summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/arasan-nand-controller.c
blob: 4621ec549cc79e21d2f7a0281c874917c06c25a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
// SPDX-License-Identifier: GPL-2.0
/*
 * Arasan NAND Flash Controller Driver
 *
 * Copyright (C) 2014 - 2020 Xilinx, Inc.
 * Author:
 *   Miquel Raynal <miquel.raynal@bootlin.com>
 * Original work (fully rewritten):
 *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
 *   Naga Sureshkumar Relli <nagasure@xilinx.com>
 */

#include <linux/bch.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

#define PKT_REG				0x00
#define   PKT_SIZE(x)			FIELD_PREP(GENMASK(10, 0), (x))
#define   PKT_STEPS(x)			FIELD_PREP(GENMASK(23, 12), (x))

#define MEM_ADDR1_REG			0x04

#define MEM_ADDR2_REG			0x08
#define   ADDR2_STRENGTH(x)		FIELD_PREP(GENMASK(27, 25), (x))
#define   ADDR2_CS(x)			FIELD_PREP(GENMASK(31, 30), (x))

#define CMD_REG				0x0C
#define   CMD_1(x)			FIELD_PREP(GENMASK(7, 0), (x))
#define   CMD_2(x)			FIELD_PREP(GENMASK(15, 8), (x))
#define   CMD_PAGE_SIZE(x)		FIELD_PREP(GENMASK(25, 23), (x))
#define   CMD_DMA_ENABLE		BIT(27)
#define   CMD_NADDRS(x)			FIELD_PREP(GENMASK(30, 28), (x))
#define   CMD_ECC_ENABLE		BIT(31)

#define PROG_REG			0x10
#define   PROG_PGRD			BIT(0)
#define   PROG_ERASE			BIT(2)
#define   PROG_STATUS			BIT(3)
#define   PROG_PGPROG			BIT(4)
#define   PROG_RDID			BIT(6)
#define   PROG_RDPARAM			BIT(7)
#define   PROG_RST			BIT(8)
#define   PROG_GET_FEATURE		BIT(9)
#define   PROG_SET_FEATURE		BIT(10)
#define   PROG_CHG_RD_COL_ENH		BIT(14)

#define INTR_STS_EN_REG			0x14
#define INTR_SIG_EN_REG			0x18
#define INTR_STS_REG			0x1C
#define   WRITE_READY			BIT(0)
#define   READ_READY			BIT(1)
#define   XFER_COMPLETE			BIT(2)
#define   DMA_BOUNDARY			BIT(6)
#define   EVENT_MASK			GENMASK(7, 0)

#define READY_STS_REG			0x20

#define DMA_ADDR0_REG			0x50
#define DMA_ADDR1_REG			0x24

#define FLASH_STS_REG			0x28

#define TIMING_REG			0x2C
#define   TCCS_TIME_500NS		0
#define   TCCS_TIME_300NS		3
#define   TCCS_TIME_200NS		2
#define   TCCS_TIME_100NS		1
#define   FAST_TCAD			BIT(2)
#define   DQS_BUFF_SEL_IN(x)		FIELD_PREP(GENMASK(6, 3), (x))
#define   DQS_BUFF_SEL_OUT(x)		FIELD_PREP(GENMASK(18, 15), (x))

#define DATA_PORT_REG			0x30

#define ECC_CONF_REG			0x34
#define   ECC_CONF_COL(x)		FIELD_PREP(GENMASK(15, 0), (x))
#define   ECC_CONF_LEN(x)		FIELD_PREP(GENMASK(26, 16), (x))
#define   ECC_CONF_BCH_EN		BIT(27)

#define ECC_ERR_CNT_REG			0x38
#define   GET_PKT_ERR_CNT(x)		FIELD_GET(GENMASK(7, 0), (x))
#define   GET_PAGE_ERR_CNT(x)		FIELD_GET(GENMASK(16, 8), (x))

#define ECC_SP_REG			0x3C
#define   ECC_SP_CMD1(x)		FIELD_PREP(GENMASK(7, 0), (x))
#define   ECC_SP_CMD2(x)		FIELD_PREP(GENMASK(15, 8), (x))
#define   ECC_SP_ADDRS(x)		FIELD_PREP(GENMASK(30, 28), (x))

#define ECC_1ERR_CNT_REG		0x40
#define ECC_2ERR_CNT_REG		0x44

#define DATA_INTERFACE_REG		0x6C
#define   DIFACE_SDR_MODE(x)		FIELD_PREP(GENMASK(2, 0), (x))
#define   DIFACE_DDR_MODE(x)		FIELD_PREP(GENMASK(5, 3), (x))
#define   DIFACE_SDR			0
#define   DIFACE_NVDDR			BIT(9)

#define ANFC_MAX_CS			2
#define ANFC_DFLT_TIMEOUT_US		1000000
#define ANFC_MAX_CHUNK_SIZE		SZ_1M
#define ANFC_MAX_PARAM_SIZE		SZ_4K
#define ANFC_MAX_STEPS			SZ_2K
#define ANFC_MAX_PKT_SIZE		(SZ_2K - 1)
#define ANFC_MAX_ADDR_CYC		5U
#define ANFC_RSVD_ECC_BYTES		21

#define ANFC_XLNX_SDR_DFLT_CORE_CLK	100000000
#define ANFC_XLNX_SDR_HS_CORE_CLK	80000000

static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL};

/**
 * struct anfc_op - Defines how to execute an operation
 * @pkt_reg: Packet register
 * @addr1_reg: Memory address 1 register
 * @addr2_reg: Memory address 2 register
 * @cmd_reg: Command register
 * @prog_reg: Program register
 * @steps: Number of "packets" to read/write
 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
 * @len: Data transfer length
 * @read: Data transfer direction from the controller point of view
 * @buf: Data buffer
 */
struct anfc_op {
	u32 pkt_reg;
	u32 addr1_reg;
	u32 addr2_reg;
	u32 cmd_reg;
	u32 prog_reg;
	int steps;
	unsigned int rdy_timeout_ms;
	unsigned int len;
	bool read;
	u8 *buf;
};

/**
 * struct anand - Defines the NAND chip related information
 * @node:		Used to store NAND chips into a list
 * @chip:		NAND chip information structure
 * @rb:			Ready-busy line
 * @page_sz:		Register value of the page_sz field to use
 * @clk:		Expected clock frequency to use
 * @data_iface:		Data interface timing mode to use
 * @timings:		NV-DDR specific timings to use
 * @ecc_conf:		Hardware ECC configuration value
 * @strength:		Register value of the ECC strength
 * @raddr_cycles:	Row address cycle information
 * @caddr_cycles:	Column address cycle information
 * @ecc_bits:		Exact number of ECC bits per syndrome
 * @ecc_total:		Total number of ECC bytes
 * @errloc:		Array of errors located with soft BCH
 * @hw_ecc:		Buffer to store syndromes computed by hardware
 * @bch:		BCH structure
 * @cs_idx:		Array of chip-select for this device, values are indexes
 *			of the controller structure @gpio_cs array
 * @ncs_idx:		Size of the @cs_idx array
 */
struct anand {
	struct list_head node;
	struct nand_chip chip;
	unsigned int rb;
	unsigned int page_sz;
	unsigned long clk;
	u32 data_iface;
	u32 timings;
	u32 ecc_conf;
	u32 strength;
	u16 raddr_cycles;
	u16 caddr_cycles;
	unsigned int ecc_bits;
	unsigned int ecc_total;
	unsigned int *errloc;
	u8 *hw_ecc;
	struct bch_control *bch;
	int *cs_idx;
	int ncs_idx;
};

/**
 * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
 * @dev:		Pointer to the device structure
 * @base:		Remapped register area
 * @controller_clk:		Pointer to the system clock
 * @bus_clk:		Pointer to the flash clock
 * @controller:		Base controller structure
 * @chips:		List of all NAND chips attached to the controller
 * @cur_clk:		Current clock rate
 * @cs_array:		CS array. Native CS are left empty, the other cells are
 *			populated with their corresponding GPIO descriptor.
 * @ncs:		Size of @cs_array
 * @cur_cs:		Index in @cs_array of the currently in use CS
 * @native_cs:		Currently selected native CS
 * @spare_cs:		Native CS that is not wired (may be selected when a GPIO
 *			CS is in use)
 */
struct arasan_nfc {
	struct device *dev;
	void __iomem *base;
	struct clk *controller_clk;
	struct clk *bus_clk;
	struct nand_controller controller;
	struct list_head chips;
	unsigned int cur_clk;
	struct gpio_desc **cs_array;
	unsigned int ncs;
	int cur_cs;
	unsigned int native_cs;
	unsigned int spare_cs;
};

static struct anand *to_anand(struct nand_chip *nand)
{
	return container_of(nand, struct anand, chip);
}

static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
{
	return container_of(ctrl, struct arasan_nfc, controller);
}

static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
{
	u32 val;
	int ret;

	ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
					 val & event, 0,
					 ANFC_DFLT_TIMEOUT_US);
	if (ret) {
		dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
		return -ETIMEDOUT;
	}

	writel_relaxed(event, nfc->base + INTR_STS_REG);

	return 0;
}

static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
			    unsigned int timeout_ms)
{
	struct anand *anand = to_anand(chip);
	u32 val;
	int ret;

	/* There is no R/B interrupt, we must poll a register */
	ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
					 val & BIT(anand->rb),
					 1, timeout_ms * 1000);
	if (ret) {
		dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
			readl_relaxed(nfc->base + READY_STS_REG));
		return -ETIMEDOUT;
	}

	return 0;
}

static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
{
	writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
	writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
	writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
	writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
	writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
}

static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
			       unsigned int *pktsize)
{
	unsigned int nb, sz;

	for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
		sz = len / nb;
		if (sz <= ANFC_MAX_PKT_SIZE)
			break;
	}

	if (sz * nb != len)
		return -ENOTSUPP;

	if (steps)
		*steps = nb;

	if (pktsize)
		*pktsize = sz;

	return 0;
}

static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs)
{
	return nfc_cs >= 0 && nfc->cs_array[nfc_cs];
}

static int anfc_relative_to_absolute_cs(struct anand *anand, int num)
{
	return anand->cs_idx[num];
}

static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx)
{
	/* CS did not change: do nothing */
	if (nfc->cur_cs == nfc_cs_idx)
		return;

	/* Deassert the previous CS if it was a GPIO */
	if (anfc_is_gpio_cs(nfc, nfc->cur_cs))
		gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1);

	/* Assert the new one */
	if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) {
		nfc->native_cs = nfc->spare_cs;
		gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0);
	} else {
		nfc->native_cs = nfc_cs_idx;
	}

	nfc->cur_cs = nfc_cs_idx;
}

static int anfc_select_target(struct nand_chip *chip, int target)
{
	struct anand *anand = to_anand(chip);
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target);
	int ret;

	anfc_assert_cs(nfc, nfc_cs_idx);

	/* Update the controller timings and the potential ECC configuration */
	writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG);
	writel_relaxed(anand->timings, nfc->base + TIMING_REG);

	/* Update clock frequency */
	if (nfc->cur_clk != anand->clk) {
		clk_disable_unprepare(nfc->bus_clk);
		ret = clk_set_rate(nfc->bus_clk, anand->clk);
		if (ret) {
			dev_err(nfc->dev, "Failed to change clock rate\n");
			return ret;
		}

		ret = clk_prepare_enable(nfc->bus_clk);
		if (ret) {
			dev_err(nfc->dev,
				"Failed to re-enable the bus clock\n");
			return ret;
		}

		nfc->cur_clk = anand->clk;
	}

	return 0;
}

/*
 * When using the embedded hardware ECC engine, the controller is in charge of
 * feeding the engine with, first, the ECC residue present in the data array.
 * A typical read operation is:
 * 1/ Assert the read operation by sending the relevant command/address cycles
 *    but targeting the column of the first ECC bytes in the OOB area instead of
 *    the main data directly.
 * 2/ After having read the relevant number of ECC bytes, the controller uses
 *    the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
 *    Register" to move the pointer back at the beginning of the main data.
 * 3/ It will read the content of the main area for a given size (pktsize) and
 *    will feed the ECC engine with this buffer again.
 * 4/ The ECC engine derives the ECC bytes for the given data and compare them
 *    with the ones already received. It eventually trigger status flags and
 *    then set the "Buffer Read Ready" flag.
 * 5/ The corrected data is then available for reading from the data port
 *    register.
 *
 * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
 * reports uncorrectable errors. Because of this bug, we have to use the
 * software BCH implementation in the read path.
 */
static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
				 int oob_required, int page)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct anand *anand = to_anand(chip);
	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
	unsigned int max_bitflips = 0;
	dma_addr_t dma_addr;
	int step, ret;
	struct anfc_op nfc_op = {
		.pkt_reg =
			PKT_SIZE(chip->ecc.size) |
			PKT_STEPS(chip->ecc.steps),
		.addr1_reg =
			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
		.addr2_reg =
			((page >> 16) & 0xFF) |
			ADDR2_STRENGTH(anand->strength) |
			ADDR2_CS(nfc->native_cs),
		.cmd_reg =
			CMD_1(NAND_CMD_READ0) |
			CMD_2(NAND_CMD_READSTART) |
			CMD_PAGE_SIZE(anand->page_sz) |
			CMD_DMA_ENABLE |
			CMD_NADDRS(anand->caddr_cycles +
				   anand->raddr_cycles),
		.prog_reg = PROG_PGRD,
	};

	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
	if (dma_mapping_error(nfc->dev, dma_addr)) {
		dev_err(nfc->dev, "Buffer mapping error");
		return -EIO;
	}

	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);

	anfc_trigger_op(nfc, &nfc_op);

	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
	dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
	if (ret) {
		dev_err(nfc->dev, "Error reading page %d\n", page);
		return ret;
	}

	/* Store the raw OOB bytes as well */
	ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
					 mtd->oobsize, 0);
	if (ret)
		return ret;

	/*
	 * For each step, compute by softare the BCH syndrome over the raw data.
	 * Compare the theoretical amount of errors and compare with the
	 * hardware engine feedback.
	 */
	for (step = 0; step < chip->ecc.steps; step++) {
		u8 *raw_buf = &buf[step * chip->ecc.size];
		unsigned int bit, byte;
		int bf, i;

		/* Extract the syndrome, it is not necessarily aligned */
		memset(anand->hw_ecc, 0, chip->ecc.bytes);
		nand_extract_bits(anand->hw_ecc, 0,
				  &chip->oob_poi[mtd->oobsize - anand->ecc_total],
				  anand->ecc_bits * step, anand->ecc_bits);

		bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
				anand->hw_ecc, NULL, NULL, anand->errloc);
		if (!bf) {
			continue;
		} else if (bf > 0) {
			for (i = 0; i < bf; i++) {
				/* Only correct the data, not the syndrome */
				if (anand->errloc[i] < (chip->ecc.size * 8)) {
					bit = BIT(anand->errloc[i] & 7);
					byte = anand->errloc[i] >> 3;
					raw_buf[byte] ^= bit;
				}
			}

			mtd->ecc_stats.corrected += bf;
			max_bitflips = max_t(unsigned int, max_bitflips, bf);

			continue;
		}

		bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
						 NULL, 0, NULL, 0,
						 chip->ecc.strength);
		if (bf > 0) {
			mtd->ecc_stats.corrected += bf;
			max_bitflips = max_t(unsigned int, max_bitflips, bf);
			memset(raw_buf, 0xFF, chip->ecc.size);
		} else if (bf < 0) {
			mtd->ecc_stats.failed++;
		}
	}

	return 0;
}

static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
				     int oob_required, int page)
{
	int ret;

	ret = anfc_select_target(chip, chip->cur_cs);
	if (ret)
		return ret;

	return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
};

static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
				  int oob_required, int page)
{
	struct anand *anand = to_anand(chip);
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
	dma_addr_t dma_addr;
	int ret;
	struct anfc_op nfc_op = {
		.pkt_reg =
			PKT_SIZE(chip->ecc.size) |
			PKT_STEPS(chip->ecc.steps),
		.addr1_reg =
			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
		.addr2_reg =
			((page >> 16) & 0xFF) |
			ADDR2_STRENGTH(anand->strength) |
			ADDR2_CS(nfc->native_cs),
		.cmd_reg =
			CMD_1(NAND_CMD_SEQIN) |
			CMD_2(NAND_CMD_PAGEPROG) |
			CMD_PAGE_SIZE(anand->page_sz) |
			CMD_DMA_ENABLE |
			CMD_NADDRS(anand->caddr_cycles +
				   anand->raddr_cycles) |
			CMD_ECC_ENABLE,
		.prog_reg = PROG_PGPROG,
	};

	writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
	writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
		       ECC_SP_ADDRS(anand->caddr_cycles),
		       nfc->base + ECC_SP_REG);

	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
	if (dma_mapping_error(nfc->dev, dma_addr)) {
		dev_err(nfc->dev, "Buffer mapping error");
		return -EIO;
	}

	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);

	anfc_trigger_op(nfc, &nfc_op);
	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
	dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
	if (ret) {
		dev_err(nfc->dev, "Error writing page %d\n", page);
		return ret;
	}

	/* Spare data is not protected */
	if (oob_required)
		ret = nand_write_oob_std(chip, page);

	return ret;
}

static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
				      int oob_required, int page)
{
	int ret;

	ret = anfc_select_target(chip, chip->cur_cs);
	if (ret)
		return ret;

	return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
};

/* NAND framework ->exec_op() hooks and related helpers */
static int anfc_parse_instructions(struct nand_chip *chip,
				   const struct nand_subop *subop,
				   struct anfc_op *nfc_op)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct anand *anand = to_anand(chip);
	const struct nand_op_instr *instr = NULL;
	bool first_cmd = true;
	unsigned int op_id;
	int ret, i;

	memset(nfc_op, 0, sizeof(*nfc_op));
	nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs);
	nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);

	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
		unsigned int offset, naddrs, pktsize;
		const u8 *addrs;
		u8 *buf;

		instr = &subop->instrs[op_id];

		switch (instr->type) {
		case NAND_OP_CMD_INSTR:
			if (first_cmd)
				nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
			else
				nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);

			first_cmd = false;
			break;

		case NAND_OP_ADDR_INSTR:
			offset = nand_subop_get_addr_start_off(subop, op_id);
			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
			addrs = &instr->ctx.addr.addrs[offset];
			nfc_op->cmd_reg |= CMD_NADDRS(naddrs);

			for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
				if (i < 4)
					nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
				else
					nfc_op->addr2_reg |= addrs[i];
			}

			break;
		case NAND_OP_DATA_IN_INSTR:
			nfc_op->read = true;
			fallthrough;
		case NAND_OP_DATA_OUT_INSTR:
			offset = nand_subop_get_data_start_off(subop, op_id);
			buf = instr->ctx.data.buf.in;
			nfc_op->buf = &buf[offset];
			nfc_op->len = nand_subop_get_data_len(subop, op_id);
			ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
						  &pktsize);
			if (ret)
				return ret;

			/*
			 * Number of DATA cycles must be aligned on 4, this
			 * means the controller might read/write more than
			 * requested. This is harmless most of the time as extra
			 * DATA are discarded in the write path and read pointer
			 * adjusted in the read path.
			 *
			 * FIXME: The core should mark operations where
			 * reading/writing more is allowed so the exec_op()
			 * implementation can take the right decision when the
			 * alignment constraint is not met: adjust the number of
			 * DATA cycles when it's allowed, reject the operation
			 * otherwise.
			 */
			nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
					   PKT_STEPS(nfc_op->steps);
			break;
		case NAND_OP_WAITRDY_INSTR:
			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
			break;
		}
	}

	return 0;
}

static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
{
	unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
	unsigned int last_len = nfc_op->len % 4;
	unsigned int offset, dir;
	u8 *buf = nfc_op->buf;
	int ret, i;

	for (i = 0; i < nfc_op->steps; i++) {
		dir = nfc_op->read ? READ_READY : WRITE_READY;
		ret = anfc_wait_for_event(nfc, dir);
		if (ret) {
			dev_err(nfc->dev, "PIO %s ready signal not received\n",
				nfc_op->read ? "Read" : "Write");
			return ret;
		}

		offset = i * (dwords * 4);
		if (nfc_op->read)
			ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
				     dwords);
		else
			iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
				      dwords);
	}

	if (last_len) {
		u32 remainder;

		offset = nfc_op->len - last_len;

		if (nfc_op->read) {
			remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
			memcpy(&buf[offset], &remainder, last_len);
		} else {
			memcpy(&remainder, &buf[offset], last_len);
			writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
		}
	}

	return anfc_wait_for_event(nfc, XFER_COMPLETE);
}

static int anfc_misc_data_type_exec(struct nand_chip *chip,
				    const struct nand_subop *subop,
				    u32 prog_reg)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct anfc_op nfc_op = {};
	int ret;

	ret = anfc_parse_instructions(chip, subop, &nfc_op);
	if (ret)
		return ret;

	nfc_op.prog_reg = prog_reg;
	anfc_trigger_op(nfc, &nfc_op);

	if (nfc_op.rdy_timeout_ms) {
		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
		if (ret)
			return ret;
	}

	return anfc_rw_pio_op(nfc, &nfc_op);
}

static int anfc_param_read_type_exec(struct nand_chip *chip,
				     const struct nand_subop *subop)
{
	return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
}

static int anfc_data_read_type_exec(struct nand_chip *chip,
				    const struct nand_subop *subop)
{
	u32 prog_reg = PROG_PGRD;

	/*
	 * Experience shows that while in SDR mode sending a CHANGE READ COLUMN
	 * command through the READ PAGE "type" always works fine, when in
	 * NV-DDR mode the same command simply fails. However, it was also
	 * spotted that any CHANGE READ COLUMN command sent through the CHANGE
	 * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR
	 * and NV-DDR). So, for simplicity, let's program the controller with
	 * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to
	 * perform a CHANGE READ COLUMN operation.
	 */
	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT &&
	    subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART)
		prog_reg = PROG_CHG_RD_COL_ENH;

	return anfc_misc_data_type_exec(chip, subop, prog_reg);
}

static int anfc_param_write_type_exec(struct nand_chip *chip,
				      const struct nand_subop *subop)
{
	return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
}

static int anfc_data_write_type_exec(struct nand_chip *chip,
				     const struct nand_subop *subop)
{
	return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
}

static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
				       const struct nand_subop *subop,
				       u32 prog_reg)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct anfc_op nfc_op = {};
	int ret;

	ret = anfc_parse_instructions(chip, subop, &nfc_op);
	if (ret)
		return ret;

	nfc_op.prog_reg = prog_reg;
	anfc_trigger_op(nfc, &nfc_op);

	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
	if (ret)
		return ret;

	if (nfc_op.rdy_timeout_ms)
		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);

	return ret;
}

static int anfc_status_type_exec(struct nand_chip *chip,
				 const struct nand_subop *subop)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	u32 tmp;
	int ret;

	/* See anfc_check_op() for details about this constraint */
	if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
		return -ENOTSUPP;

	ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
	if (ret)
		return ret;

	tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
	memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);

	return 0;
}

static int anfc_reset_type_exec(struct nand_chip *chip,
				const struct nand_subop *subop)
{
	return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
}

static int anfc_erase_type_exec(struct nand_chip *chip,
				const struct nand_subop *subop)
{
	return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
}

static int anfc_wait_type_exec(struct nand_chip *chip,
			       const struct nand_subop *subop)
{
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct anfc_op nfc_op = {};
	int ret;

	ret = anfc_parse_instructions(chip, subop, &nfc_op);
	if (ret)
		return ret;

	return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
}

static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
	NAND_OP_PARSER_PATTERN(
		anfc_param_read_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		anfc_param_write_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
	NAND_OP_PARSER_PATTERN(
		anfc_data_read_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		anfc_data_write_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		anfc_reset_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		anfc_erase_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		anfc_status_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
	NAND_OP_PARSER_PATTERN(
		anfc_wait_type_exec,
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	);

static int anfc_check_op(struct nand_chip *chip,
			 const struct nand_operation *op)
{
	const struct nand_op_instr *instr;
	int op_id;

	/*
	 * The controller abstracts all the NAND operations and do not support
	 * data only operations.
	 *
	 * TODO: The nand_op_parser framework should be extended to
	 * support custom checks on DATA instructions.
	 */
	for (op_id = 0; op_id < op->ninstrs; op_id++) {
		instr = &op->instrs[op_id];

		switch (instr->type) {
		case NAND_OP_ADDR_INSTR:
			if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
				return -ENOTSUPP;

			break;
		case NAND_OP_DATA_IN_INSTR:
		case NAND_OP_DATA_OUT_INSTR:
			if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
				return -ENOTSUPP;

			if (anfc_pkt_len_config(instr->ctx.data.len, NULL, NULL))
				return -ENOTSUPP;

			break;
		default:
			break;
		}
	}

	/*
	 * The controller does not allow to proceed with a CMD+DATA_IN cycle
	 * manually on the bus by reading data from the data register. Instead,
	 * the controller abstract a status read operation with its own status
	 * register after ordering a read status operation. Hence, we cannot
	 * support any CMD+DATA_IN operation other than a READ STATUS.
	 *
	 * TODO: The nand_op_parser() framework should be extended to describe
	 * fixed patterns instead of open-coding this check here.
	 */
	if (op->ninstrs == 2 &&
	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
	    op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
	    op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
		return -ENOTSUPP;

	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
}

static int anfc_exec_op(struct nand_chip *chip,
			const struct nand_operation *op,
			bool check_only)
{
	int ret;

	if (check_only)
		return anfc_check_op(chip, op);

	ret = anfc_select_target(chip, op->cs);
	if (ret)
		return ret;

	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
}

static int anfc_setup_interface(struct nand_chip *chip, int target,
				const struct nand_interface_config *conf)
{
	struct anand *anand = to_anand(chip);
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct device_node *np = nfc->dev->of_node;
	const struct nand_sdr_timings *sdr;
	const struct nand_nvddr_timings *nvddr;
	unsigned int tccs_min, dqs_mode, fast_tcad;

	if (nand_interface_is_nvddr(conf)) {
		nvddr = nand_get_nvddr_timings(conf);
		if (IS_ERR(nvddr))
			return PTR_ERR(nvddr);
	} else {
		sdr = nand_get_sdr_timings(conf);
		if (IS_ERR(sdr))
			return PTR_ERR(sdr);
	}

	if (target < 0)
		return 0;

	if (nand_interface_is_sdr(conf)) {
		anand->data_iface = DIFACE_SDR |
				    DIFACE_SDR_MODE(conf->timings.mode);
		anand->timings = 0;
	} else {
		anand->data_iface = DIFACE_NVDDR |
				    DIFACE_DDR_MODE(conf->timings.mode);

		if (conf->timings.nvddr.tCCS_min <= 100000)
			tccs_min = TCCS_TIME_100NS;
		else if (conf->timings.nvddr.tCCS_min <= 200000)
			tccs_min = TCCS_TIME_200NS;
		else if (conf->timings.nvddr.tCCS_min <= 300000)
			tccs_min = TCCS_TIME_300NS;
		else
			tccs_min = TCCS_TIME_500NS;

		fast_tcad = 0;
		if (conf->timings.nvddr.tCAD_min < 45000)
			fast_tcad = FAST_TCAD;

		switch (conf->timings.mode) {
		case 5:
		case 4:
			dqs_mode = 2;
			break;
		case 3:
			dqs_mode = 3;
			break;
		case 2:
			dqs_mode = 4;
			break;
		case 1:
			dqs_mode = 5;
			break;
		case 0:
		default:
			dqs_mode = 6;
			break;
		}

		anand->timings = tccs_min | fast_tcad |
				 DQS_BUFF_SEL_IN(dqs_mode) |
				 DQS_BUFF_SEL_OUT(dqs_mode);
	}

	if (nand_interface_is_sdr(conf)) {
		anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
	} else {
		/* ONFI timings are defined in picoseconds */
		anand->clk = div_u64((u64)NSEC_PER_SEC * 1000,
				     conf->timings.nvddr.tCK_min);
	}

	/*
	 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
	 * with f > 90MHz (default clock is 100MHz) but signals are unstable
	 * with higher modes. Hence we decrease a little bit the clock rate to
	 * 80MHz when using SDR modes 2-5 with this SoC.
	 */
	if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
	    nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
		anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;

	return 0;
}

static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
{
	unsigned int bch_gf_mag, ecc_bits;

	switch (step_size) {
	case SZ_512:
		bch_gf_mag = 13;
		break;
	case SZ_1K:
		bch_gf_mag = 14;
		break;
	default:
		return -EINVAL;
	}

	ecc_bits = bch_gf_mag * strength;

	return DIV_ROUND_UP(ecc_bits, 8);
}

static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};

static const int anfc_hw_ecc_1024_strengths[] = {24};

static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
	{
		.stepsize = SZ_512,
		.strengths = anfc_hw_ecc_512_strengths,
		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
	},
	{
		.stepsize = SZ_1K,
		.strengths = anfc_hw_ecc_1024_strengths,
		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
	},
};

static const struct nand_ecc_caps anfc_hw_ecc_caps = {
	.stepinfos = anfc_hw_ecc_step_infos,
	.nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
	.calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
};

static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
				       struct nand_chip *chip)
{
	struct anand *anand = to_anand(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
	int ret;

	switch (mtd->writesize) {
	case SZ_512:
	case SZ_2K:
	case SZ_4K:
	case SZ_8K:
	case SZ_16K:
		break;
	default:
		dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
		return -EINVAL;
	}

	ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
	if (ret)
		return ret;

	switch (ecc->strength) {
	case 12:
		anand->strength = 0x1;
		break;
	case 8:
		anand->strength = 0x2;
		break;
	case 4:
		anand->strength = 0x3;
		break;
	case 24:
		anand->strength = 0x4;
		break;
	default:
		dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
		return -EINVAL;
	}

	switch (ecc->size) {
	case SZ_512:
		bch_gf_mag = 13;
		bch_prim_poly = 0x201b;
		break;
	case SZ_1K:
		bch_gf_mag = 14;
		bch_prim_poly = 0x4443;
		break;
	default:
		dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
		return -EINVAL;
	}

	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());

	ecc->steps = mtd->writesize / ecc->size;
	ecc->algo = NAND_ECC_ALGO_BCH;
	anand->ecc_bits = bch_gf_mag * ecc->strength;
	ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
	anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
	ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
	anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
			  ECC_CONF_LEN(anand->ecc_total) |
			  ECC_CONF_BCH_EN;

	anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
					   sizeof(*anand->errloc), GFP_KERNEL);
	if (!anand->errloc)
		return -ENOMEM;

	anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
	if (!anand->hw_ecc)
		return -ENOMEM;

	/* Enforce bit swapping to fit the hardware */
	anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
	if (!anand->bch)
		return -EINVAL;

	ecc->read_page = anfc_sel_read_page_hw_ecc;
	ecc->write_page = anfc_sel_write_page_hw_ecc;

	return 0;
}

static int anfc_attach_chip(struct nand_chip *chip)
{
	struct anand *anand = to_anand(chip);
	struct arasan_nfc *nfc = to_anfc(chip->controller);
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret = 0;

	if (mtd->writesize <= SZ_512)
		anand->caddr_cycles = 1;
	else
		anand->caddr_cycles = 2;

	if (chip->options & NAND_ROW_ADDR_3)
		anand->raddr_cycles = 3;
	else
		anand->raddr_cycles = 2;

	switch (mtd->writesize) {
	case 512:
		anand->page_sz = 0;
		break;
	case 1024:
		anand->page_sz = 5;
		break;
	case 2048:
		anand->page_sz = 1;
		break;
	case 4096:
		anand->page_sz = 2;
		break;
	case 8192:
		anand->page_sz = 3;
		break;
	case 16384:
		anand->page_sz = 4;
		break;
	default:
		return -EINVAL;
	}

	/* These hooks are valid for all ECC providers */
	chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;

	switch (chip->ecc.engine_type) {
	case NAND_ECC_ENGINE_TYPE_NONE:
	case NAND_ECC_ENGINE_TYPE_SOFT:
	case NAND_ECC_ENGINE_TYPE_ON_DIE:
		break;
	case NAND_ECC_ENGINE_TYPE_ON_HOST:
		ret = anfc_init_hw_ecc_controller(nfc, chip);
		break;
	default:
		dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
			chip->ecc.engine_type);
		return -EINVAL;
	}

	return ret;
}

static void anfc_detach_chip(struct nand_chip *chip)
{
	struct anand *anand = to_anand(chip);

	if (anand->bch)
		bch_free(anand->bch);
}

static const struct nand_controller_ops anfc_ops = {
	.exec_op = anfc_exec_op,
	.setup_interface = anfc_setup_interface,
	.attach_chip = anfc_attach_chip,
	.detach_chip = anfc_detach_chip,
};

static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
{
	struct anand *anand;
	struct nand_chip *chip;
	struct mtd_info *mtd;
	int rb, ret, i;

	anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
	if (!anand)
		return -ENOMEM;

	/* Chip-select init */
	anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32));
	if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) {
		dev_err(nfc->dev, "Invalid reg property\n");
		return -EINVAL;
	}

	anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx,
				     sizeof(*anand->cs_idx), GFP_KERNEL);
	if (!anand->cs_idx)
		return -ENOMEM;

	for (i = 0; i < anand->ncs_idx; i++) {
		ret = of_property_read_u32_index(np, "reg", i,
						 &anand->cs_idx[i]);
		if (ret) {
			dev_err(nfc->dev, "invalid CS property: %d\n", ret);
			return ret;
		}
	}

	/* Ready-busy init */
	ret = of_property_read_u32(np, "nand-rb", &rb);
	if (ret)
		return ret;

	if (rb >= ANFC_MAX_CS) {
		dev_err(nfc->dev, "Wrong RB %d\n", rb);
		return -EINVAL;
	}

	anand->rb = rb;

	chip = &anand->chip;
	mtd = nand_to_mtd(chip);
	mtd->dev.parent = nfc->dev;
	chip->controller = &nfc->controller;
	chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
			NAND_USES_DMA;

	nand_set_flash_node(chip, np);
	if (!mtd->name) {
		dev_err(nfc->dev, "NAND label property is mandatory\n");
		return -EINVAL;
	}

	ret = nand_scan(chip, anand->ncs_idx);
	if (ret) {
		dev_err(nfc->dev, "Scan operation failed\n");
		return ret;
	}

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret) {
		nand_cleanup(chip);
		return ret;
	}

	list_add_tail(&anand->node, &nfc->chips);

	return 0;
}

static void anfc_chips_cleanup(struct arasan_nfc *nfc)
{
	struct anand *anand, *tmp;
	struct nand_chip *chip;
	int ret;

	list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
		chip = &anand->chip;
		ret = mtd_device_unregister(nand_to_mtd(chip));
		WARN_ON(ret);
		nand_cleanup(chip);
		list_del(&anand->node);
	}
}

static int anfc_chips_init(struct arasan_nfc *nfc)
{
	struct device_node *np = nfc->dev->of_node, *nand_np;
	int nchips = of_get_child_count(np);
	int ret;

	if (!nchips) {
		dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
			nchips);
		return -EINVAL;
	}

	for_each_child_of_node(np, nand_np) {
		ret = anfc_chip_init(nfc, nand_np);
		if (ret) {
			of_node_put(nand_np);
			anfc_chips_cleanup(nfc);
			break;
		}
	}

	return ret;
}

static void anfc_reset(struct arasan_nfc *nfc)
{
	/* Disable interrupt signals */
	writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);

	/* Enable interrupt status */
	writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);

	nfc->cur_cs = -1;
}

static int anfc_parse_cs(struct arasan_nfc *nfc)
{
	int ret;

	/* Check the gpio-cs property */
	ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs);
	if (ret)
		return ret;

	/*
	 * The controller native CS cannot be both disabled at the same time.
	 * Hence, only one native CS can be used if GPIO CS are needed, so that
	 * the other is selected when a non-native CS must be asserted (not
	 * wired physically or configured as GPIO instead of NAND CS). In this
	 * case, the "not" chosen CS is assigned to nfc->spare_cs and selected
	 * whenever a GPIO CS must be asserted.
	 */
	if (nfc->cs_array && nfc->ncs > 2) {
		if (!nfc->cs_array[0] && !nfc->cs_array[1]) {
			dev_err(nfc->dev,
				"Assign a single native CS when using GPIOs\n");
			return -EINVAL;
		}

		if (nfc->cs_array[0])
			nfc->spare_cs = 0;
		else
			nfc->spare_cs = 1;
	}

	if (!nfc->cs_array) {
		nfc->cs_array = anfc_default_cs_array;
		nfc->ncs = ANFC_MAX_CS;
		return 0;
	}

	return 0;
}

static int anfc_probe(struct platform_device *pdev)
{
	struct arasan_nfc *nfc;
	int ret;

	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
	if (!nfc)
		return -ENOMEM;

	nfc->dev = &pdev->dev;
	nand_controller_init(&nfc->controller);
	nfc->controller.ops = &anfc_ops;
	INIT_LIST_HEAD(&nfc->chips);

	nfc->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(nfc->base))
		return PTR_ERR(nfc->base);

	anfc_reset(nfc);

	nfc->controller_clk = devm_clk_get_enabled(&pdev->dev, "controller");
	if (IS_ERR(nfc->controller_clk))
		return PTR_ERR(nfc->controller_clk);

	nfc->bus_clk = devm_clk_get_enabled(&pdev->dev, "bus");
	if (IS_ERR(nfc->bus_clk))
		return PTR_ERR(nfc->bus_clk);

	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
	if (ret)
		return ret;

	ret = anfc_parse_cs(nfc);
	if (ret)
		return ret;

	ret = anfc_chips_init(nfc);
	if (ret)
		return ret;

	platform_set_drvdata(pdev, nfc);

	return 0;
}

static void anfc_remove(struct platform_device *pdev)
{
	struct arasan_nfc *nfc = platform_get_drvdata(pdev);

	anfc_chips_cleanup(nfc);
}

static const struct of_device_id anfc_ids[] = {
	{
		.compatible = "xlnx,zynqmp-nand-controller",
	},
	{
		.compatible = "arasan,nfc-v3p10",
	},
	{}
};
MODULE_DEVICE_TABLE(of, anfc_ids);

static struct platform_driver anfc_driver = {
	.driver = {
		.name = "arasan-nand-controller",
		.of_match_table = anfc_ids,
	},
	.probe = anfc_probe,
	.remove_new = anfc_remove,
};
module_platform_driver(anfc_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");