summaryrefslogtreecommitdiff
path: root/drivers/misc/habanalabs/common/device.c
blob: b71303ba11d0e20396c192008877f3ab6d82934d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright 2016-2022 HabanaLabs, Ltd.
 * All Rights Reserved.
 */

#define pr_fmt(fmt)			"habanalabs: " fmt

#include <uapi/misc/habanalabs.h>
#include "habanalabs.h"

#include <linux/pci.h>
#include <linux/hwmon.h>
#include <linux/vmalloc.h>

#include <trace/events/habanalabs.h>

#define HL_RESET_DELAY_USEC		10000	/* 10ms */

enum dma_alloc_type {
	DMA_ALLOC_COHERENT,
	DMA_ALLOC_CPU_ACCESSIBLE,
	DMA_ALLOC_POOL,
};

#define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788

/*
 * hl_set_dram_bar- sets the bar to allow later access to address
 *
 * @hdev: pointer to habanalabs device structure.
 * @addr: the address the caller wants to access.
 * @region: the PCI region.
 * @new_bar_region_base: the new BAR region base address.
 *
 * @return: the old BAR base address on success, U64_MAX for failure.
 *	    The caller should set it back to the old address after use.
 *
 * In case the bar space does not cover the whole address space,
 * the bar base address should be set to allow access to a given address.
 * This function can be called also if the bar doesn't need to be set,
 * in that case it just won't change the base.
 */
static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region,
				u64 *new_bar_region_base)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u64 bar_base_addr, old_base;

	if (is_power_of_2(prop->dram_pci_bar_size))
		bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
	else
		bar_base_addr = DIV_ROUND_DOWN_ULL(addr, prop->dram_pci_bar_size) *
				prop->dram_pci_bar_size;

	old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);

	/* in case of success we need to update the new BAR base */
	if ((old_base != U64_MAX) && new_bar_region_base)
		*new_bar_region_base = bar_base_addr;

	return old_base;
}

int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar)
{
	struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
	u64 old_base = 0, rc, new_bar_region_base = 0;
	void __iomem *acc_addr;

	if (set_dram_bar) {
		old_base = hl_set_dram_bar(hdev, addr, region, &new_bar_region_base);
		if (old_base == U64_MAX)
			return -EIO;
	}

	acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
			(addr - new_bar_region_base);

	switch (acc_type) {
	case DEBUGFS_READ8:
		*val = readb(acc_addr);
		break;
	case DEBUGFS_WRITE8:
		writeb(*val, acc_addr);
		break;
	case DEBUGFS_READ32:
		*val = readl(acc_addr);
		break;
	case DEBUGFS_WRITE32:
		writel(*val, acc_addr);
		break;
	case DEBUGFS_READ64:
		*val = readq(acc_addr);
		break;
	case DEBUGFS_WRITE64:
		writeq(*val, acc_addr);
		break;
	}

	if (set_dram_bar) {
		rc = hl_set_dram_bar(hdev, old_base, region, NULL);
		if (rc == U64_MAX)
			return -EIO;
	}

	return 0;
}

static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
					gfp_t flag, enum dma_alloc_type alloc_type,
					const char *caller)
{
	void *ptr = NULL;

	switch (alloc_type) {
	case DMA_ALLOC_COHERENT:
		ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag);
		break;
	case DMA_ALLOC_CPU_ACCESSIBLE:
		ptr = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
		break;
	case DMA_ALLOC_POOL:
		ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle);
		break;
	}

	if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr))
		trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size,
						caller);

	return ptr;
}

static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr,
					dma_addr_t dma_handle, enum dma_alloc_type alloc_type,
					const char *caller)
{
	/* this is needed to avoid warning on using freed pointer */
	u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr;

	switch (alloc_type) {
	case DMA_ALLOC_COHERENT:
		hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle);
		break;
	case DMA_ALLOC_CPU_ACCESSIBLE:
		hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, cpu_addr);
		break;
	case DMA_ALLOC_POOL:
		hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle);
		break;
	}

	trace_habanalabs_dma_free(hdev->dev, store_cpu_addr, dma_handle, size, caller);
}

void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
					gfp_t flag, const char *caller)
{
	return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller);
}

void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
					dma_addr_t dma_handle, const char *caller)
{
	hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller);
}

void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size,
						dma_addr_t *dma_handle, const char *caller)
{
	return hl_dma_alloc_common(hdev, size, dma_handle, 0, DMA_ALLOC_CPU_ACCESSIBLE, caller);
}

void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr,
						const char *caller)
{
	hl_asic_dma_free_common(hdev, size, vaddr, 0, DMA_ALLOC_CPU_ACCESSIBLE, caller);
}

void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
					dma_addr_t *dma_handle, const char *caller)
{
	return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller);
}

void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
					const char *caller)
{
	hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller);
}

int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct scatterlist *sg;
	int rc, i;

	rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
	if (rc)
		return rc;

	/* Shift to the device's base physical address of host memory if necessary */
	if (prop->device_dma_offset_for_host_access)
		for_each_sgtable_dma_sg(sgt, sg, i)
			sg->dma_address += prop->device_dma_offset_for_host_access;

	return 0;
}

void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct scatterlist *sg;
	int i;

	/* Cancel the device's base physical address of host memory if necessary */
	if (prop->device_dma_offset_for_host_access)
		for_each_sgtable_dma_sg(sgt, sg, i)
			sg->dma_address -= prop->device_dma_offset_for_host_access;

	dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
}

/*
 * hl_access_cfg_region - access the config region
 *
 * @hdev: pointer to habanalabs device structure
 * @addr: the address to access
 * @val: the value to write from or read to
 * @acc_type: the type of access (read/write 64/32)
 */
int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
	enum debugfs_access_type acc_type)
{
	struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
	u32 val_h, val_l;

	if (!IS_ALIGNED(addr, sizeof(u32))) {
		dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
		return -EINVAL;
	}

	switch (acc_type) {
	case DEBUGFS_READ32:
		*val = RREG32(addr - cfg_region->region_base);
		break;
	case DEBUGFS_WRITE32:
		WREG32(addr - cfg_region->region_base, *val);
		break;
	case DEBUGFS_READ64:
		val_l = RREG32(addr - cfg_region->region_base);
		val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);

		*val = (((u64) val_h) << 32) | val_l;
		break;
	case DEBUGFS_WRITE64:
		WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
		WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
		break;
	default:
		dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
		return -EOPNOTSUPP;
	}

	return 0;
}

/*
 * hl_access_dev_mem - access device memory
 *
 * @hdev: pointer to habanalabs device structure
 * @region_type: the type of the region the address belongs to
 * @addr: the address to access
 * @val: the value to write from or read to
 * @acc_type: the type of access (r/w, 32/64)
 */
int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
			u64 addr, u64 *val, enum debugfs_access_type acc_type)
{
	switch (region_type) {
	case PCI_REGION_CFG:
		return hl_access_cfg_region(hdev, addr, val, acc_type);
	case PCI_REGION_SRAM:
	case PCI_REGION_DRAM:
		return hl_access_sram_dram_region(hdev, addr, val, acc_type,
				region_type, (region_type == PCI_REGION_DRAM));
	default:
		return -EFAULT;
	}

	return 0;
}

void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...)
{
	va_list args;
	int str_size;

	va_start(args, fmt);
	/* Calculate formatted string length. Assuming each string is null terminated, hence
	 * increment result by 1
	 */
	str_size = vsnprintf(NULL, 0, fmt, args) + 1;
	va_end(args);

	if ((e->actual_size + str_size) < e->allocated_buf_size) {
		va_start(args, fmt);
		vsnprintf(e->buf + e->actual_size, str_size, fmt, args);
		va_end(args);
	}

	/* Need to update the size even when not updating destination buffer to get the exact size
	 * of all input strings
	 */
	e->actual_size += str_size;
}

enum hl_device_status hl_device_status(struct hl_device *hdev)
{
	enum hl_device_status status;

	if (hdev->reset_info.in_reset) {
		if (hdev->reset_info.in_compute_reset)
			status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE;
		else
			status = HL_DEVICE_STATUS_IN_RESET;
	} else if (hdev->reset_info.needs_reset) {
		status = HL_DEVICE_STATUS_NEEDS_RESET;
	} else if (hdev->disabled) {
		status = HL_DEVICE_STATUS_MALFUNCTION;
	} else if (!hdev->init_done) {
		status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
	} else {
		status = HL_DEVICE_STATUS_OPERATIONAL;
	}

	return status;
}

bool hl_device_operational(struct hl_device *hdev,
		enum hl_device_status *status)
{
	enum hl_device_status current_status;

	current_status = hl_device_status(hdev);
	if (status)
		*status = current_status;

	switch (current_status) {
	case HL_DEVICE_STATUS_IN_RESET:
	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
	case HL_DEVICE_STATUS_MALFUNCTION:
	case HL_DEVICE_STATUS_NEEDS_RESET:
		return false;
	case HL_DEVICE_STATUS_OPERATIONAL:
	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
	default:
		return true;
	}
}

bool hl_ctrl_device_operational(struct hl_device *hdev,
		enum hl_device_status *status)
{
	enum hl_device_status current_status;

	current_status = hl_device_status(hdev);
	if (status)
		*status = current_status;

	switch (current_status) {
	case HL_DEVICE_STATUS_MALFUNCTION:
		return false;
	case HL_DEVICE_STATUS_IN_RESET:
	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
	case HL_DEVICE_STATUS_NEEDS_RESET:
	case HL_DEVICE_STATUS_OPERATIONAL:
	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
	default:
		return true;
	}
}

static void hpriv_release(struct kref *ref)
{
	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
	bool device_is_idle = true;
	struct hl_fpriv *hpriv;
	struct hl_device *hdev;

	hpriv = container_of(ref, struct hl_fpriv, refcount);

	hdev = hpriv->hdev;

	hdev->asic_funcs->send_device_activity(hdev, false);

	put_pid(hpriv->taskpid);

	hl_debugfs_remove_file(hpriv);

	mutex_destroy(&hpriv->ctx_lock);
	mutex_destroy(&hpriv->restore_phase_mutex);

	/* No need for idle status check if device is going to be reset in any case */
	if (!hdev->reset_upon_device_release && hdev->pdev && !hdev->pldm)
		device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask,
							HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL);

	if (!device_is_idle)
		dev_err(hdev->dev, "device not idle after user context is closed (0x%llx_%llx)\n",
			idle_mask[1], idle_mask[0]);

	/* We need to remove the user from the list to make sure the reset process won't
	 * try to kill the user process. Because, if we got here, it means there are no
	 * more driver/device resources that the user process is occupying so there is
	 * no need to kill it
	 *
	 * However, we can't set the compute_ctx to NULL at this stage. This is to prevent
	 * a race between the release and opening the device again. We don't want to let
	 * a user open the device while there a reset is about to happen.
	 */
	mutex_lock(&hdev->fpriv_list_lock);
	list_del(&hpriv->dev_node);
	mutex_unlock(&hdev->fpriv_list_lock);

	if (!device_is_idle || hdev->reset_upon_device_release) {
		hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
	} else {
		int rc = hdev->asic_funcs->scrub_device_mem(hdev);

		if (rc)
			dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc);
	}

	/* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
	 * thread, we don't care because the in_reset is marked so if a user will try to open
	 * the device it will fail on that, even if compute_ctx is false.
	 */
	mutex_lock(&hdev->fpriv_list_lock);
	hdev->is_compute_ctx_active = false;
	mutex_unlock(&hdev->fpriv_list_lock);

	hdev->compute_ctx_in_release = 0;

	/* release the eventfd */
	if (hpriv->notifier_event.eventfd)
		eventfd_ctx_put(hpriv->notifier_event.eventfd);

	mutex_destroy(&hpriv->notifier_event.lock);

	kfree(hpriv);
}

void hl_hpriv_get(struct hl_fpriv *hpriv)
{
	kref_get(&hpriv->refcount);
}

int hl_hpriv_put(struct hl_fpriv *hpriv)
{
	return kref_put(&hpriv->refcount, hpriv_release);
}

/*
 * hl_device_release - release function for habanalabs device
 *
 * @inode: pointer to inode structure
 * @filp: pointer to file structure
 *
 * Called when process closes an habanalabs device
 */
static int hl_device_release(struct inode *inode, struct file *filp)
{
	struct hl_fpriv *hpriv = filp->private_data;
	struct hl_device *hdev = hpriv->hdev;

	filp->private_data = NULL;

	if (!hdev) {
		pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
		put_pid(hpriv->taskpid);
		return 0;
	}

	/* Each pending user interrupt holds the user's context, hence we
	 * must release them all before calling hl_ctx_mgr_fini().
	 */
	hl_release_pending_user_interrupts(hpriv->hdev);

	hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
	hl_mem_mgr_fini(&hpriv->mem_mgr);

	hdev->compute_ctx_in_release = 1;

	if (!hl_hpriv_put(hpriv))
		dev_notice(hdev->dev,
			"User process closed FD but device still in use\n");

	hdev->last_open_session_duration_jif =
		jiffies - hdev->last_successful_open_jif;

	return 0;
}

static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
{
	struct hl_fpriv *hpriv = filp->private_data;
	struct hl_device *hdev = hpriv->hdev;

	filp->private_data = NULL;

	if (!hdev) {
		pr_err("Closing FD after device was removed\n");
		goto out;
	}

	mutex_lock(&hdev->fpriv_ctrl_list_lock);
	list_del(&hpriv->dev_node);
	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
out:
	/* release the eventfd */
	if (hpriv->notifier_event.eventfd)
		eventfd_ctx_put(hpriv->notifier_event.eventfd);

	mutex_destroy(&hpriv->notifier_event.lock);
	put_pid(hpriv->taskpid);

	kfree(hpriv);

	return 0;
}

/*
 * hl_mmap - mmap function for habanalabs device
 *
 * @*filp: pointer to file structure
 * @*vma: pointer to vm_area_struct of the process
 *
 * Called when process does an mmap on habanalabs device. Call the relevant mmap
 * function at the end of the common code.
 */
static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct hl_fpriv *hpriv = filp->private_data;
	struct hl_device *hdev = hpriv->hdev;
	unsigned long vm_pgoff;

	if (!hdev) {
		pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
		return -ENODEV;
	}

	vm_pgoff = vma->vm_pgoff;

	switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
	case HL_MMAP_TYPE_BLOCK:
		vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
		return hl_hw_block_mmap(hpriv, vma);

	case HL_MMAP_TYPE_CB:
	case HL_MMAP_TYPE_TS_BUFF:
		return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
	}
	return -EINVAL;
}

static const struct file_operations hl_ops = {
	.owner = THIS_MODULE,
	.open = hl_device_open,
	.release = hl_device_release,
	.mmap = hl_mmap,
	.unlocked_ioctl = hl_ioctl,
	.compat_ioctl = hl_ioctl
};

static const struct file_operations hl_ctrl_ops = {
	.owner = THIS_MODULE,
	.open = hl_device_open_ctrl,
	.release = hl_device_release_ctrl,
	.unlocked_ioctl = hl_ioctl_control,
	.compat_ioctl = hl_ioctl_control
};

static void device_release_func(struct device *dev)
{
	kfree(dev);
}

/*
 * device_init_cdev - Initialize cdev and device for habanalabs device
 *
 * @hdev: pointer to habanalabs device structure
 * @hclass: pointer to the class object of the device
 * @minor: minor number of the specific device
 * @fpos: file operations to install for this device
 * @name: name of the device as it will appear in the filesystem
 * @cdev: pointer to the char device object that will be initialized
 * @dev: pointer to the device object that will be initialized
 *
 * Initialize a cdev and a Linux device for habanalabs's device.
 */
static int device_init_cdev(struct hl_device *hdev, struct class *hclass,
				int minor, const struct file_operations *fops,
				char *name, struct cdev *cdev,
				struct device **dev)
{
	cdev_init(cdev, fops);
	cdev->owner = THIS_MODULE;

	*dev = kzalloc(sizeof(**dev), GFP_KERNEL);
	if (!*dev)
		return -ENOMEM;

	device_initialize(*dev);
	(*dev)->devt = MKDEV(hdev->major, minor);
	(*dev)->class = hclass;
	(*dev)->release = device_release_func;
	dev_set_drvdata(*dev, hdev);
	dev_set_name(*dev, "%s", name);

	return 0;
}

static int device_cdev_sysfs_add(struct hl_device *hdev)
{
	int rc;

	rc = cdev_device_add(&hdev->cdev, hdev->dev);
	if (rc) {
		dev_err(hdev->dev,
			"failed to add a char device to the system\n");
		return rc;
	}

	rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
	if (rc) {
		dev_err(hdev->dev,
			"failed to add a control char device to the system\n");
		goto delete_cdev_device;
	}

	/* hl_sysfs_init() must be done after adding the device to the system */
	rc = hl_sysfs_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize sysfs\n");
		goto delete_ctrl_cdev_device;
	}

	hdev->cdev_sysfs_created = true;

	return 0;

delete_ctrl_cdev_device:
	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
delete_cdev_device:
	cdev_device_del(&hdev->cdev, hdev->dev);
	return rc;
}

static void device_cdev_sysfs_del(struct hl_device *hdev)
{
	if (!hdev->cdev_sysfs_created)
		goto put_devices;

	hl_sysfs_fini(hdev);
	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
	cdev_device_del(&hdev->cdev, hdev->dev);

put_devices:
	put_device(hdev->dev);
	put_device(hdev->dev_ctrl);
}

static void device_hard_reset_pending(struct work_struct *work)
{
	struct hl_device_reset_work *device_reset_work =
		container_of(work, struct hl_device_reset_work, reset_work.work);
	struct hl_device *hdev = device_reset_work->hdev;
	u32 flags;
	int rc;

	flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;

	rc = hl_device_reset(hdev, flags);
	if ((rc == -EBUSY) && !hdev->device_fini_pending) {
		dev_info(hdev->dev,
			"Could not reset device. will try again in %u seconds",
			HL_PENDING_RESET_PER_SEC);

		queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work,
					msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
	}
}

/*
 * device_early_init - do some early initialization for the habanalabs device
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Install the relevant function pointers and call the early_init function,
 * if such a function exists
 */
static int device_early_init(struct hl_device *hdev)
{
	int i, rc;
	char workq_name[32];

	switch (hdev->asic_type) {
	case ASIC_GOYA:
		goya_set_asic_funcs(hdev);
		strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
		break;
	case ASIC_GAUDI:
		gaudi_set_asic_funcs(hdev);
		strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
		break;
	case ASIC_GAUDI_SEC:
		gaudi_set_asic_funcs(hdev);
		strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
		break;
	case ASIC_GAUDI2:
		gaudi2_set_asic_funcs(hdev);
		strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name));
		break;
	case ASIC_GAUDI2_SEC:
		gaudi2_set_asic_funcs(hdev);
		strscpy(hdev->asic_name, "GAUDI2 SEC", sizeof(hdev->asic_name));
		break;
	default:
		dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
			hdev->asic_type);
		return -EINVAL;
	}

	rc = hdev->asic_funcs->early_init(hdev);
	if (rc)
		return rc;

	rc = hl_asid_init(hdev);
	if (rc)
		goto early_fini;

	if (hdev->asic_prop.completion_queues_count) {
		hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
				sizeof(struct workqueue_struct *),
				GFP_KERNEL);
		if (!hdev->cq_wq) {
			rc = -ENOMEM;
			goto asid_fini;
		}
	}

	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
		snprintf(workq_name, 32, "hl-free-jobs-%u", (u32) i);
		hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
		if (hdev->cq_wq[i] == NULL) {
			dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
			rc = -ENOMEM;
			goto free_cq_wq;
		}
	}

	hdev->eq_wq = alloc_workqueue("hl-events", WQ_UNBOUND, 0);
	if (hdev->eq_wq == NULL) {
		dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
		rc = -ENOMEM;
		goto free_cq_wq;
	}

	hdev->cs_cmplt_wq = alloc_workqueue("hl-cs-completions", WQ_UNBOUND, 0);
	if (!hdev->cs_cmplt_wq) {
		dev_err(hdev->dev,
			"Failed to allocate CS completions workqueue\n");
		rc = -ENOMEM;
		goto free_eq_wq;
	}

	hdev->ts_free_obj_wq = alloc_workqueue("hl-ts-free-obj", WQ_UNBOUND, 0);
	if (!hdev->ts_free_obj_wq) {
		dev_err(hdev->dev,
			"Failed to allocate Timestamp registration free workqueue\n");
		rc = -ENOMEM;
		goto free_cs_cmplt_wq;
	}

	hdev->prefetch_wq = alloc_workqueue("hl-prefetch", WQ_UNBOUND, 0);
	if (!hdev->prefetch_wq) {
		dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
		rc = -ENOMEM;
		goto free_ts_free_wq;
	}

	hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info),
					GFP_KERNEL);
	if (!hdev->hl_chip_info) {
		rc = -ENOMEM;
		goto free_prefetch_wq;
	}

	rc = hl_mmu_if_set_funcs(hdev);
	if (rc)
		goto free_chip_info;

	hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);

	hdev->reset_wq = create_singlethread_workqueue("hl_device_reset");
	if (!hdev->reset_wq) {
		rc = -ENOMEM;
		dev_err(hdev->dev, "Failed to create device reset WQ\n");
		goto free_cb_mgr;
	}

	INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work,
			device_hard_reset_pending);
	hdev->device_reset_work.hdev = hdev;
	hdev->device_fini_pending = 0;

	mutex_init(&hdev->send_cpu_message_lock);
	mutex_init(&hdev->debug_lock);
	INIT_LIST_HEAD(&hdev->cs_mirror_list);
	spin_lock_init(&hdev->cs_mirror_lock);
	spin_lock_init(&hdev->reset_info.lock);
	INIT_LIST_HEAD(&hdev->fpriv_list);
	INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
	mutex_init(&hdev->fpriv_list_lock);
	mutex_init(&hdev->fpriv_ctrl_list_lock);
	mutex_init(&hdev->clk_throttling.lock);

	return 0;

free_cb_mgr:
	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
free_chip_info:
	kfree(hdev->hl_chip_info);
free_prefetch_wq:
	destroy_workqueue(hdev->prefetch_wq);
free_ts_free_wq:
	destroy_workqueue(hdev->ts_free_obj_wq);
free_cs_cmplt_wq:
	destroy_workqueue(hdev->cs_cmplt_wq);
free_eq_wq:
	destroy_workqueue(hdev->eq_wq);
free_cq_wq:
	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
		if (hdev->cq_wq[i])
			destroy_workqueue(hdev->cq_wq[i]);
	kfree(hdev->cq_wq);
asid_fini:
	hl_asid_fini(hdev);
early_fini:
	if (hdev->asic_funcs->early_fini)
		hdev->asic_funcs->early_fini(hdev);

	return rc;
}

/*
 * device_early_fini - finalize all that was done in device_early_init
 *
 * @hdev: pointer to habanalabs device structure
 *
 */
static void device_early_fini(struct hl_device *hdev)
{
	int i;

	mutex_destroy(&hdev->debug_lock);
	mutex_destroy(&hdev->send_cpu_message_lock);

	mutex_destroy(&hdev->fpriv_list_lock);
	mutex_destroy(&hdev->fpriv_ctrl_list_lock);

	mutex_destroy(&hdev->clk_throttling.lock);

	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);

	kfree(hdev->hl_chip_info);

	destroy_workqueue(hdev->prefetch_wq);
	destroy_workqueue(hdev->ts_free_obj_wq);
	destroy_workqueue(hdev->cs_cmplt_wq);
	destroy_workqueue(hdev->eq_wq);
	destroy_workqueue(hdev->reset_wq);

	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
		destroy_workqueue(hdev->cq_wq[i]);
	kfree(hdev->cq_wq);

	hl_asid_fini(hdev);

	if (hdev->asic_funcs->early_fini)
		hdev->asic_funcs->early_fini(hdev);
}

static void hl_device_heartbeat(struct work_struct *work)
{
	struct hl_device *hdev = container_of(work, struct hl_device,
						work_heartbeat.work);

	if (!hl_device_operational(hdev, NULL))
		goto reschedule;

	if (!hdev->asic_funcs->send_heartbeat(hdev))
		goto reschedule;

	if (hl_device_operational(hdev, NULL))
		dev_err(hdev->dev, "Device heartbeat failed!\n");

	hl_device_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT);

	return;

reschedule:
	/*
	 * prev_reset_trigger tracks consecutive fatal h/w errors until first
	 * heartbeat immediately post reset.
	 * If control reached here, then at least one heartbeat work has been
	 * scheduled since last reset/init cycle.
	 * So if the device is not already in reset cycle, reset the flag
	 * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
	 * status for at least one heartbeat. From this point driver restarts
	 * tracking future consecutive fatal errors.
	 */
	if (!hdev->reset_info.in_reset)
		hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;

	schedule_delayed_work(&hdev->work_heartbeat,
			usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
}

/*
 * device_late_init - do late stuff initialization for the habanalabs device
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Do stuff that either needs the device H/W queues to be active or needs
 * to happen after all the rest of the initialization is finished
 */
static int device_late_init(struct hl_device *hdev)
{
	int rc;

	if (hdev->asic_funcs->late_init) {
		rc = hdev->asic_funcs->late_init(hdev);
		if (rc) {
			dev_err(hdev->dev,
				"failed late initialization for the H/W\n");
			return rc;
		}
	}

	hdev->high_pll = hdev->asic_prop.high_pll;

	if (hdev->heartbeat) {
		INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
		schedule_delayed_work(&hdev->work_heartbeat,
				usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
	}

	hdev->late_init_done = true;

	return 0;
}

/*
 * device_late_fini - finalize all that was done in device_late_init
 *
 * @hdev: pointer to habanalabs device structure
 *
 */
static void device_late_fini(struct hl_device *hdev)
{
	if (!hdev->late_init_done)
		return;

	if (hdev->heartbeat)
		cancel_delayed_work_sync(&hdev->work_heartbeat);

	if (hdev->asic_funcs->late_fini)
		hdev->asic_funcs->late_fini(hdev);

	hdev->late_init_done = false;
}

int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
{
	u64 max_power, curr_power, dc_power, dividend, divisor;
	int rc;

	max_power = hdev->max_power;
	dc_power = hdev->asic_prop.dc_power_default;
	divisor = max_power - dc_power;
	if (!divisor) {
		dev_warn(hdev->dev, "device utilization is not supported\n");
		return -EOPNOTSUPP;
	}
	rc = hl_fw_cpucp_power_get(hdev, &curr_power);

	if (rc)
		return rc;

	curr_power = clamp(curr_power, dc_power, max_power);

	dividend = (curr_power - dc_power) * 100;
	*utilization = (u32) div_u64(dividend, divisor);

	return 0;
}

int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
{
	int rc = 0;

	mutex_lock(&hdev->debug_lock);

	if (!enable) {
		if (!hdev->in_debug) {
			dev_err(hdev->dev,
				"Failed to disable debug mode because device was not in debug mode\n");
			rc = -EFAULT;
			goto out;
		}

		if (!hdev->reset_info.hard_reset_pending)
			hdev->asic_funcs->halt_coresight(hdev, ctx);

		hdev->in_debug = 0;

		goto out;
	}

	if (hdev->in_debug) {
		dev_err(hdev->dev,
			"Failed to enable debug mode because device is already in debug mode\n");
		rc = -EFAULT;
		goto out;
	}

	hdev->in_debug = 1;

out:
	mutex_unlock(&hdev->debug_lock);

	return rc;
}

static void take_release_locks(struct hl_device *hdev)
{
	/* Flush anyone that is inside the critical section of enqueue
	 * jobs to the H/W
	 */
	hdev->asic_funcs->hw_queues_lock(hdev);
	hdev->asic_funcs->hw_queues_unlock(hdev);

	/* Flush processes that are sending message to CPU */
	mutex_lock(&hdev->send_cpu_message_lock);
	mutex_unlock(&hdev->send_cpu_message_lock);

	/* Flush anyone that is inside device open */
	mutex_lock(&hdev->fpriv_list_lock);
	mutex_unlock(&hdev->fpriv_list_lock);
	mutex_lock(&hdev->fpriv_ctrl_list_lock);
	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
}

static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
				bool skip_wq_flush)
{
	if (hard_reset)
		device_late_fini(hdev);

	/*
	 * Halt the engines and disable interrupts so we won't get any more
	 * completions from H/W and we won't have any accesses from the
	 * H/W to the host machine
	 */
	hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);

	/* Go over all the queues, release all CS and their jobs */
	hl_cs_rollback_all(hdev, skip_wq_flush);

	/* flush the MMU prefetch workqueue */
	flush_workqueue(hdev->prefetch_wq);

	/* Release all pending user interrupts, each pending user interrupt
	 * holds a reference to user context
	 */
	hl_release_pending_user_interrupts(hdev);
}

/*
 * hl_device_suspend - initiate device suspend
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Puts the hw in the suspend state (all asics).
 * Returns 0 for success or an error on failure.
 * Called at driver suspend.
 */
int hl_device_suspend(struct hl_device *hdev)
{
	int rc;

	pci_save_state(hdev->pdev);

	/* Block future CS/VM/JOB completion operations */
	spin_lock(&hdev->reset_info.lock);
	if (hdev->reset_info.in_reset) {
		spin_unlock(&hdev->reset_info.lock);
		dev_err(hdev->dev, "Can't suspend while in reset\n");
		return -EIO;
	}
	hdev->reset_info.in_reset = 1;
	spin_unlock(&hdev->reset_info.lock);

	/* This blocks all other stuff that is not blocked by in_reset */
	hdev->disabled = true;

	take_release_locks(hdev);

	rc = hdev->asic_funcs->suspend(hdev);
	if (rc)
		dev_err(hdev->dev,
			"Failed to disable PCI access of device CPU\n");

	/* Shut down the device */
	pci_disable_device(hdev->pdev);
	pci_set_power_state(hdev->pdev, PCI_D3hot);

	return 0;
}

/*
 * hl_device_resume - initiate device resume
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Bring the hw back to operating state (all asics).
 * Returns 0 for success or an error on failure.
 * Called at driver resume.
 */
int hl_device_resume(struct hl_device *hdev)
{
	int rc;

	pci_set_power_state(hdev->pdev, PCI_D0);
	pci_restore_state(hdev->pdev);
	rc = pci_enable_device_mem(hdev->pdev);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to enable PCI device in resume\n");
		return rc;
	}

	pci_set_master(hdev->pdev);

	rc = hdev->asic_funcs->resume(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to resume device after suspend\n");
		goto disable_device;
	}


	/* 'in_reset' was set to true during suspend, now we must clear it in order
	 * for hard reset to be performed
	 */
	spin_lock(&hdev->reset_info.lock);
	hdev->reset_info.in_reset = 0;
	spin_unlock(&hdev->reset_info.lock);

	rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
	if (rc) {
		dev_err(hdev->dev, "Failed to reset device during resume\n");
		goto disable_device;
	}

	return 0;

disable_device:
	pci_clear_master(hdev->pdev);
	pci_disable_device(hdev->pdev);

	return rc;
}

static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
{
	struct task_struct *task = NULL;
	struct list_head *fd_list;
	struct hl_fpriv	*hpriv;
	struct mutex *fd_lock;
	u32 pending_cnt;

	fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
	fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;

	/* Giving time for user to close FD, and for processes that are inside
	 * hl_device_open to finish
	 */
	if (!list_empty(fd_list))
		ssleep(1);

	if (timeout) {
		pending_cnt = timeout;
	} else {
		if (hdev->process_kill_trial_cnt) {
			/* Processes have been already killed */
			pending_cnt = 1;
			goto wait_for_processes;
		} else {
			/* Wait a small period after process kill */
			pending_cnt = HL_PENDING_RESET_PER_SEC;
		}
	}

	mutex_lock(fd_lock);

	/* This section must be protected because we are dereferencing
	 * pointers that are freed if the process exits
	 */
	list_for_each_entry(hpriv, fd_list, dev_node) {
		task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
		if (task) {
			dev_info(hdev->dev, "Killing user process pid=%d\n",
				task_pid_nr(task));
			send_sig(SIGKILL, task, 1);
			usleep_range(1000, 10000);

			put_task_struct(task);
		} else {
			/*
			 * If we got here, it means that process was killed from outside the driver
			 * right after it started looping on fd_list and before get_pid_task, thus
			 * we don't need to kill it.
			 */
			dev_dbg(hdev->dev,
				"Can't get task struct for user process, assuming process was killed from outside the driver\n");
		}
	}

	mutex_unlock(fd_lock);

	/*
	 * We killed the open users, but that doesn't mean they are closed.
	 * It could be that they are running a long cleanup phase in the driver
	 * e.g. MMU unmappings, or running other long teardown flow even before
	 * our cleanup.
	 * Therefore we need to wait again to make sure they are closed before
	 * continuing with the reset.
	 */

wait_for_processes:
	while ((!list_empty(fd_list)) && (pending_cnt)) {
		dev_dbg(hdev->dev,
			"Waiting for all unmap operations to finish before hard reset\n");

		pending_cnt--;

		ssleep(1);
	}

	/* All processes exited successfully */
	if (list_empty(fd_list))
		return 0;

	/* Give up waiting for processes to exit */
	if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
		return -ETIME;

	hdev->process_kill_trial_cnt++;

	return -EBUSY;
}

static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
{
	struct list_head *fd_list;
	struct hl_fpriv *hpriv;
	struct mutex *fd_lock;

	fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
	fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;

	mutex_lock(fd_lock);
	list_for_each_entry(hpriv, fd_list, dev_node)
		hpriv->hdev = NULL;
	mutex_unlock(fd_lock);
}

static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
{
	u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;

	/*
	 * 'reset cause' is being updated here, because getting here
	 * means that it's the 1st time and the last time we're here
	 * ('in_reset' makes sure of it). This makes sure that
	 * 'reset_cause' will continue holding its 1st recorded reason!
	 */
	if (flags & HL_DRV_RESET_HEARTBEAT) {
		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
		cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
	} else if (flags & HL_DRV_RESET_TDR) {
		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
		cur_reset_trigger = HL_DRV_RESET_TDR;
	} else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
		cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
	} else {
		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
	}

	/*
	 * If reset cause is same twice, then reset_trigger_repeated
	 * is set and if this reset is due to a fatal FW error
	 * device is set to an unstable state.
	 */
	if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
		hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
		hdev->reset_info.reset_trigger_repeated = 0;
	} else {
		hdev->reset_info.reset_trigger_repeated = 1;
	}

	/* If reset is due to heartbeat, device CPU is no responsive in
	 * which case no point sending PCI disable message to it.
	 *
	 * If F/W is performing the reset, no need to send it a message to disable
	 * PCI access
	 */
	if ((flags & HL_DRV_RESET_HARD) &&
			!(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
		/* Disable PCI access from device F/W so he won't send
		 * us additional interrupts. We disable MSI/MSI-X at
		 * the halt_engines function and we can't have the F/W
		 * sending us interrupts after that. We need to disable
		 * the access here because if the device is marked
		 * disable, the message won't be send. Also, in case
		 * of heartbeat, the device CPU is marked as disable
		 * so this message won't be sent
		 */
		if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0))
			dev_warn(hdev->dev,
				"Failed to disable PCI access by F/W\n");
	}
}

/*
 * hl_device_reset - reset the device
 *
 * @hdev: pointer to habanalabs device structure
 * @flags: reset flags.
 *
 * Block future CS and wait for pending CS to be enqueued
 * Call ASIC H/W fini
 * Flush all completions
 * Re-initialize all internal data structures
 * Call ASIC H/W init, late_init
 * Test queues
 * Enable device
 *
 * Returns 0 for success or an error on failure.
 */
int hl_device_reset(struct hl_device *hdev, u32 flags)
{
	bool hard_reset, from_hard_reset_thread, fw_reset, hard_instead_soft = false,
			reset_upon_device_release = false, schedule_hard_reset = false,
			skip_wq_flush, delay_reset;
	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
	struct hl_ctx *ctx;
	int i, rc;

	if (!hdev->init_done) {
		dev_err(hdev->dev, "Can't reset before initialization is done\n");
		return 0;
	}

	hard_reset = !!(flags & HL_DRV_RESET_HARD);
	from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
	fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
	skip_wq_flush = !!(flags & HL_DRV_RESET_DEV_RELEASE);
	delay_reset = !!(flags & HL_DRV_RESET_DELAY);

	if (!hard_reset && !hdev->asic_prop.supports_compute_reset) {
		hard_instead_soft = true;
		hard_reset = true;
	}

	if (hdev->reset_upon_device_release && (flags & HL_DRV_RESET_DEV_RELEASE)) {
		if (hard_reset) {
			dev_crit(hdev->dev,
				"Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
			return -EINVAL;
		}

		reset_upon_device_release = true;

		goto do_reset;
	}

	if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
		hard_instead_soft = true;
		hard_reset = true;
	}

	if (hard_instead_soft)
		dev_dbg(hdev->dev, "Doing hard-reset instead of compute reset\n");

do_reset:
	/* Re-entry of reset thread */
	if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
		goto kill_processes;

	/*
	 * Prevent concurrency in this function - only one reset should be
	 * done at any given time. Only need to perform this if we didn't
	 * get from the dedicated hard reset thread
	 */
	if (!from_hard_reset_thread) {
		/* Block future CS/VM/JOB completion operations */
		spin_lock(&hdev->reset_info.lock);
		if (hdev->reset_info.in_reset) {
			/* We only allow scheduling of a hard reset during compute reset */
			if (hard_reset && hdev->reset_info.in_compute_reset)
				hdev->reset_info.hard_reset_schedule_flags = flags;
			spin_unlock(&hdev->reset_info.lock);
			return 0;
		}

		/* This still allows the completion of some KDMA ops
		 * Update this before in_reset because in_compute_reset implies we are in reset
		 */
		hdev->reset_info.in_compute_reset = !hard_reset;

		hdev->reset_info.in_reset = 1;

		spin_unlock(&hdev->reset_info.lock);

		if (delay_reset)
			usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);

		handle_reset_trigger(hdev, flags);

		/* This also blocks future CS/VM/JOB completion operations */
		hdev->disabled = true;

		take_release_locks(hdev);

		if (hard_reset)
			dev_info(hdev->dev, "Going to reset device\n");
		else if (reset_upon_device_release)
			dev_dbg(hdev->dev, "Going to reset device after release by user\n");
		else
			dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
	}

again:
	if ((hard_reset) && (!from_hard_reset_thread)) {
		hdev->reset_info.hard_reset_pending = true;

		hdev->process_kill_trial_cnt = 0;

		hdev->device_reset_work.flags = flags;

		/*
		 * Because the reset function can't run from heartbeat work,
		 * we need to call the reset function from a dedicated work.
		 */
		queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0);

		return 0;
	}

	cleanup_resources(hdev, hard_reset, fw_reset, skip_wq_flush);

kill_processes:
	if (hard_reset) {
		/* Kill processes here after CS rollback. This is because the
		 * process can't really exit until all its CSs are done, which
		 * is what we do in cs rollback
		 */
		rc = device_kill_open_processes(hdev, 0, false);

		if (rc == -EBUSY) {
			if (hdev->device_fini_pending) {
				dev_crit(hdev->dev,
					"Failed to kill all open processes, stopping hard reset\n");
				goto out_err;
			}

			/* signal reset thread to reschedule */
			return rc;
		}

		if (rc) {
			dev_crit(hdev->dev,
				"Failed to kill all open processes, stopping hard reset\n");
			goto out_err;
		}

		/* Flush the Event queue workers to make sure no other thread is
		 * reading or writing to registers during the reset
		 */
		flush_workqueue(hdev->eq_wq);
	}

	/* Reset the H/W. It will be in idle state after this returns */
	hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);

	if (hard_reset) {
		hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;

		/* Release kernel context */
		if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
			hdev->kernel_ctx = NULL;

		hl_vm_fini(hdev);
		hl_mmu_fini(hdev);
		hl_eq_reset(hdev, &hdev->event_queue);
	}

	/* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
	hl_hw_queue_reset(hdev, hard_reset);
	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
		hl_cq_reset(hdev, &hdev->completion_queue[i]);

	/* Make sure the context switch phase will run again */
	ctx = hl_get_compute_ctx(hdev);
	if (ctx) {
		atomic_set(&ctx->thread_ctx_switch_token, 1);
		ctx->thread_ctx_switch_wait_token = 0;
		hl_ctx_put(ctx);
	}

	/* Finished tear-down, starting to re-initialize */

	if (hard_reset) {
		hdev->device_cpu_disabled = false;
		hdev->reset_info.hard_reset_pending = false;

		if (hdev->reset_info.reset_trigger_repeated &&
				(hdev->reset_info.prev_reset_trigger ==
						HL_DRV_RESET_FW_FATAL_ERR)) {
			/* if there 2 back to back resets from FW,
			 * ensure driver puts the driver in a unusable state
			 */
			dev_crit(hdev->dev,
				"Consecutive FW fatal errors received, stopping hard reset\n");
			rc = -EIO;
			goto out_err;
		}

		if (hdev->kernel_ctx) {
			dev_crit(hdev->dev,
				"kernel ctx was alive during hard reset, something is terribly wrong\n");
			rc = -EBUSY;
			goto out_err;
		}

		rc = hl_mmu_init(hdev);
		if (rc) {
			dev_err(hdev->dev,
				"Failed to initialize MMU S/W after hard reset\n");
			goto out_err;
		}

		/* Allocate the kernel context */
		hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
						GFP_KERNEL);
		if (!hdev->kernel_ctx) {
			rc = -ENOMEM;
			hl_mmu_fini(hdev);
			goto out_err;
		}

		hdev->is_compute_ctx_active = false;

		rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
		if (rc) {
			dev_err(hdev->dev,
				"failed to init kernel ctx in hard reset\n");
			kfree(hdev->kernel_ctx);
			hdev->kernel_ctx = NULL;
			hl_mmu_fini(hdev);
			goto out_err;
		}
	}

	/* Device is now enabled as part of the initialization requires
	 * communication with the device firmware to get information that
	 * is required for the initialization itself
	 */
	hdev->disabled = false;

	/* F/W security enabled indication might be updated after hard-reset */
	if (hard_reset) {
		rc = hl_fw_read_preboot_status(hdev);
		if (rc)
			goto out_err;
	}

	rc = hdev->asic_funcs->hw_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
		goto out_err;
	}

	/* If device is not idle fail the reset process */
	if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
			HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
		dev_err(hdev->dev, "device is not idle (mask 0x%llx_%llx) after reset\n",
			idle_mask[1], idle_mask[0]);
		rc = -EIO;
		goto out_err;
	}

	/* Check that the communication with the device is working */
	rc = hdev->asic_funcs->test_queues(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
		goto out_err;
	}

	if (hard_reset) {
		rc = device_late_init(hdev);
		if (rc) {
			dev_err(hdev->dev, "Failed late init after hard reset\n");
			goto out_err;
		}

		rc = hl_vm_init(hdev);
		if (rc) {
			dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
			goto out_err;
		}

		if (!hdev->asic_prop.fw_security_enabled)
			hl_fw_set_max_power(hdev);
	} else {
		rc = hdev->asic_funcs->compute_reset_late_init(hdev);
		if (rc) {
			if (reset_upon_device_release)
				dev_err(hdev->dev,
					"Failed late init in reset after device release\n");
			else
				dev_err(hdev->dev, "Failed late init after compute reset\n");
			goto out_err;
		}
	}

	rc = hdev->asic_funcs->scrub_device_mem(hdev);
	if (rc) {
		dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc);
		return rc;
	}

	spin_lock(&hdev->reset_info.lock);
	hdev->reset_info.in_compute_reset = 0;

	/* Schedule hard reset only if requested and if not already in hard reset.
	 * We keep 'in_reset' enabled, so no other reset can go in during the hard
	 * reset schedule
	 */
	if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
		schedule_hard_reset = true;
	else
		hdev->reset_info.in_reset = 0;

	spin_unlock(&hdev->reset_info.lock);

	hdev->reset_info.needs_reset = false;

	if (hard_reset)
		dev_info(hdev->dev, "Successfully finished resetting the device\n");
	else
		dev_dbg(hdev->dev, "Successfully finished resetting the device\n");

	if (hard_reset) {
		hdev->reset_info.hard_reset_cnt++;

		/* After reset is done, we are ready to receive events from
		 * the F/W. We can't do it before because we will ignore events
		 * and if those events are fatal, we won't know about it and
		 * the device will be operational although it shouldn't be
		 */
		hdev->asic_funcs->enable_events_from_fw(hdev);
	} else if (!reset_upon_device_release) {
		hdev->reset_info.compute_reset_cnt++;
	}

	if (schedule_hard_reset) {
		dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n");
		flags = hdev->reset_info.hard_reset_schedule_flags;
		hdev->reset_info.hard_reset_schedule_flags = 0;
		hdev->disabled = true;
		hard_reset = true;
		handle_reset_trigger(hdev, flags);
		goto again;
	}

	return 0;

out_err:
	hdev->disabled = true;

	spin_lock(&hdev->reset_info.lock);
	hdev->reset_info.in_compute_reset = 0;

	if (hard_reset) {
		dev_err(hdev->dev, "Failed to reset! Device is NOT usable\n");
		hdev->reset_info.hard_reset_cnt++;
	} else if (reset_upon_device_release) {
		spin_unlock(&hdev->reset_info.lock);
		dev_err(hdev->dev, "Failed to reset device after user release\n");
		flags |= HL_DRV_RESET_HARD;
		flags &= ~HL_DRV_RESET_DEV_RELEASE;
		hard_reset = true;
		goto again;
	} else {
		spin_unlock(&hdev->reset_info.lock);
		dev_err(hdev->dev, "Failed to do compute reset\n");
		hdev->reset_info.compute_reset_cnt++;
		flags |= HL_DRV_RESET_HARD;
		hard_reset = true;
		goto again;
	}

	hdev->reset_info.in_reset = 0;

	spin_unlock(&hdev->reset_info.lock);

	return rc;
}

static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask)
{
	mutex_lock(&notifier_event->lock);
	notifier_event->events_mask |= event_mask;

	if (notifier_event->eventfd)
		eventfd_signal(notifier_event->eventfd, 1);

	mutex_unlock(&notifier_event->lock);
}

/*
 * hl_notifier_event_send_all - notify all user processes via eventfd
 *
 * @hdev: pointer to habanalabs device structure
 * @event_mask: the occurred event/s
 * Returns 0 for success or an error on failure.
 */
void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask)
{
	struct hl_fpriv	*hpriv;

	if (!event_mask) {
		dev_warn(hdev->dev, "Skip sending zero event");
		return;
	}

	mutex_lock(&hdev->fpriv_list_lock);

	list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
		hl_notifier_event_send(&hpriv->notifier_event, event_mask);

	mutex_unlock(&hdev->fpriv_list_lock);

	/* control device */
	mutex_lock(&hdev->fpriv_ctrl_list_lock);

	list_for_each_entry(hpriv, &hdev->fpriv_ctrl_list, dev_node)
		hl_notifier_event_send(&hpriv->notifier_event, event_mask);

	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
}

/*
 * hl_device_init - main initialization function for habanalabs device
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Allocate an id for the device, do early initialization and then call the
 * ASIC specific initialization functions. Finally, create the cdev and the
 * Linux device to expose it to the user
 */
int hl_device_init(struct hl_device *hdev, struct class *hclass)
{
	int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
	char *name;
	bool add_cdev_sysfs_on_err = false;

	hdev->cdev_idx = hdev->id / 2;

	name = kasprintf(GFP_KERNEL, "hl%d", hdev->cdev_idx);
	if (!name) {
		rc = -ENOMEM;
		goto out_disabled;
	}

	/* Initialize cdev and device structures */
	rc = device_init_cdev(hdev, hclass, hdev->id, &hl_ops, name,
				&hdev->cdev, &hdev->dev);

	kfree(name);

	if (rc)
		goto out_disabled;

	name = kasprintf(GFP_KERNEL, "hl_controlD%d", hdev->cdev_idx);
	if (!name) {
		rc = -ENOMEM;
		goto free_dev;
	}

	/* Initialize cdev and device structures for control device */
	rc = device_init_cdev(hdev, hclass, hdev->id_control, &hl_ctrl_ops,
				name, &hdev->cdev_ctrl, &hdev->dev_ctrl);

	kfree(name);

	if (rc)
		goto free_dev;

	/* Initialize ASIC function pointers and perform early init */
	rc = device_early_init(hdev);
	if (rc)
		goto free_dev_ctrl;

	user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
				hdev->asic_prop.user_interrupt_count;

	if (user_interrupt_cnt) {
		hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt),
						GFP_KERNEL);
		if (!hdev->user_interrupt) {
			rc = -ENOMEM;
			goto early_fini;
		}
	}

	/*
	 * Start calling ASIC initialization. First S/W then H/W and finally
	 * late init
	 */
	rc = hdev->asic_funcs->sw_init(hdev);
	if (rc)
		goto free_usr_intr_mem;


	/* initialize completion structure for multi CS wait */
	hl_multi_cs_completion_init(hdev);

	/*
	 * Initialize the H/W queues. Must be done before hw_init, because
	 * there the addresses of the kernel queue are being written to the
	 * registers of the device
	 */
	rc = hl_hw_queues_create(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize kernel queues\n");
		goto sw_fini;
	}

	cq_cnt = hdev->asic_prop.completion_queues_count;

	/*
	 * Initialize the completion queues. Must be done before hw_init,
	 * because there the addresses of the completion queues are being
	 * passed as arguments to request_irq
	 */
	if (cq_cnt) {
		hdev->completion_queue = kcalloc(cq_cnt,
				sizeof(*hdev->completion_queue),
				GFP_KERNEL);

		if (!hdev->completion_queue) {
			dev_err(hdev->dev,
				"failed to allocate completion queues\n");
			rc = -ENOMEM;
			goto hw_queues_destroy;
		}
	}

	for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
		rc = hl_cq_init(hdev, &hdev->completion_queue[i],
				hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
		if (rc) {
			dev_err(hdev->dev,
				"failed to initialize completion queue\n");
			goto cq_fini;
		}
		hdev->completion_queue[i].cq_idx = i;
	}

	hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs,
					sizeof(struct hl_cs *), GFP_KERNEL);
	if (!hdev->shadow_cs_queue) {
		rc = -ENOMEM;
		goto cq_fini;
	}

	/*
	 * Initialize the event queue. Must be done before hw_init,
	 * because there the address of the event queue is being
	 * passed as argument to request_irq
	 */
	rc = hl_eq_init(hdev, &hdev->event_queue);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize event queue\n");
		goto free_shadow_cs_queue;
	}

	/* MMU S/W must be initialized before kernel context is created */
	rc = hl_mmu_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
		goto eq_fini;
	}

	/* Allocate the kernel context */
	hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
	if (!hdev->kernel_ctx) {
		rc = -ENOMEM;
		goto mmu_fini;
	}

	hdev->is_compute_ctx_active = false;

	hdev->asic_funcs->state_dump_init(hdev);

	hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL;
	hl_debugfs_add_device(hdev);

	/* debugfs nodes are created in hl_ctx_init so it must be called after
	 * hl_debugfs_add_device.
	 */
	rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize kernel context\n");
		kfree(hdev->kernel_ctx);
		goto remove_device_from_debugfs;
	}

	rc = hl_cb_pool_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize CB pool\n");
		goto release_ctx;
	}

	rc = hl_dec_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to initialize the decoder module\n");
		goto cb_pool_fini;
	}

	/*
	 * From this point, override rc (=0) in case of an error to allow
	 * debugging (by adding char devices and create sysfs nodes as part of
	 * the error flow).
	 */
	add_cdev_sysfs_on_err = true;

	/* Device is now enabled as part of the initialization requires
	 * communication with the device firmware to get information that
	 * is required for the initialization itself
	 */
	hdev->disabled = false;

	rc = hdev->asic_funcs->hw_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "failed to initialize the H/W\n");
		rc = 0;
		goto out_disabled;
	}

	/* Check that the communication with the device is working */
	rc = hdev->asic_funcs->test_queues(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to detect if device is alive\n");
		rc = 0;
		goto out_disabled;
	}

	rc = device_late_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed late initialization\n");
		rc = 0;
		goto out_disabled;
	}

	dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
		hdev->asic_name,
		hdev->asic_prop.dram_size / SZ_1G);

	rc = hl_vm_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to initialize memory module\n");
		rc = 0;
		goto out_disabled;
	}

	/*
	 * Expose devices and sysfs nodes to user.
	 * From here there is no need to add char devices and create sysfs nodes
	 * in case of an error.
	 */
	add_cdev_sysfs_on_err = false;
	rc = device_cdev_sysfs_add(hdev);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to add char devices and sysfs nodes\n");
		rc = 0;
		goto out_disabled;
	}

	/* Need to call this again because the max power might change,
	 * depending on card type for certain ASICs
	 */
	if (hdev->asic_prop.set_max_power_on_device_init &&
			!hdev->asic_prop.fw_security_enabled)
		hl_fw_set_max_power(hdev);

	/*
	 * hl_hwmon_init() must be called after device_late_init(), because only
	 * there we get the information from the device about which
	 * hwmon-related sensors the device supports.
	 * Furthermore, it must be done after adding the device to the system.
	 */
	rc = hl_hwmon_init(hdev);
	if (rc) {
		dev_err(hdev->dev, "Failed to initialize hwmon\n");
		rc = 0;
		goto out_disabled;
	}

	dev_notice(hdev->dev,
		"Successfully added device to habanalabs driver\n");

	hdev->init_done = true;

	/* After initialization is done, we are ready to receive events from
	 * the F/W. We can't do it before because we will ignore events and if
	 * those events are fatal, we won't know about it and the device will
	 * be operational although it shouldn't be
	 */
	hdev->asic_funcs->enable_events_from_fw(hdev);

	return 0;

cb_pool_fini:
	hl_cb_pool_fini(hdev);
release_ctx:
	if (hl_ctx_put(hdev->kernel_ctx) != 1)
		dev_err(hdev->dev,
			"kernel ctx is still alive on initialization failure\n");
remove_device_from_debugfs:
	hl_debugfs_remove_device(hdev);
mmu_fini:
	hl_mmu_fini(hdev);
eq_fini:
	hl_eq_fini(hdev, &hdev->event_queue);
free_shadow_cs_queue:
	kfree(hdev->shadow_cs_queue);
cq_fini:
	for (i = 0 ; i < cq_ready_cnt ; i++)
		hl_cq_fini(hdev, &hdev->completion_queue[i]);
	kfree(hdev->completion_queue);
hw_queues_destroy:
	hl_hw_queues_destroy(hdev);
sw_fini:
	hdev->asic_funcs->sw_fini(hdev);
free_usr_intr_mem:
	kfree(hdev->user_interrupt);
early_fini:
	device_early_fini(hdev);
free_dev_ctrl:
	put_device(hdev->dev_ctrl);
free_dev:
	put_device(hdev->dev);
out_disabled:
	hdev->disabled = true;
	if (add_cdev_sysfs_on_err)
		device_cdev_sysfs_add(hdev);
	if (hdev->pdev)
		dev_err(&hdev->pdev->dev,
			"Failed to initialize hl%d. Device is NOT usable !\n",
			hdev->cdev_idx);
	else
		pr_err("Failed to initialize hl%d. Device is NOT usable !\n",
			hdev->cdev_idx);

	return rc;
}

/*
 * hl_device_fini - main tear-down function for habanalabs device
 *
 * @hdev: pointer to habanalabs device structure
 *
 * Destroy the device, call ASIC fini functions and release the id
 */
void hl_device_fini(struct hl_device *hdev)
{
	bool device_in_reset;
	ktime_t timeout;
	u64 reset_sec;
	int i, rc;

	dev_info(hdev->dev, "Removing device\n");

	hdev->device_fini_pending = 1;
	flush_delayed_work(&hdev->device_reset_work.reset_work);

	if (hdev->pldm)
		reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
	else
		reset_sec = HL_HARD_RESET_MAX_TIMEOUT;

	/*
	 * This function is competing with the reset function, so try to
	 * take the reset atomic and if we are already in middle of reset,
	 * wait until reset function is finished. Reset function is designed
	 * to always finish. However, in Gaudi, because of all the network
	 * ports, the hard reset could take between 10-30 seconds
	 */

	timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);

	spin_lock(&hdev->reset_info.lock);
	device_in_reset = !!hdev->reset_info.in_reset;
	if (!device_in_reset)
		hdev->reset_info.in_reset = 1;
	spin_unlock(&hdev->reset_info.lock);

	while (device_in_reset) {
		usleep_range(50, 200);

		spin_lock(&hdev->reset_info.lock);
		device_in_reset = !!hdev->reset_info.in_reset;
		if (!device_in_reset)
			hdev->reset_info.in_reset = 1;
		spin_unlock(&hdev->reset_info.lock);

		if (ktime_compare(ktime_get(), timeout) > 0) {
			dev_crit(hdev->dev,
				"Failed to remove device because reset function did not finish\n");
			return;
		}
	}

	/* Disable PCI access from device F/W so it won't send us additional
	 * interrupts. We disable MSI/MSI-X at the halt_engines function and we
	 * can't have the F/W sending us interrupts after that. We need to
	 * disable the access here because if the device is marked disable, the
	 * message won't be send. Also, in case of heartbeat, the device CPU is
	 * marked as disable so this message won't be sent
	 */
	hl_fw_send_pci_access_msg(hdev,	CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);

	/* Mark device as disabled */
	hdev->disabled = true;

	take_release_locks(hdev);

	hdev->reset_info.hard_reset_pending = true;

	hl_hwmon_fini(hdev);

	cleanup_resources(hdev, true, false, false);

	/* Kill processes here after CS rollback. This is because the process
	 * can't really exit until all its CSs are done, which is what we
	 * do in cs rollback
	 */
	dev_info(hdev->dev,
		"Waiting for all processes to exit (timeout of %u seconds)",
		HL_PENDING_RESET_LONG_SEC);

	rc = device_kill_open_processes(hdev, HL_PENDING_RESET_LONG_SEC, false);
	if (rc) {
		dev_crit(hdev->dev, "Failed to kill all open processes\n");
		device_disable_open_processes(hdev, false);
	}

	rc = device_kill_open_processes(hdev, 0, true);
	if (rc) {
		dev_crit(hdev->dev, "Failed to kill all control device open processes\n");
		device_disable_open_processes(hdev, true);
	}

	hl_cb_pool_fini(hdev);

	/* Reset the H/W. It will be in idle state after this returns */
	hdev->asic_funcs->hw_fini(hdev, true, false);

	hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;

	/* Release kernel context */
	if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
		dev_err(hdev->dev, "kernel ctx is still alive\n");

	hl_debugfs_remove_device(hdev);

	hl_dec_fini(hdev);

	hl_vm_fini(hdev);

	hl_mmu_fini(hdev);

	vfree(hdev->captured_err_info.pgf_info.user_mappings);

	hl_eq_fini(hdev, &hdev->event_queue);

	kfree(hdev->shadow_cs_queue);

	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
		hl_cq_fini(hdev, &hdev->completion_queue[i]);
	kfree(hdev->completion_queue);
	kfree(hdev->user_interrupt);

	hl_hw_queues_destroy(hdev);

	/* Call ASIC S/W finalize function */
	hdev->asic_funcs->sw_fini(hdev);

	device_early_fini(hdev);

	/* Hide devices and sysfs nodes from user */
	device_cdev_sysfs_del(hdev);

	pr_info("removed device successfully\n");
}

/*
 * MMIO register access helper functions.
 */

/*
 * hl_rreg - Read an MMIO register
 *
 * @hdev: pointer to habanalabs device structure
 * @reg: MMIO register offset (in bytes)
 *
 * Returns the value of the MMIO register we are asked to read
 *
 */
inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
{
	return readl(hdev->rmmio + reg);
}

/*
 * hl_wreg - Write to an MMIO register
 *
 * @hdev: pointer to habanalabs device structure
 * @reg: MMIO register offset (in bytes)
 * @val: 32-bit value
 *
 * Writes the 32-bit value into the MMIO register
 *
 */
inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
{
	writel(val, hdev->rmmio + reg);
}

void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
			u8 flags)
{
	if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) {
		dev_err(hdev->dev,
				"Number of possible razwi initiators (%u) exceeded limit (%u)\n",
				num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR);
		return;
	}

	/* In case it's the first razwi since the device was opened, capture its parameters */
	if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info_recorded, 0, 1))
		return;

	hdev->captured_err_info.razwi.timestamp = ktime_to_ns(ktime_get());
	hdev->captured_err_info.razwi.addr = addr;
	hdev->captured_err_info.razwi.num_of_possible_engines = num_of_engines;
	memcpy(&hdev->captured_err_info.razwi.engine_id[0], &engine_id[0],
			num_of_engines * sizeof(u16));
	hdev->captured_err_info.razwi.flags = flags;
}
static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu)
{
	struct page_fault_info *pgf_info = &hdev->captured_err_info.pgf_info;
	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
	struct hl_vm_hash_node *hnode;
	struct hl_userptr *userptr;
	enum vm_type *vm_type;
	struct hl_ctx *ctx;
	u32 map_idx = 0;
	int i;

	/* Reset previous session count*/
	pgf_info->num_of_user_mappings = 0;

	ctx = hl_get_compute_ctx(hdev);
	if (!ctx) {
		dev_err(hdev->dev, "Can't get user context for user mappings\n");
		return;
	}

	mutex_lock(&ctx->mem_hash_lock);
	hash_for_each(ctx->mem_hash, i, hnode, node) {
		vm_type = hnode->ptr;
		if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) ||
				((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu))
			pgf_info->num_of_user_mappings++;

	}

	if (!pgf_info->num_of_user_mappings)
		goto finish;

	/* In case we already allocated in previous session, need to release it before
	 * allocating new buffer.
	 */
	vfree(pgf_info->user_mappings);
	pgf_info->user_mappings =
			vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping));
	if (!pgf_info->user_mappings) {
		pgf_info->num_of_user_mappings = 0;
		goto finish;
	}

	hash_for_each(ctx->mem_hash, i, hnode, node) {
		vm_type = hnode->ptr;
		if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) {
			userptr = hnode->ptr;
			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
			pgf_info->user_mappings[map_idx].size = userptr->size;
			map_idx++;
		} else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) {
			phys_pg_pack = hnode->ptr;
			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
			pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size;
			map_idx++;
		}
	}
finish:
	mutex_unlock(&ctx->mem_hash_lock);
	hl_ctx_put(ctx);
}

void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu)
{
	/* Capture only the first page fault */
	if (atomic_cmpxchg(&hdev->captured_err_info.pgf_info_recorded, 0, 1))
		return;

	hdev->captured_err_info.pgf_info.pgf.timestamp = ktime_to_ns(ktime_get());
	hdev->captured_err_info.pgf_info.pgf.addr = addr;
	hdev->captured_err_info.pgf_info.pgf.engine_id = eng_id;
	hl_capture_user_mappings(hdev, is_pmmu);
}