (oob_buf)
		dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
err_unmap_dma_page:
	if (buf)
		dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);

	return ret;
}

static int tegra_nand_read_page_raw(struct mtd_info *mtd,
				    struct nand_chip *chip, u8 *buf,
				    int oob_required, int page)
{
	void *oob_buf = oob_required ? chip->oob_poi : NULL;

	return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
				    mtd->oobsize, page, true);
}

static int tegra_nand_write_page_raw(struct mtd_info *mtd,
				     struct nand_chip *chip, const u8 *buf,
				     int oob_required, int page)
{
	void *oob_buf = oob_required ? chip->oob_poi : NULL;

	return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
				     mtd->oobsize, page, false);
}

static int tegra_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			       int page)
{
	return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
				    mtd->oobsize, page, true);
}

static int tegra_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
				int page)
{
	return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
				    mtd->oobsize, page, false);
}

static int tegra_nand_read_page_hwecc(struct mtd_info *mtd,
				      struct nand_chip *chip, u8 *buf,
				      int oob_required, int page)
{
	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
	struct tegra_nand_chip *nand = to_tegra_chip(chip);
	void *oob_buf = oob_required ? chip->oob_poi : NULL;
	u32 dec_stat, max_corr_cnt;
	unsigned long fail_sec_flag;
	int ret;

	tegra_nand_hw_ecc(ctrl, chip, true);
	ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true);
	tegra_nand_hw_ecc(ctrl, chip, false);
	if (ret)
		return ret;

	/* No correctable or un-correctable errors, page must have 0 bitflips */
	if (!ctrl->last_read_error)
		return 0;

	/*
	 * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
	 * which contains information for all ECC selections.
	 *
	 * Note that since we do not use Command Queues DEC_RESULT does not
	 * state the number of pages we can read from the DEC_STAT_BUF. But
	 * since CORRFAIL_ERR did occur during page read we do have a valid
	 * result in DEC_STAT_BUF.
	 */
	ctrl->last_read_error = false;
	dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);

	fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
			DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;

	max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
		       DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;

	if (fail_sec_flag) {
		int bit, max_bitflips = 0;

		/*
		 * Since we do not support subpage writes, a complete page
		 * is either written or not. We can take a shortcut here by
		 * checking wheather any of the sector has been successful
		 * read. If at least one sectors has been read successfully,
		 * the page must have been a written previously. It cannot
		 * be an erased page.
		 *
		 * E.g. controller might return fail_sec_flag with 0x4, which
		 * would mean only the third sector failed to correct. The
		 * page must have been written and the third sector is really
		 * not correctable anymore.
		 */
		if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
			mtd->ecc_stats.failed += hweight8(fail_sec_flag);
			return max_corr_cnt;
		}

		/*
		 * All sectors failed to correct, but the ECC isn't smart
		 * enough to figure out if a page is really just erased.
		 * Read OOB data and check whether data/OOB is completely
		 * erased or if error correction just failed for all sub-
		 * pages.
		 */
		ret = tegra_nand_read_oob(mtd, chip, page);
		if (ret < 0)
			return ret;

		for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
			u8 *data = buf + (chip->ecc.size * bit);
			u8 *oob = chip->oob_poi + nand->ecc.offset +
				  (chip->ecc.bytes * bit);

			ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
							  oob, chip->ecc.bytes,
							  NULL, 0,
							  chip->ecc.strength);
			if (ret < 0) {
				mtd->ecc_stats.failed++;
			} else {
				mtd->ecc_stats.corrected += ret;
				max_bitflips = max(ret, max_bitflips);
			}
		}

		return max_t(unsigned int, max_corr_cnt, max_bitflips);
	} else {
		int corr_sec_flag;

		corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
				DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;

		/*
		 * The value returned in the register is the maximum of
		 * bitflips encountered in any of the ECC regions. As there is
		 * no way to get the number of bitflips in a specific regions
		 * we are not able to deliver correct stats but instead
		 * overestimate the number of corrected bitflips by assuming
		 * that all regions where errors have been corrected
		 * encountered the maximum number of bitflips.
		 */
		mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);

		return max_corr_cnt;
	}
}

static int tegra_nand_write_page_hwecc(struct mtd_info *mtd,
				       struct nand_chip *chip, const u8 *buf,
				       int oob_required, int page)
{
	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
	void *oob_buf = oob_required ? chip->oob_poi : NULL;
	int ret;

	tegra_nand_hw_ecc(ctrl, chip, true);
	ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
				   0, page, false);
	tegra_nand_hw_ecc(ctrl, chip, false);

	return ret;
}

static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
				    const struct nand_sdr_timings *timings)
{
	/*
	 * The period (and all other timings in this function) is in ps,
	 * so need to take care here to avoid integer overflows.
	 */
	unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
	unsigned int period = DIV_ROUND_UP(1000000, rate);
	u32 val, reg = 0;

	val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
				timings->tRC_min), period);
	reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));

	val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
			       max(timings->tALS_min, timings->tALH_min)),
			   period);
	reg |= TIMING_TCS(OFFSET(val, 2));

	val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
			   period);
	reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));

	reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
	reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
	reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
	reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
	reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));

	writel_relaxed(reg, ctrl->regs + TIMING_1);

	val = DIV_ROUND_UP(timings->tADL_min, period);
	reg = TIMING_TADL(OFFSET(val, 3));

	writel_relaxed(reg, ctrl->regs + TIMING_2);
}

static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline,
					const struct nand_data_interface *conf)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
	const struct nand_sdr_timings *timings;

	timings = nand_get_sdr_timings(conf);
	if (IS_ERR(timings))
		return PTR_ERR(timings);

	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	tegra_nand_setup_timing(ctrl, timings);

	return 0;
}

static const int rs_strength_bootable[] = { 4 };
static const int rs_strength[] = { 4, 6, 8 };
static const int bch_strength_bootable[] = { 8, 16 };
static const int bch_strength[] = { 4, 8, 14, 16 };

static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
				   int strength_len, int bits_per_step,
				   int oobsize)
{
	bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE;
	int i;

	/*
	 * Loop through available strengths. Backwards in case we try to
	 * maximize the BCH strength.
	 */
	for (i = 0; i < strength_len; i++) {
		int strength_sel, bytes_per_step, bytes_per_page;

		if (maximize) {
			strength_sel = strength[strength_len - i - 1];
		} else {
			strength_sel = strength[i];

			if (strength_sel < chip->ecc_strength_ds)
				continue;
		}

		bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
					      BITS_PER_BYTE);
		bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);

		/* Check whether strength fits OOB */
		if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
			return strength_sel;
	}

	return -EINVAL;
}

static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
{
	const int *strength;
	int strength_len, bits_per_step;

	switch (chip->ecc.algo) {
	case NAND_ECC_RS:
		bits_per_step = BITS_PER_STEP_RS;
		if (chip->options & NAND_IS_BOOT_MEDIUM) {
			strength = rs_strength_bootable;
			strength_len = ARRAY_SIZE(rs_strength_bootable);
		} else {
			strength = rs_strength;
			strength_len = ARRAY_SIZE(rs_strength);
		}
		break;
	case NAND_ECC_BCH:
		bits_per_step = BITS_PER_STEP_BCH;
		if (chip->options & NAND_IS_BOOT_MEDIUM) {
			strength = bch_strength_bootable;
			strength_len = ARRAY_SIZE(bch_strength_bootable);
		} else {
			strength = bch_strength;
			strength_len = ARRAY_SIZE(bch_strength);
		}
		break;
	default:
		return -EINVAL;
	}

	return tegra_nand_get_strength(chip, strength, strength_len,
				       bits_per_step, oobsize);
}

static int tegra_nand_chips_init(struct device *dev,
				 struct tegra_nand_controller *ctrl)
{
	struct device_node *np = dev->of_node;
	struct device_node *np_nand;
	int nsels, nchips = of_get_child_count(np);
	struct tegra_nand_chip *nand;
	struct mtd_info *mtd;
	struct nand_chip *chip;
	int bits_per_step;
	int ret;
	u32 cs;

	if (nchips != 1) {
		dev_err(dev, "Currently only one NAND chip supported\n");
		return -EINVAL;
	}

	np_nand = of_get_next_child(np, NULL);

	nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
	if (nsels != 1) {
		dev_err(dev, "Missing/invalid reg property\n");
		return -EINVAL;
	}

	/* Retrieve CS id, currently only single die NAND supported */
	ret = of_property_read_u32(np_nand, "reg", &cs);
	if (ret) {
		dev_err(dev, "could not retrieve reg property: %d\n", ret);
		return ret;
	}

	nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
	if (!nand)
		return -ENOMEM;

	nand->cs[0] = cs;

	nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);

	if (IS_ERR(nand->wp_gpio)) {
		ret = PTR_ERR(nand->wp_gpio);
		dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
		return ret;
	}

	chip = &nand->chip;
	chip->controller = &ctrl->controller;

	mtd = nand_to_mtd(chip);

	mtd->dev.parent = dev;
	mtd->owner = THIS_MODULE;

	nand_set_flash_node(chip, np_nand);

	if (!mtd->name)
		mtd->name = "tegra_nand";

	chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
	chip->exec_op = tegra_nand_exec_op;
	chip->select_chip = tegra_nand_select_chip;
	chip->setup_data_interface = tegra_nand_setup_data_interface;

	ret = nand_scan_ident(mtd, 1, NULL);
	if (ret)
		return ret;

	if (chip->bbt_options & NAND_BBT_USE_FLASH)
		chip->bbt_options |= NAND_BBT_NO_OOB;

	chip->ecc.mode = NAND_ECC_HW;
	chip->ecc.size = 512;
	chip->ecc.steps = mtd->writesize / chip->ecc.size;
	if (chip->ecc_step_ds != 512) {
		dev_err(dev, "Unsupported step size %d\n", chip->ecc_step_ds);
		return -EINVAL;
	}

	chip->ecc.read_page = tegra_nand_read_page_hwecc;
	chip->ecc.write_page = tegra_nand_write_page_hwecc;
	chip->ecc.read_page_raw = tegra_nand_read_page_raw;
	chip->ecc.write_page_raw = tegra_nand_write_page_raw;
	chip->ecc.read_oob = tegra_nand_read_oob;
	chip->ecc.write_oob = tegra_nand_write_oob;

	if (chip->options & NAND_BUSWIDTH_16)
		nand->config |= CONFIG_BUS_WIDTH_16;

	if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
		if (mtd->writesize < 2048)
			chip->ecc.algo = NAND_ECC_RS;
		else
			chip->ecc.algo = NAND_ECC_BCH;
	}

	if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) {
		dev_err(dev, "BCH supports 2K or 4K page size only\n");
		return -EINVAL;
	}

	if (!chip->ecc.strength) {
		ret = tegra_nand_select_strength(chip, mtd->oobsize);
		if (ret < 0) {
			dev_err(dev, "No valid strength found, minimum %d\n",
				chip->ecc_strength_ds);
			return ret;
		}

		chip->ecc.strength = ret;
	}

	nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
			   CONFIG_SKIP_SPARE_SIZE_4;

	switch (chip->ecc.algo) {
	case NAND_ECC_RS:
		bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
		mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
		nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
				    CONFIG_ERR_COR;
		switch (chip->ecc.strength) {
		case 4:
			nand->config_ecc |= CONFIG_TVAL_4;
			break;
		case 6:
			nand->config_ecc |= CONFIG_TVAL_6;
			break;
		case 8:
			nand->config_ecc |= CONFIG_TVAL_8;
			break;
		default:
			dev_err(dev, "ECC strength %d not supported\n",
				chip->ecc.strength);
			return -EINVAL;
		}
		break;
	case NAND_ECC_BCH:
		bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
		mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
		nand->bch_config = BCH_ENABLE;
		switch (chip->ecc.strength) {
		case 4:
			nand->bch_config |= BCH_TVAL_4;
			break;
		case 8:
			nand->bch_config |= BCH_TVAL_8;
			break;
		case 14:
			nand->bch_config |= BCH_TVAL_14;
			break;
		case 16:
			nand->bch_config |= BCH_TVAL_16;
			break;
		default:
			dev_err(dev, "ECC strength %d not supported\n",
				chip->ecc.strength);
			return -EINVAL;
		}
		break;
	default:
		dev_err(dev, "ECC algorithm not supported\n");
		return -EINVAL;
	}

	dev_info(dev, "Using %s with strength %d per 512 byte step\n",
		 chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS",
		 chip->ecc.strength);

	chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);

	switch (mtd->writesize) {
	case 256:
		nand->config |= CONFIG_PS_256;
		break;
	case 512:
		nand->config |= CONFIG_PS_512;
		break;
	case 1024:
		nand->config |= CONFIG_PS_1024;
		break;
	case 2048:
		nand->config |= CONFIG_PS_2048;
		break;
	case 4096:
		nand->config |= CONFIG_PS_4096;
		break;
	default:
		dev_err(dev, "Unsupported writesize %d\n", mtd->writesize);
		return -ENODEV;
	}

	/* Store complete configuration for HW ECC in config_ecc */
	nand->config_ecc |= nand->config;

	/* Non-HW ECC read/writes complete OOB */
	nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
	writel_relaxed(nand->config, ctrl->regs + CONFIG);

	ret = nand_scan_tail(mtd);
	if (ret)
		return ret;

	mtd_ooblayout_ecc(mtd, 0, &nand->ecc);

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret) {
		dev_err(dev, "Failed to register mtd device: %d\n", ret);
		nand_cleanup(chip);
		return ret;
	}

	ctrl->chip = chip;

	return 0;
}

static int tegra_nand_probe(struct platform_device *pdev)
{
	struct reset_control *rst;
	struct tegra_nand_controller *ctrl;
	struct resource *res;
	int err = 0;

	ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return -ENOMEM;

	ctrl->dev = &pdev->dev;
	nand_hw_control_init(&ctrl->controller);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(ctrl->regs))
		return PTR_ERR(ctrl->regs);

	rst = devm_reset_control_get(&pdev->dev, "nand");
	if (IS_ERR(rst))
		return PTR_ERR(rst);

	ctrl->clk = devm_clk_get(&pdev->dev, "nand");
	if (IS_ERR(ctrl->clk))
		return PTR_ERR(ctrl->clk);

	err = clk_prepare_enable(ctrl->clk);
	if (err)
		return err;

	err = reset_control_reset(rst);
	if (err) {
		dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
		goto err_disable_clk;
	}

	writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
	writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
	writel_relaxed(INT_MASK, ctrl->regs + IER);

	init_completion(&ctrl->command_complete);
	init_completion(&ctrl->dma_complete);

	ctrl->irq = platform_get_irq(pdev, 0);
	err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
			       dev_name(&pdev->dev), ctrl);
	if (err) {
		dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
		goto err_disable_clk;
	}

	writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);

	err = tegra_nand_chips_init(ctrl->dev, ctrl);
	if (err)
		goto err_disable_clk;

	platform_set_drvdata(pdev, ctrl);

	return 0;

err_disable_clk:
	clk_disable_unprepare(ctrl->clk);
	return err;
}

static int tegra_nand_remove(struct platform_device *pdev)
{
	struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
	struct nand_chip *chip = ctrl->chip;
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	ret = mtd_device_unregister(mtd);
	if (ret)
		return ret;

	nand_cleanup(chip);

	clk_disable_unprepare(ctrl->clk);

	return 0;
}

static const struct of_device_id tegra_nand_of_match[] = {
	{ .compatible = "nvidia,tegra20-nand" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, tegra_nand_of_match);

static struct platform_driver tegra_nand_driver = {
	.driver = {
		.name = "tegra-nand",
		.of_match_table = tegra_nand_of_match,
	},
	.probe = tegra_nand_probe,
	.remove = tegra_nand_remove,
};
module_platform_driver(tegra_nand_driver);

MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
MODULE_LICENSE("GPL v2");