summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/bcm_umi_nand.c
blob: d0d1bd4d0e7d13b4d065077632dac5773264e7f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
/*****************************************************************************
* Copyright 2004 - 2009 Broadcom Corporation.  All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/

/* ---- Include Files ---------------------------------------------------- */
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>

#include <asm/mach-types.h>

#include <mach/reg_nand.h>
#include <mach/reg_umi.h>

#include "nand_bcm_umi.h"

#include <mach/memory_settings.h>

#define USE_DMA 1
#include <mach/dma.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>

/* ---- External Variable Declarations ----------------------------------- */
/* ---- External Function Prototypes ------------------------------------- */
/* ---- Public Variables ------------------------------------------------- */
/* ---- Private Constants and Types -------------------------------------- */
static const __devinitconst char gBanner[] = KERN_INFO \
	"BCM UMI MTD NAND Driver: 1.00\n";

#if NAND_ECC_BCH
static uint8_t scan_ff_pattern[] = { 0xff };

static struct nand_bbt_descr largepage_bbt = {
	.options = 0,
	.offs = 0,
	.len = 1,
	.pattern = scan_ff_pattern
};
#endif

/*
** Preallocate a buffer to avoid having to do this every dma operation.
** This is the size of the preallocated coherent DMA buffer.
*/
#if USE_DMA
#define DMA_MIN_BUFLEN	512
#define DMA_MAX_BUFLEN	PAGE_SIZE
#define USE_DIRECT_IO(len)	(((len) < DMA_MIN_BUFLEN) || \
	((len) > DMA_MAX_BUFLEN))

/*
 * The current NAND data space goes from 0x80001900 to 0x80001FFF,
 * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
 * size NAND flash. Need to break the DMA down to multiple 1Ks.
 *
 * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
 */
#define DMA_MAX_LEN             1024

#else /* !USE_DMA */
#define DMA_MIN_BUFLEN          0
#define DMA_MAX_BUFLEN          0
#define USE_DIRECT_IO(len)      1
#endif
/* ---- Private Function Prototypes -------------------------------------- */
static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len);
static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
				   int len);

/* ---- Private Variables ------------------------------------------------ */
static struct mtd_info *board_mtd;
static void __iomem *bcm_umi_io_base;
static void *virtPtr;
static dma_addr_t physPtr;
static struct completion nand_comp;

/* ---- Private Functions ------------------------------------------------ */
#if NAND_ECC_BCH
#include "bcm_umi_bch.c"
#else
#include "bcm_umi_hamming.c"
#endif

#if USE_DMA

/* Handler called when the DMA finishes. */
static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
{
	complete(&nand_comp);
}

static int nand_dma_init(void)
{
	int rc;

	rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM,
		nand_dma_handler, NULL);
	if (rc != 0) {
		printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
		return rc;
	}

	virtPtr =
	    dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
	if (virtPtr == NULL) {
		printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n");
		return -ENOMEM;
	}

	return 0;
}

static void nand_dma_term(void)
{
	if (virtPtr != NULL)
		dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
}

static void nand_dma_read(void *buf, int len)
{
	int offset = 0;
	int tmp_len = 0;
	int len_left = len;
	DMA_Handle_t hndl;

	if (virtPtr == NULL)
		panic("nand_dma_read: virtPtr == NULL\n");

	if ((void *)physPtr == NULL)
		panic("nand_dma_read: physPtr == NULL\n");

	hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
	if (hndl < 0) {
		printk(KERN_ERR
		       "nand_dma_read: unable to allocate dma channel: %d\n",
		       (int)hndl);
		panic("\n");
	}

	while (len_left > 0) {
		if (len_left > DMA_MAX_LEN) {
			tmp_len = DMA_MAX_LEN;
			len_left -= DMA_MAX_LEN;
		} else {
			tmp_len = len_left;
			len_left = 0;
		}

		init_completion(&nand_comp);
		dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
					physPtr + offset, tmp_len);
		wait_for_completion(&nand_comp);

		offset += tmp_len;
	}

	dma_free_channel(hndl);

	if (buf != NULL)
		memcpy(buf, virtPtr, len);
}

static void nand_dma_write(const void *buf, int len)
{
	int offset = 0;
	int tmp_len = 0;
	int len_left = len;
	DMA_Handle_t hndl;

	if (buf == NULL)
		panic("nand_dma_write: buf == NULL\n");

	if (virtPtr == NULL)
		panic("nand_dma_write: virtPtr == NULL\n");

	if ((void *)physPtr == NULL)
		panic("nand_dma_write: physPtr == NULL\n");

	memcpy(virtPtr, buf, len);


	hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
	if (hndl < 0) {
		printk(KERN_ERR
		       "nand_dma_write: unable to allocate dma channel: %d\n",
		       (int)hndl);
		panic("\n");
	}

	while (len_left > 0) {
		if (len_left > DMA_MAX_LEN) {
			tmp_len = DMA_MAX_LEN;
			len_left -= DMA_MAX_LEN;
		} else {
			tmp_len = len_left;
			len_left = 0;
		}

		init_completion(&nand_comp);
		dma_transfer_mem_to_mem(hndl, physPtr + offset,
					REG_NAND_DATA_PADDR, tmp_len);
		wait_for_completion(&nand_comp);

		offset += tmp_len;
	}

	dma_free_channel(hndl);
}

#endif

static int nand_dev_ready(struct mtd_info *mtd)
{
	return nand_bcm_umi_dev_ready();
}

/****************************************************************************
*
*  bcm_umi_nand_inithw
*
*   This routine does the necessary hardware (board-specific)
*   initializations.  This includes setting up the timings, etc.
*
***************************************************************************/
int bcm_umi_nand_inithw(void)
{
	/* Configure nand timing parameters */
	writel(readl(&REG_UMI_NAND_TCR) & ~0x7ffff, &REG_UMI_NAND_TCR);
	writel(readl(&REG_UMI_NAND_TCR) | HW_CFG_NAND_TCR, &REG_UMI_NAND_TCR);

#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
	/* enable software control of CS */
	writel(readl(&REG_UMI_NAND_TCR) | REG_UMI_NAND_TCR_CS_SWCTRL, &REG_UMI_NAND_TCR);
#endif

	/* keep NAND chip select asserted */
	writel(readl(&REG_UMI_NAND_RCSR) | REG_UMI_NAND_RCSR_CS_ASSERTED, &REG_UMI_NAND_RCSR);

	writel(readl(&REG_UMI_NAND_TCR) & ~REG_UMI_NAND_TCR_WORD16, &REG_UMI_NAND_TCR);
	/* enable writes to flash */
	writel(readl(&REG_UMI_MMD_ICR) | REG_UMI_MMD_ICR_FLASH_WP, &REG_UMI_MMD_ICR);

	writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
	nand_bcm_umi_wait_till_ready();

#if NAND_ECC_BCH
	nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
#endif

	return 0;
}

/* Used to turn latch the proper register for access. */
static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
				   unsigned int ctrl)
{
	/* send command to hardware */
	struct nand_chip *chip = mtd->priv;
	if (ctrl & NAND_CTRL_CHANGE) {
		if (ctrl & NAND_CLE) {
			chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
			goto CMD;
		}
		if (ctrl & NAND_ALE) {
			chip->IO_ADDR_W =
			    bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
			goto CMD;
		}
		chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
	}

CMD:
	/* Send command to chip directly */
	if (cmd != NAND_CMD_NONE)
		writeb(cmd, chip->IO_ADDR_W);
}

static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
				   int len)
{
	if (USE_DIRECT_IO(len)) {
		/* Do it the old way if the buffer is small or too large.
		 * Probably quicker than starting and checking dma. */
		int i;
		struct nand_chip *this = mtd->priv;

		for (i = 0; i < len; i++)
			writeb(buf[i], this->IO_ADDR_W);
	}
#if USE_DMA
	else
		nand_dma_write(buf, len);
#endif
}

static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
{
	if (USE_DIRECT_IO(len)) {
		int i;
		struct nand_chip *this = mtd->priv;

		for (i = 0; i < len; i++)
			buf[i] = readb(this->IO_ADDR_R);
	}
#if USE_DMA
	else
		nand_dma_read(buf, len);
#endif
}

static uint8_t readbackbuf[NAND_MAX_PAGESIZE];
static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
				   int len)
{
	/*
	 * Try to readback page with ECC correction. This is necessary
	 * for MLC parts which may have permanently stuck bits.
	 */
	struct nand_chip *chip = mtd->priv;
	int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0, 0);
	if (ret < 0)
		return -EFAULT;
	else {
		if (memcmp(readbackbuf, buf, len) == 0)
			return 0;

		return -EFAULT;
	}
	return 0;
}

static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
{
	struct nand_chip *this;
	struct resource *r;
	int err = 0;

	printk(gBanner);

	/* Allocate memory for MTD device structure and private data */
	board_mtd =
	    kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
		    GFP_KERNEL);
	if (!board_mtd) {
		printk(KERN_WARNING
		       "Unable to allocate NAND MTD device structure.\n");
		return -ENOMEM;
	}

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	if (!r) {
		err = -ENXIO;
		goto out_free;
	}

	/* map physical address */
	bcm_umi_io_base = ioremap(r->start, resource_size(r));

	if (!bcm_umi_io_base) {
		printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n");
		err = -EIO;
		goto out_free;
	}

	/* Get pointer to private data */
	this = (struct nand_chip *)(&board_mtd[1]);

	/* Initialize structures */
	memset((char *)board_mtd, 0, sizeof(struct mtd_info));
	memset((char *)this, 0, sizeof(struct nand_chip));

	/* Link the private data with the MTD structure */
	board_mtd->priv = this;

	/* Initialize the NAND hardware.  */
	if (bcm_umi_nand_inithw() < 0) {
		printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n");
		err = -EIO;
		goto out_unmap;
	}

	/* Set address of NAND IO lines */
	this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
	this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;

	/* Set command delay time, see datasheet for correct value */
	this->chip_delay = 0;
	/* Assign the device ready function, if available */
	this->dev_ready = nand_dev_ready;
	this->options = 0;

	this->write_buf = bcm_umi_nand_write_buf;
	this->read_buf = bcm_umi_nand_read_buf;
	this->verify_buf = bcm_umi_nand_verify_buf;

	this->cmd_ctrl = bcm_umi_nand_hwcontrol;
	this->ecc.mode = NAND_ECC_HW;
	this->ecc.size = 512;
	this->ecc.bytes = NAND_ECC_NUM_BYTES;
#if NAND_ECC_BCH
	this->ecc.read_page = bcm_umi_bch_read_page_hwecc;
	this->ecc.write_page = bcm_umi_bch_write_page_hwecc;
#else
	this->ecc.correct = nand_correct_data512;
	this->ecc.calculate = bcm_umi_hamming_get_hw_ecc;
	this->ecc.hwctl = bcm_umi_hamming_enable_hwecc;
#endif

#if USE_DMA
	err = nand_dma_init();
	if (err != 0)
		goto out_unmap;
#endif

	/* Figure out the size of the device that we have.
	 * We need to do this to figure out which ECC
	 * layout we'll be using.
	 */

	err = nand_scan_ident(board_mtd, 1, NULL);
	if (err) {
		printk(KERN_ERR "nand_scan failed: %d\n", err);
		goto out_unmap;
	}

	/* Now that we know the nand size, we can setup the ECC layout */

	switch (board_mtd->writesize) {	/* writesize is the pagesize */
	case 4096:
		this->ecc.layout = &nand_hw_eccoob_4096;
		break;
	case 2048:
		this->ecc.layout = &nand_hw_eccoob_2048;
		break;
	case 512:
		this->ecc.layout = &nand_hw_eccoob_512;
		break;
	default:
		{
			printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
					 board_mtd->writesize);
			err = -EINVAL;
			goto out_unmap;
		}
	}

#if NAND_ECC_BCH
	if (board_mtd->writesize > 512) {
		if (this->bbt_options & NAND_BBT_USE_FLASH)
			largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
		this->badblock_pattern = &largepage_bbt;
	}

	this->ecc.strength = 8;

#endif

	/* Now finish off the scan, now that ecc.layout has been initialized. */

	err = nand_scan_tail(board_mtd);
	if (err) {
		printk(KERN_ERR "nand_scan failed: %d\n", err);
		goto out_unmap;
	}

	/* Register the partitions */
	board_mtd->name = "bcm_umi-nand";
	mtd_device_parse_register(board_mtd, NULL, NULL, NULL, 0);

	/* Return happy */
	return 0;
out_unmap:
	iounmap(bcm_umi_io_base);
out_free:
	kfree(board_mtd);
	return err;
}

static int bcm_umi_nand_remove(struct platform_device *pdev)
{
#if USE_DMA
	nand_dma_term();
#endif

	/* Release resources, unregister device */
	nand_release(board_mtd);

	/* unmap physical address */
	iounmap(bcm_umi_io_base);

	/* Free the MTD device structure */
	kfree(board_mtd);

	return 0;
}

#ifdef CONFIG_PM
static int bcm_umi_nand_suspend(struct platform_device *pdev,
				pm_message_t state)
{
	printk(KERN_ERR "MTD NAND suspend is being called\n");
	return 0;
}

static int bcm_umi_nand_resume(struct platform_device *pdev)
{
	printk(KERN_ERR "MTD NAND resume is being called\n");
	return 0;
}
#else
#define bcm_umi_nand_suspend   NULL
#define bcm_umi_nand_resume    NULL
#endif

static struct platform_driver nand_driver = {
	.driver = {
		   .name = "bcm-nand",
		   .owner = THIS_MODULE,
		   },
	.probe = bcm_umi_nand_probe,
	.remove = bcm_umi_nand_remove,
	.suspend = bcm_umi_nand_suspend,
	.resume = bcm_umi_nand_resume,
};

module_platform_driver(nand_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Broadcom");
MODULE_DESCRIPTION("BCM UMI MTD NAND driver");