summaryrefslogtreecommitdiff
path: root/drivers/infiniband/hw/hfi1/init.c
blob: 8e3b3e7d829a9be516625e31dbde7d5ff7a092a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
/*
 * Copyright(c) 2015-2017 Intel Corporation.
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  - Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  - Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  - Neither the name of Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */

#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/idr.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/hrtimer.h>
#include <linux/bitmap.h>
#include <rdma/rdma_vt.h>

#include "hfi.h"
#include "device.h"
#include "common.h"
#include "trace.h"
#include "mad.h"
#include "sdma.h"
#include "debugfs.h"
#include "verbs.h"
#include "aspm.h"
#include "affinity.h"
#include "vnic.h"
#include "exp_rcv.h"

#undef pr_fmt
#define pr_fmt(fmt) DRIVER_NAME ": " fmt

#define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
/*
 * min buffers we want to have per context, after driver
 */
#define HFI1_MIN_USER_CTXT_BUFCNT 7

#define HFI1_MIN_HDRQ_EGRBUF_CNT 2
#define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */

/*
 * Number of user receive contexts we are configured to use (to allow for more
 * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
 */
int num_user_contexts = -1;
module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
MODULE_PARM_DESC(
	num_user_contexts, "Set max number of user contexts to use");

uint krcvqs[RXE_NUM_DATA_VL];
int krcvqsset;
module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");

/* computed based on above array */
unsigned long n_krcvqs;

static unsigned hfi1_rcvarr_split = 25;
module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");

static uint eager_buffer_size = (8 << 20); /* 8MB */
module_param(eager_buffer_size, uint, S_IRUGO);
MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");

static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");

static uint hfi1_hdrq_entsize = 32;
module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");

unsigned int user_credit_return_threshold = 33;	/* default is 33% */
module_param(user_credit_return_threshold, uint, S_IRUGO);
MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");

static inline u64 encode_rcv_header_entry_size(u16 size);

static struct idr hfi1_unit_table;

static int hfi1_create_kctxt(struct hfi1_devdata *dd,
			     struct hfi1_pportdata *ppd)
{
	struct hfi1_ctxtdata *rcd;
	int ret;

	/* Control context has to be always 0 */
	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);

	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
	if (ret < 0) {
		dd_dev_err(dd, "Kernel receive context allocation failed\n");
		return ret;
	}

	/*
	 * Set up the kernel context flags here and now because they use
	 * default values for all receive side memories.  User contexts will
	 * be handled as they are created.
	 */
	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
		HFI1_CAP_KGET(NODROP_EGR_FULL) |
		HFI1_CAP_KGET(DMA_RTAIL);

	/* Control context must use DMA_RTAIL */
	if (rcd->ctxt == HFI1_CTRL_CTXT)
		rcd->flags |= HFI1_CAP_DMA_RTAIL;
	rcd->seq_cnt = 1;

	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
	if (!rcd->sc) {
		dd_dev_err(dd, "Kernel send context allocation failed\n");
		return -ENOMEM;
	}
	hfi1_init_ctxt(rcd->sc);

	return 0;
}

/*
 * Create the receive context array and one or more kernel contexts
 */
int hfi1_create_kctxts(struct hfi1_devdata *dd)
{
	u16 i;
	int ret;

	dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
			       GFP_KERNEL, dd->node);
	if (!dd->rcd)
		return -ENOMEM;

	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
		ret = hfi1_create_kctxt(dd, dd->pport);
		if (ret)
			goto bail;
	}

	return 0;
bail:
	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
		hfi1_free_ctxt(dd->rcd[i]);

	/* All the contexts should be freed, free the array */
	kfree(dd->rcd);
	dd->rcd = NULL;
	return ret;
}

/*
 * Helper routines for the receive context reference count (rcd and uctxt).
 */
static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
{
	kref_init(&rcd->kref);
}

/**
 * hfi1_rcd_free - When reference is zero clean up.
 * @kref: pointer to an initialized rcd data structure
 *
 */
static void hfi1_rcd_free(struct kref *kref)
{
	unsigned long flags;
	struct hfi1_ctxtdata *rcd =
		container_of(kref, struct hfi1_ctxtdata, kref);

	hfi1_free_ctxtdata(rcd->dd, rcd);

	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
	rcd->dd->rcd[rcd->ctxt] = NULL;
	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);

	kfree(rcd);
}

/**
 * hfi1_rcd_put - decrement reference for rcd
 * @rcd: pointer to an initialized rcd data structure
 *
 * Use this to put a reference after the init.
 */
int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
{
	if (rcd)
		return kref_put(&rcd->kref, hfi1_rcd_free);

	return 0;
}

/**
 * hfi1_rcd_get - increment reference for rcd
 * @rcd: pointer to an initialized rcd data structure
 *
 * Use this to get a reference after the init.
 */
void hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
{
	kref_get(&rcd->kref);
}

/**
 * allocate_rcd_index - allocate an rcd index from the rcd array
 * @dd: pointer to a valid devdata structure
 * @rcd: rcd data structure to assign
 * @index: pointer to index that is allocated
 *
 * Find an empty index in the rcd array, and assign the given rcd to it.
 * If the array is full, we are EBUSY.
 *
 */
static int allocate_rcd_index(struct hfi1_devdata *dd,
			      struct hfi1_ctxtdata *rcd, u16 *index)
{
	unsigned long flags;
	u16 ctxt;

	spin_lock_irqsave(&dd->uctxt_lock, flags);
	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
		if (!dd->rcd[ctxt])
			break;

	if (ctxt < dd->num_rcv_contexts) {
		rcd->ctxt = ctxt;
		dd->rcd[ctxt] = rcd;
		hfi1_rcd_init(rcd);
	}
	spin_unlock_irqrestore(&dd->uctxt_lock, flags);

	if (ctxt >= dd->num_rcv_contexts)
		return -EBUSY;

	*index = ctxt;

	return 0;
}

/**
 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
 * array
 * @dd: pointer to a valid devdata structure
 * @ctxt: the index of an possilbe rcd
 *
 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
 * ctxt index is valid.
 *
 * The caller is responsible for making the _put().
 *
 */
struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
						 u16 ctxt)
{
	if (ctxt < dd->num_rcv_contexts)
		return hfi1_rcd_get_by_index(dd, ctxt);

	return NULL;
}

/**
 * hfi1_rcd_get_by_index
 * @dd: pointer to a valid devdata structure
 * @ctxt: the index of an possilbe rcd
 *
 * We need to protect access to the rcd array.  If access is needed to
 * one or more index, get the protecting spinlock and then increment the
 * kref.
 *
 * The caller is responsible for making the _put().
 *
 */
struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
{
	unsigned long flags;
	struct hfi1_ctxtdata *rcd = NULL;

	spin_lock_irqsave(&dd->uctxt_lock, flags);
	if (dd->rcd[ctxt]) {
		rcd = dd->rcd[ctxt];
		hfi1_rcd_get(rcd);
	}
	spin_unlock_irqrestore(&dd->uctxt_lock, flags);

	return rcd;
}

/*
 * Common code for user and kernel context create and setup.
 * NOTE: the initial kref is done here (hf1_rcd_init()).
 */
int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
			 struct hfi1_ctxtdata **context)
{
	struct hfi1_devdata *dd = ppd->dd;
	struct hfi1_ctxtdata *rcd;
	unsigned kctxt_ngroups = 0;
	u32 base;

	if (dd->rcv_entries.nctxt_extra >
	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
	if (rcd) {
		u32 rcvtids, max_entries;
		u16 ctxt;
		int ret;

		ret = allocate_rcd_index(dd, rcd, &ctxt);
		if (ret) {
			*context = NULL;
			kfree(rcd);
			return ret;
		}

		INIT_LIST_HEAD(&rcd->qp_wait_list);
		hfi1_exp_tid_group_init(&rcd->tid_group_list);
		hfi1_exp_tid_group_init(&rcd->tid_used_list);
		hfi1_exp_tid_group_init(&rcd->tid_full_list);
		rcd->ppd = ppd;
		rcd->dd = dd;
		__set_bit(0, rcd->in_use_ctxts);
		rcd->numa_id = numa;
		rcd->rcv_array_groups = dd->rcv_entries.ngroups;

		mutex_init(&rcd->exp_lock);

		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);

		/*
		 * Calculate the context's RcvArray entry starting point.
		 * We do this here because we have to take into account all
		 * the RcvArray entries that previous context would have
		 * taken and we have to account for any extra groups assigned
		 * to the static (kernel) or dynamic (vnic/user) contexts.
		 */
		if (ctxt < dd->first_dyn_alloc_ctxt) {
			if (ctxt < kctxt_ngroups) {
				base = ctxt * (dd->rcv_entries.ngroups + 1);
				rcd->rcv_array_groups++;
			} else {
				base = kctxt_ngroups +
					(ctxt * dd->rcv_entries.ngroups);
			}
		} else {
			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;

			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
				kctxt_ngroups);
			if (ct < dd->rcv_entries.nctxt_extra) {
				base += ct * (dd->rcv_entries.ngroups + 1);
				rcd->rcv_array_groups++;
			} else {
				base += dd->rcv_entries.nctxt_extra +
					(ct * dd->rcv_entries.ngroups);
			}
		}
		rcd->eager_base = base * dd->rcv_entries.group_size;

		rcd->rcvhdrq_cnt = rcvhdrcnt;
		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
		/*
		 * Simple Eager buffer allocation: we have already pre-allocated
		 * the number of RcvArray entry groups. Each ctxtdata structure
		 * holds the number of groups for that context.
		 *
		 * To follow CSR requirements and maintain cacheline alignment,
		 * make sure all sizes and bases are multiples of group_size.
		 *
		 * The expected entry count is what is left after assigning
		 * eager.
		 */
		max_entries = rcd->rcv_array_groups *
			dd->rcv_entries.group_size;
		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
		rcd->egrbufs.count = round_down(rcvtids,
						dd->rcv_entries.group_size);
		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
				   rcd->ctxt);
			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
		}
		hfi1_cdbg(PROC,
			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
			  rcd->ctxt, rcd->egrbufs.count);

		/*
		 * Allocate array that will hold the eager buffer accounting
		 * data.
		 * This will allocate the maximum possible buffer count based
		 * on the value of the RcvArray split parameter.
		 * The resulting value will be rounded down to the closest
		 * multiple of dd->rcv_entries.group_size.
		 */
		rcd->egrbufs.buffers = kzalloc_node(
			rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers),
			GFP_KERNEL, numa);
		if (!rcd->egrbufs.buffers)
			goto bail;
		rcd->egrbufs.rcvtids = kzalloc_node(
				rcd->egrbufs.count *
				sizeof(*rcd->egrbufs.rcvtids),
				GFP_KERNEL, numa);
		if (!rcd->egrbufs.rcvtids)
			goto bail;
		rcd->egrbufs.size = eager_buffer_size;
		/*
		 * The size of the buffers programmed into the RcvArray
		 * entries needs to be big enough to handle the highest
		 * MTU supported.
		 */
		if (rcd->egrbufs.size < hfi1_max_mtu) {
			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
			hfi1_cdbg(PROC,
				  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
				    rcd->ctxt, rcd->egrbufs.size);
		}
		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;

		/* Applicable only for statically created kernel contexts */
		if (ctxt < dd->first_dyn_alloc_ctxt) {
			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
						    GFP_KERNEL, numa);
			if (!rcd->opstats)
				goto bail;
		}

		*context = rcd;
		return 0;
	}

bail:
	*context = NULL;
	hfi1_free_ctxt(rcd);
	return -ENOMEM;
}

/**
 * hfi1_free_ctxt
 * @rcd: pointer to an initialized rcd data structure
 *
 * This wrapper is the free function that matches hfi1_create_ctxtdata().
 * When a context is done being used (kernel or user), this function is called
 * for the "final" put to match the kref init from hf1i_create_ctxtdata().
 * Other users of the context do a get/put sequence to make sure that the
 * structure isn't removed while in use.
 */
void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
{
	hfi1_rcd_put(rcd);
}

/*
 * Convert a receive header entry size that to the encoding used in the CSR.
 *
 * Return a zero if the given size is invalid.
 */
static inline u64 encode_rcv_header_entry_size(u16 size)
{
	/* there are only 3 valid receive header entry sizes */
	if (size == 2)
		return 1;
	if (size == 16)
		return 2;
	else if (size == 32)
		return 4;
	return 0; /* invalid */
}

/*
 * Select the largest ccti value over all SLs to determine the intra-
 * packet gap for the link.
 *
 * called with cca_timer_lock held (to protect access to cca_timer
 * array), and rcu_read_lock() (to protect access to cc_state).
 */
void set_link_ipg(struct hfi1_pportdata *ppd)
{
	struct hfi1_devdata *dd = ppd->dd;
	struct cc_state *cc_state;
	int i;
	u16 cce, ccti_limit, max_ccti = 0;
	u16 shift, mult;
	u64 src;
	u32 current_egress_rate; /* Mbits /sec */
	u32 max_pkt_time;
	/*
	 * max_pkt_time is the maximum packet egress time in units
	 * of the fabric clock period 1/(805 MHz).
	 */

	cc_state = get_cc_state(ppd);

	if (!cc_state)
		/*
		 * This should _never_ happen - rcu_read_lock() is held,
		 * and set_link_ipg() should not be called if cc_state
		 * is NULL.
		 */
		return;

	for (i = 0; i < OPA_MAX_SLS; i++) {
		u16 ccti = ppd->cca_timer[i].ccti;

		if (ccti > max_ccti)
			max_ccti = ccti;
	}

	ccti_limit = cc_state->cct.ccti_limit;
	if (max_ccti > ccti_limit)
		max_ccti = ccti_limit;

	cce = cc_state->cct.entries[max_ccti].entry;
	shift = (cce & 0xc000) >> 14;
	mult = (cce & 0x3fff);

	current_egress_rate = active_egress_rate(ppd);

	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);

	src = (max_pkt_time >> shift) * mult;

	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;

	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
}

static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
{
	struct cca_timer *cca_timer;
	struct hfi1_pportdata *ppd;
	int sl;
	u16 ccti_timer, ccti_min;
	struct cc_state *cc_state;
	unsigned long flags;
	enum hrtimer_restart ret = HRTIMER_NORESTART;

	cca_timer = container_of(t, struct cca_timer, hrtimer);
	ppd = cca_timer->ppd;
	sl = cca_timer->sl;

	rcu_read_lock();

	cc_state = get_cc_state(ppd);

	if (!cc_state) {
		rcu_read_unlock();
		return HRTIMER_NORESTART;
	}

	/*
	 * 1) decrement ccti for SL
	 * 2) calculate IPG for link (set_link_ipg())
	 * 3) restart timer, unless ccti is at min value
	 */

	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;

	spin_lock_irqsave(&ppd->cca_timer_lock, flags);

	if (cca_timer->ccti > ccti_min) {
		cca_timer->ccti--;
		set_link_ipg(ppd);
	}

	if (cca_timer->ccti > ccti_min) {
		unsigned long nsec = 1024 * ccti_timer;
		/* ccti_timer is in units of 1.024 usec */
		hrtimer_forward_now(t, ns_to_ktime(nsec));
		ret = HRTIMER_RESTART;
	}

	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
	rcu_read_unlock();
	return ret;
}

/*
 * Common code for initializing the physical port structure.
 */
void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
{
	int i;
	uint default_pkey_idx;
	struct cc_state *cc_state;

	ppd->dd = dd;
	ppd->hw_pidx = hw_pidx;
	ppd->port = port; /* IB port number, not index */

	default_pkey_idx = 1;

	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;

	if (loopback) {
		hfi1_early_err(&pdev->dev,
			       "Faking data partition 0x8001 in idx %u\n",
			       !default_pkey_idx);
		ppd->pkeys[!default_pkey_idx] = 0x8001;
	}

	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
	INIT_WORK(&ppd->link_up_work, handle_link_up);
	INIT_WORK(&ppd->link_down_work, handle_link_down);
	INIT_WORK(&ppd->freeze_work, handle_freeze);
	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);

	mutex_init(&ppd->hls_lock);
	spin_lock_init(&ppd->qsfp_info.qsfp_lock);

	ppd->qsfp_info.ppd = ppd;
	ppd->sm_trap_qp = 0x0;
	ppd->sa_qp = 0x1;

	ppd->hfi1_wq = NULL;

	spin_lock_init(&ppd->cca_timer_lock);

	for (i = 0; i < OPA_MAX_SLS; i++) {
		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
			     HRTIMER_MODE_REL);
		ppd->cca_timer[i].ppd = ppd;
		ppd->cca_timer[i].sl = i;
		ppd->cca_timer[i].ccti = 0;
		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
	}

	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;

	spin_lock_init(&ppd->cc_state_lock);
	spin_lock_init(&ppd->cc_log_lock);
	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
	RCU_INIT_POINTER(ppd->cc_state, cc_state);
	if (!cc_state)
		goto bail;
	return;

bail:

	hfi1_early_err(&pdev->dev,
		       "Congestion Control Agent disabled for port %d\n", port);
}

/*
 * Do initialization for device that is only needed on
 * first detect, not on resets.
 */
static int loadtime_init(struct hfi1_devdata *dd)
{
	return 0;
}

/**
 * init_after_reset - re-initialize after a reset
 * @dd: the hfi1_ib device
 *
 * sanity check at least some of the values after reset, and
 * ensure no receive or transmit (explicitly, in case reset
 * failed
 */
static int init_after_reset(struct hfi1_devdata *dd)
{
	int i;
	struct hfi1_ctxtdata *rcd;
	/*
	 * Ensure chip does no sends or receives, tail updates, or
	 * pioavail updates while we re-initialize.  This is mostly
	 * for the driver data structures, not chip registers.
	 */
	for (i = 0; i < dd->num_rcv_contexts; i++) {
		rcd = hfi1_rcd_get_by_index(dd, i);
		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
			     HFI1_RCVCTRL_INTRAVAIL_DIS |
			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
		hfi1_rcd_put(rcd);
	}
	pio_send_control(dd, PSC_GLOBAL_DISABLE);
	for (i = 0; i < dd->num_send_contexts; i++)
		sc_disable(dd->send_contexts[i].sc);

	return 0;
}

static void enable_chip(struct hfi1_devdata *dd)
{
	struct hfi1_ctxtdata *rcd;
	u32 rcvmask;
	u16 i;

	/* enable PIO send */
	pio_send_control(dd, PSC_GLOBAL_ENABLE);

	/*
	 * Enable kernel ctxts' receive and receive interrupt.
	 * Other ctxts done as user opens and initializes them.
	 */
	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
		rcd = hfi1_rcd_get_by_index(dd, i);
		if (!rcd)
			continue;
		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
		hfi1_rcvctrl(dd, rcvmask, rcd);
		sc_enable(rcd->sc);
		hfi1_rcd_put(rcd);
	}
}

/**
 * create_workqueues - create per port workqueues
 * @dd: the hfi1_ib device
 */
static int create_workqueues(struct hfi1_devdata *dd)
{
	int pidx;
	struct hfi1_pportdata *ppd;

	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
		ppd = dd->pport + pidx;
		if (!ppd->hfi1_wq) {
			ppd->hfi1_wq =
				alloc_workqueue(
				    "hfi%d_%d",
				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
				    dd->unit, pidx);
			if (!ppd->hfi1_wq)
				goto wq_error;
		}
		if (!ppd->link_wq) {
			/*
			 * Make the link workqueue single-threaded to enforce
			 * serialization.
			 */
			ppd->link_wq =
				alloc_workqueue(
				    "hfi_link_%d_%d",
				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
				    1, /* max_active */
				    dd->unit, pidx);
			if (!ppd->link_wq)
				goto wq_error;
		}
	}
	return 0;
wq_error:
	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
		ppd = dd->pport + pidx;
		if (ppd->hfi1_wq) {
			destroy_workqueue(ppd->hfi1_wq);
			ppd->hfi1_wq = NULL;
		}
		if (ppd->link_wq) {
			destroy_workqueue(ppd->link_wq);
			ppd->link_wq = NULL;
		}
	}
	return -ENOMEM;
}

/**
 * hfi1_init - do the actual initialization sequence on the chip
 * @dd: the hfi1_ib device
 * @reinit: re-initializing, so don't allocate new memory
 *
 * Do the actual initialization sequence on the chip.  This is done
 * both from the init routine called from the PCI infrastructure, and
 * when we reset the chip, or detect that it was reset internally,
 * or it's administratively re-enabled.
 *
 * Memory allocation here and in called routines is only done in
 * the first case (reinit == 0).  We have to be careful, because even
 * without memory allocation, we need to re-write all the chip registers
 * TIDs, etc. after the reset or enable has completed.
 */
int hfi1_init(struct hfi1_devdata *dd, int reinit)
{
	int ret = 0, pidx, lastfail = 0;
	unsigned long len;
	u16 i;
	struct hfi1_ctxtdata *rcd;
	struct hfi1_pportdata *ppd;

	/* Set up recv low level handlers */
	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
						kdeth_process_expected;
	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
						kdeth_process_eager;
	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
						process_receive_error;
	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
						process_receive_bypass;
	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
						process_receive_invalid;
	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
						process_receive_invalid;
	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
						process_receive_invalid;
	dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;

	/* Set up send low level handlers */
	dd->process_pio_send = hfi1_verbs_send_pio;
	dd->process_dma_send = hfi1_verbs_send_dma;
	dd->pio_inline_send = pio_copy;
	dd->process_vnic_dma_send = hfi1_vnic_send_dma;

	if (is_ax(dd)) {
		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
		dd->do_drop = 1;
	} else {
		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
		dd->do_drop = 0;
	}

	/* make sure the link is not "up" */
	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
		ppd = dd->pport + pidx;
		ppd->linkup = 0;
	}

	if (reinit)
		ret = init_after_reset(dd);
	else
		ret = loadtime_init(dd);
	if (ret)
		goto done;

	/* allocate dummy tail memory for all receive contexts */
	dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
		&dd->pcidev->dev, sizeof(u64),
		&dd->rcvhdrtail_dummy_dma,
		GFP_KERNEL);

	if (!dd->rcvhdrtail_dummy_kvaddr) {
		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
		ret = -ENOMEM;
		goto done;
	}

	/* dd->rcd can be NULL if early initialization failed */
	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
		/*
		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
		 * re-init, the simplest way to handle this is to free
		 * existing, and re-allocate.
		 * Need to re-create rest of ctxt 0 ctxtdata as well.
		 */
		rcd = hfi1_rcd_get_by_index(dd, i);
		if (!rcd)
			continue;

		rcd->do_interrupt = &handle_receive_interrupt;

		lastfail = hfi1_create_rcvhdrq(dd, rcd);
		if (!lastfail)
			lastfail = hfi1_setup_eagerbufs(rcd);
		if (lastfail) {
			dd_dev_err(dd,
				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
			ret = lastfail;
		}
		hfi1_rcd_put(rcd);
	}

	/* Allocate enough memory for user event notification. */
	len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
			 sizeof(*dd->events));
	dd->events = vmalloc_user(len);
	if (!dd->events)
		dd_dev_err(dd, "Failed to allocate user events page\n");
	/*
	 * Allocate a page for device and port status.
	 * Page will be shared amongst all user processes.
	 */
	dd->status = vmalloc_user(PAGE_SIZE);
	if (!dd->status)
		dd_dev_err(dd, "Failed to allocate dev status page\n");
	else
		dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
					     sizeof(dd->status->freezemsg));
	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
		ppd = dd->pport + pidx;
		if (dd->status)
			/* Currently, we only have one port */
			ppd->statusp = &dd->status->port;

		set_mtu(ppd);
	}

	/* enable chip even if we have an error, so we can debug cause */
	enable_chip(dd);

done:
	/*
	 * Set status even if port serdes is not initialized
	 * so that diags will work.
	 */
	if (dd->status)
		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
			HFI1_STATUS_INITTED;
	if (!ret) {
		/* enable all interrupts from the chip */
		set_intr_state(dd, 1);

		/* chip is OK for user apps; mark it as initialized */
		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
			ppd = dd->pport + pidx;

			/*
			 * start the serdes - must be after interrupts are
			 * enabled so we are notified when the link goes up
			 */
			lastfail = bringup_serdes(ppd);
			if (lastfail)
				dd_dev_info(dd,
					    "Failed to bring up port %u\n",
					    ppd->port);

			/*
			 * Set status even if port serdes is not initialized
			 * so that diags will work.
			 */
			if (ppd->statusp)
				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
							HFI1_STATUS_INITTED;
			if (!ppd->link_speed_enabled)
				continue;
		}
	}

	/* if ret is non-zero, we probably should do some cleanup here... */
	return ret;
}

static inline struct hfi1_devdata *__hfi1_lookup(int unit)
{
	return idr_find(&hfi1_unit_table, unit);
}

struct hfi1_devdata *hfi1_lookup(int unit)
{
	struct hfi1_devdata *dd;
	unsigned long flags;

	spin_lock_irqsave(&hfi1_devs_lock, flags);
	dd = __hfi1_lookup(unit);
	spin_unlock_irqrestore(&hfi1_devs_lock, flags);

	return dd;
}

/*
 * Stop the timers during unit shutdown, or after an error late
 * in initialization.
 */
static void stop_timers(struct hfi1_devdata *dd)
{
	struct hfi1_pportdata *ppd;
	int pidx;

	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
		ppd = dd->pport + pidx;
		if (ppd->led_override_timer.function) {
			del_timer_sync(&ppd->led_override_timer);
			atomic_set(&ppd->led_override_timer_active, 0);
		}
	}
}

/**
 * shutdown_device - shut down a device
 * @dd: the hfi1_ib device
 *
 * This is called to make the device quiet when we are about to
 * unload the driver, and also when the device is administratively
 * disabled.   It does not free any data structures.
 * Everything it does has to be setup again by hfi1_init(dd, 1)
 */
static void shutdown_device(struct hfi1_devdata *dd)
{
	struct hfi1_pportdata *ppd;
	struct hfi1_ctxtdata *rcd;
	unsigned pidx;
	int i;

	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
		ppd = dd->pport + pidx;

		ppd->linkup = 0;
		if (ppd->statusp)
			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
					   HFI1_STATUS_IB_READY);
	}
	dd->flags &= ~HFI1_INITTED;

	/* mask interrupts, but not errors */
	set_intr_state(dd, 0);

	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
		ppd = dd->pport + pidx;
		for (i = 0; i < dd->num_rcv_contexts; i++) {
			rcd = hfi1_rcd_get_by_index(dd, i);
			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
				     HFI1_RCVCTRL_CTXT_DIS |
				     HFI1_RCVCTRL_INTRAVAIL_DIS |
				     HFI1_RCVCTRL_PKEY_DIS |
				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
			hfi1_rcd_put(rcd);
		}
		/*
		 * Gracefully stop all sends allowing any in progress to
		 * trickle out first.
		 */
		for (i = 0; i < dd->num_send_contexts; i++)
			sc_flush(dd->send_contexts[i].sc);
	}

	/*
	 * Enough for anything that's going to trickle out to have actually
	 * done so.
	 */
	udelay(20);

	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
		ppd = dd->pport + pidx;

		/* disable all contexts */
		for (i = 0; i < dd->num_send_contexts; i++)
			sc_disable(dd->send_contexts[i].sc);
		/* disable the send device */
		pio_send_control(dd, PSC_GLOBAL_DISABLE);

		shutdown_led_override(ppd);

		/*
		 * Clear SerdesEnable.
		 * We can't count on interrupts since we are stopping.
		 */
		hfi1_quiet_serdes(ppd);

		if (ppd->hfi1_wq) {
			destroy_workqueue(ppd->hfi1_wq);
			ppd->hfi1_wq = NULL;
		}
		if (ppd->link_wq) {
			destroy_workqueue(ppd->link_wq);
			ppd->link_wq = NULL;
		}
	}
	sdma_exit(dd);
}

/**
 * hfi1_free_ctxtdata - free a context's allocated data
 * @dd: the hfi1_ib device
 * @rcd: the ctxtdata structure
 *
 * free up any allocated data for a context
 * It should never change any chip state, or global driver state.
 */
void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
{
	u32 e;

	if (!rcd)
		return;

	if (rcd->rcvhdrq) {
		dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
		rcd->rcvhdrq = NULL;
		if (rcd->rcvhdrtail_kvaddr) {
			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
					  (void *)rcd->rcvhdrtail_kvaddr,
					  rcd->rcvhdrqtailaddr_dma);
			rcd->rcvhdrtail_kvaddr = NULL;
		}
	}

	/* all the RcvArray entries should have been cleared by now */
	kfree(rcd->egrbufs.rcvtids);
	rcd->egrbufs.rcvtids = NULL;

	for (e = 0; e < rcd->egrbufs.alloced; e++) {
		if (rcd->egrbufs.buffers[e].dma)
			dma_free_coherent(&dd->pcidev->dev,
					  rcd->egrbufs.buffers[e].len,
					  rcd->egrbufs.buffers[e].addr,
					  rcd->egrbufs.buffers[e].dma);
	}
	kfree(rcd->egrbufs.buffers);
	rcd->egrbufs.alloced = 0;
	rcd->egrbufs.buffers = NULL;

	sc_free(rcd->sc);
	rcd->sc = NULL;

	vfree(rcd->subctxt_uregbase);
	vfree(rcd->subctxt_rcvegrbuf);
	vfree(rcd->subctxt_rcvhdr_base);
	kfree(rcd->opstats);

	rcd->subctxt_uregbase = NULL;
	rcd->subctxt_rcvegrbuf = NULL;
	rcd->subctxt_rcvhdr_base = NULL;
	rcd->opstats = NULL;
}

/*
 * Release our hold on the shared asic data.  If we are the last one,
 * return the structure to be finalized outside the lock.  Must be
 * holding hfi1_devs_lock.
 */
static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
{
	struct hfi1_asic_data *ad;
	int other;

	if (!dd->asic_data)
		return NULL;
	dd->asic_data->dds[dd->hfi1_id] = NULL;
	other = dd->hfi1_id ? 0 : 1;
	ad = dd->asic_data;
	dd->asic_data = NULL;
	/* return NULL if the other dd still has a link */
	return ad->dds[other] ? NULL : ad;
}

static void finalize_asic_data(struct hfi1_devdata *dd,
			       struct hfi1_asic_data *ad)
{
	clean_up_i2c(dd, ad);
	kfree(ad);
}

static void __hfi1_free_devdata(struct kobject *kobj)
{
	struct hfi1_devdata *dd =
		container_of(kobj, struct hfi1_devdata, kobj);
	struct hfi1_asic_data *ad;
	unsigned long flags;

	spin_lock_irqsave(&hfi1_devs_lock, flags);
	idr_remove(&hfi1_unit_table, dd->unit);
	list_del(&dd->list);
	ad = release_asic_data(dd);
	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
	if (ad)
		finalize_asic_data(dd, ad);
	free_platform_config(dd);
	rcu_barrier(); /* wait for rcu callbacks to complete */
	free_percpu(dd->int_counter);
	free_percpu(dd->rcv_limit);
	free_percpu(dd->send_schedule);
	free_percpu(dd->tx_opstats);
	rvt_dealloc_device(&dd->verbs_dev.rdi);
}

static struct kobj_type hfi1_devdata_type = {
	.release = __hfi1_free_devdata,
};

void hfi1_free_devdata(struct hfi1_devdata *dd)
{
	kobject_put(&dd->kobj);
}

/*
 * Allocate our primary per-unit data structure.  Must be done via verbs
 * allocator, because the verbs cleanup process both does cleanup and
 * free of the data structure.
 * "extra" is for chip-specific data.
 *
 * Use the idr mechanism to get a unit number for this unit.
 */
struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
{
	unsigned long flags;
	struct hfi1_devdata *dd;
	int ret, nports;

	/* extra is * number of ports */
	nports = extra / sizeof(struct hfi1_pportdata);

	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
						     nports);
	if (!dd)
		return ERR_PTR(-ENOMEM);
	dd->num_pports = nports;
	dd->pport = (struct hfi1_pportdata *)(dd + 1);

	INIT_LIST_HEAD(&dd->list);
	idr_preload(GFP_KERNEL);
	spin_lock_irqsave(&hfi1_devs_lock, flags);

	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
	if (ret >= 0) {
		dd->unit = ret;
		list_add(&dd->list, &hfi1_dev_list);
	}

	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
	idr_preload_end();

	if (ret < 0) {
		hfi1_early_err(&pdev->dev,
			       "Could not allocate unit ID: error %d\n", -ret);
		goto bail;
	}
	/*
	 * Initialize all locks for the device. This needs to be as early as
	 * possible so locks are usable.
	 */
	spin_lock_init(&dd->sc_lock);
	spin_lock_init(&dd->sendctrl_lock);
	spin_lock_init(&dd->rcvctrl_lock);
	spin_lock_init(&dd->uctxt_lock);
	spin_lock_init(&dd->hfi1_diag_trans_lock);
	spin_lock_init(&dd->sc_init_lock);
	spin_lock_init(&dd->dc8051_memlock);
	seqlock_init(&dd->sc2vl_lock);
	spin_lock_init(&dd->sde_map_lock);
	spin_lock_init(&dd->pio_map_lock);
	mutex_init(&dd->dc8051_lock);
	init_waitqueue_head(&dd->event_queue);

	dd->int_counter = alloc_percpu(u64);
	if (!dd->int_counter) {
		ret = -ENOMEM;
		goto bail;
	}

	dd->rcv_limit = alloc_percpu(u64);
	if (!dd->rcv_limit) {
		ret = -ENOMEM;
		goto bail;
	}

	dd->send_schedule = alloc_percpu(u64);
	if (!dd->send_schedule) {
		ret = -ENOMEM;
		goto bail;
	}

	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
	if (!dd->tx_opstats) {
		ret = -ENOMEM;
		goto bail;
	}

	kobject_init(&dd->kobj, &hfi1_devdata_type);
	return dd;

bail:
	if (!list_empty(&dd->list))
		list_del_init(&dd->list);
	rvt_dealloc_device(&dd->verbs_dev.rdi);
	return ERR_PTR(ret);
}

/*
 * Called from freeze mode handlers, and from PCI error
 * reporting code.  Should be paranoid about state of
 * system and data structures.
 */
void hfi1_disable_after_error(struct hfi1_devdata *dd)
{
	if (dd->flags & HFI1_INITTED) {
		u32 pidx;

		dd->flags &= ~HFI1_INITTED;
		if (dd->pport)
			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
				struct hfi1_pportdata *ppd;

				ppd = dd->pport + pidx;
				if (dd->flags & HFI1_PRESENT)
					set_link_state(ppd, HLS_DN_DISABLE);

				if (ppd->statusp)
					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
			}
	}

	/*
	 * Mark as having had an error for driver, and also
	 * for /sys and status word mapped to user programs.
	 * This marks unit as not usable, until reset.
	 */
	if (dd->status)
		dd->status->dev |= HFI1_STATUS_HWERROR;
}

static void remove_one(struct pci_dev *);
static int init_one(struct pci_dev *, const struct pci_device_id *);

#define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
#define PFX DRIVER_NAME ": "

const struct pci_device_id hfi1_pci_tbl[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);

static struct pci_driver hfi1_pci_driver = {
	.name = DRIVER_NAME,
	.probe = init_one,
	.remove = remove_one,
	.id_table = hfi1_pci_tbl,
	.err_handler = &hfi1_pci_err_handler,
};

static void __init compute_krcvqs(void)
{
	int i;

	for (i = 0; i < krcvqsset; i++)
		n_krcvqs += krcvqs[i];
}

/*
 * Do all the generic driver unit- and chip-independent memory
 * allocation and initialization.
 */
static int __init hfi1_mod_init(void)
{
	int ret;

	ret = dev_init();
	if (ret)
		goto bail;

	ret = node_affinity_init();
	if (ret)
		goto bail;

	/* validate max MTU before any devices start */
	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
	}
	/* valid CUs run from 1-128 in powers of 2 */
	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
		hfi1_cu = 1;
	/* valid credit return threshold is 0-100, variable is unsigned */
	if (user_credit_return_threshold > 100)
		user_credit_return_threshold = 100;

	compute_krcvqs();
	/*
	 * sanitize receive interrupt count, time must wait until after
	 * the hardware type is known
	 */
	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
	/* reject invalid combinations */
	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
		rcv_intr_count = 1;
	}
	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
		/*
		 * Avoid indefinite packet delivery by requiring a timeout
		 * if count is > 1.
		 */
		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
		rcv_intr_timeout = 1;
	}
	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
		/*
		 * The dynamic algorithm expects a non-zero timeout
		 * and a count > 1.
		 */
		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
		rcv_intr_dynamic = 0;
	}

	/* sanitize link CRC options */
	link_crc_mask &= SUPPORTED_CRCS;

	/*
	 * These must be called before the driver is registered with
	 * the PCI subsystem.
	 */
	idr_init(&hfi1_unit_table);

	hfi1_dbg_init();
	ret = hfi1_wss_init();
	if (ret < 0)
		goto bail_wss;
	ret = pci_register_driver(&hfi1_pci_driver);
	if (ret < 0) {
		pr_err("Unable to register driver: error %d\n", -ret);
		goto bail_dev;
	}
	goto bail; /* all OK */

bail_dev:
	hfi1_wss_exit();
bail_wss:
	hfi1_dbg_exit();
	idr_destroy(&hfi1_unit_table);
	dev_cleanup();
bail:
	return ret;
}

module_init(hfi1_mod_init);

/*
 * Do the non-unit driver cleanup, memory free, etc. at unload.
 */
static void __exit hfi1_mod_cleanup(void)
{
	pci_unregister_driver(&hfi1_pci_driver);
	node_affinity_destroy();
	hfi1_wss_exit();
	hfi1_dbg_exit();

	idr_destroy(&hfi1_unit_table);
	dispose_firmware();	/* asymmetric with obtain_firmware() */
	dev_cleanup();
}

module_exit(hfi1_mod_cleanup);

/* this can only be called after a successful initialization */
static void cleanup_device_data(struct hfi1_devdata *dd)
{
	int ctxt;
	int pidx;

	/* users can't do anything more with chip */
	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
		struct hfi1_pportdata *ppd = &dd->pport[pidx];
		struct cc_state *cc_state;
		int i;

		if (ppd->statusp)
			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;

		for (i = 0; i < OPA_MAX_SLS; i++)
			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);

		spin_lock(&ppd->cc_state_lock);
		cc_state = get_cc_state_protected(ppd);
		RCU_INIT_POINTER(ppd->cc_state, NULL);
		spin_unlock(&ppd->cc_state_lock);

		if (cc_state)
			kfree_rcu(cc_state, rcu);
	}

	free_credit_return(dd);

	if (dd->rcvhdrtail_dummy_kvaddr) {
		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
				  (void *)dd->rcvhdrtail_dummy_kvaddr,
				  dd->rcvhdrtail_dummy_dma);
		dd->rcvhdrtail_dummy_kvaddr = NULL;
	}

	/*
	 * Free any resources still in use (usually just kernel contexts)
	 * at unload; we do for ctxtcnt, because that's what we allocate.
	 */
	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];

		if (rcd) {
			hfi1_clear_tids(rcd);
			hfi1_free_ctxt(rcd);
		}
	}

	kfree(dd->rcd);
	dd->rcd = NULL;

	free_pio_map(dd);
	/* must follow rcv context free - need to remove rcv's hooks */
	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
		sc_free(dd->send_contexts[ctxt].sc);
	dd->num_send_contexts = 0;
	kfree(dd->send_contexts);
	dd->send_contexts = NULL;
	kfree(dd->hw_to_sw);
	dd->hw_to_sw = NULL;
	kfree(dd->boardname);
	vfree(dd->events);
	vfree(dd->status);
}

/*
 * Clean up on unit shutdown, or error during unit load after
 * successful initialization.
 */
static void postinit_cleanup(struct hfi1_devdata *dd)
{
	hfi1_start_cleanup(dd);

	hfi1_pcie_ddcleanup(dd);
	hfi1_pcie_cleanup(dd->pcidev);

	cleanup_device_data(dd);

	hfi1_free_devdata(dd);
}

static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
{
	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
		hfi1_early_err(dev, "Receive header queue count too small\n");
		return -EINVAL;
	}

	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
		hfi1_early_err(dev,
			       "Receive header queue count cannot be greater than %u\n",
			       HFI1_MAX_HDRQ_EGRBUF_CNT);
		return -EINVAL;
	}

	if (thecnt % HDRQ_INCREMENT) {
		hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
			       thecnt, HDRQ_INCREMENT);
		return -EINVAL;
	}

	return 0;
}

static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	int ret = 0, j, pidx, initfail;
	struct hfi1_devdata *dd;
	struct hfi1_pportdata *ppd;

	/* First, lock the non-writable module parameters */
	HFI1_CAP_LOCK();

	/* Validate dev ids */
	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
	      ent->device == PCI_DEVICE_ID_INTEL1)) {
		hfi1_early_err(&pdev->dev,
			       "Failing on unknown Intel deviceid 0x%x\n",
			       ent->device);
		ret = -ENODEV;
		goto bail;
	}

	/* Validate some global module parameters */
	ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
	if (ret)
		goto bail;

	/* use the encoding function as a sanitization check */
	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
		hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
			       hfi1_hdrq_entsize);
		ret = -EINVAL;
		goto bail;
	}

	/* The receive eager buffer size must be set before the receive
	 * contexts are created.
	 *
	 * Set the eager buffer size.  Validate that it falls in a range
	 * allowed by the hardware - all powers of 2 between the min and
	 * max.  The maximum valid MTU is within the eager buffer range
	 * so we do not need to cap the max_mtu by an eager buffer size
	 * setting.
	 */
	if (eager_buffer_size) {
		if (!is_power_of_2(eager_buffer_size))
			eager_buffer_size =
				roundup_pow_of_two(eager_buffer_size);
		eager_buffer_size =
			clamp_val(eager_buffer_size,
				  MIN_EAGER_BUFFER * 8,
				  MAX_EAGER_BUFFER_TOTAL);
		hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
				eager_buffer_size);
	} else {
		hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
		ret = -EINVAL;
		goto bail;
	}

	/* restrict value of hfi1_rcvarr_split */
	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);

	ret = hfi1_pcie_init(pdev, ent);
	if (ret)
		goto bail;

	/*
	 * Do device-specific initialization, function table setup, dd
	 * allocation, etc.
	 */
	dd = hfi1_init_dd(pdev, ent);

	if (IS_ERR(dd)) {
		ret = PTR_ERR(dd);
		goto clean_bail; /* error already printed */
	}

	ret = create_workqueues(dd);
	if (ret)
		goto clean_bail;

	/* do the generic initialization */
	initfail = hfi1_init(dd, 0);

	/* setup vnic */
	hfi1_vnic_setup(dd);

	ret = hfi1_register_ib_device(dd);

	/*
	 * Now ready for use.  this should be cleared whenever we
	 * detect a reset, or initiate one.  If earlier failure,
	 * we still create devices, so diags, etc. can be used
	 * to determine cause of problem.
	 */
	if (!initfail && !ret) {
		dd->flags |= HFI1_INITTED;
		/* create debufs files after init and ib register */
		hfi1_dbg_ibdev_init(&dd->verbs_dev);
	}

	j = hfi1_device_create(dd);
	if (j)
		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);

	if (initfail || ret) {
		stop_timers(dd);
		flush_workqueue(ib_wq);
		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
			hfi1_quiet_serdes(dd->pport + pidx);
			ppd = dd->pport + pidx;
			if (ppd->hfi1_wq) {
				destroy_workqueue(ppd->hfi1_wq);
				ppd->hfi1_wq = NULL;
			}
			if (ppd->link_wq) {
				destroy_workqueue(ppd->link_wq);
				ppd->link_wq = NULL;
			}
		}
		if (!j)
			hfi1_device_remove(dd);
		if (!ret)
			hfi1_unregister_ib_device(dd);
		hfi1_vnic_cleanup(dd);
		postinit_cleanup(dd);
		if (initfail)
			ret = initfail;
		goto bail;	/* everything already cleaned */
	}

	sdma_start(dd);

	return 0;

clean_bail:
	hfi1_pcie_cleanup(pdev);
bail:
	return ret;
}

static void wait_for_clients(struct hfi1_devdata *dd)
{
	/*
	 * Remove the device init value and complete the device if there is
	 * no clients or wait for active clients to finish.
	 */
	if (atomic_dec_and_test(&dd->user_refcount))
		complete(&dd->user_comp);

	wait_for_completion(&dd->user_comp);
}

static void remove_one(struct pci_dev *pdev)
{
	struct hfi1_devdata *dd = pci_get_drvdata(pdev);

	/* close debugfs files before ib unregister */
	hfi1_dbg_ibdev_exit(&dd->verbs_dev);

	/* remove the /dev hfi1 interface */
	hfi1_device_remove(dd);

	/* wait for existing user space clients to finish */
	wait_for_clients(dd);

	/* unregister from IB core */
	hfi1_unregister_ib_device(dd);

	/* cleanup vnic */
	hfi1_vnic_cleanup(dd);

	/*
	 * Disable the IB link, disable interrupts on the device,
	 * clear dma engines, etc.
	 */
	shutdown_device(dd);

	stop_timers(dd);

	/* wait until all of our (qsfp) queue_work() calls complete */
	flush_workqueue(ib_wq);

	postinit_cleanup(dd);
}

/**
 * hfi1_create_rcvhdrq - create a receive header queue
 * @dd: the hfi1_ib device
 * @rcd: the context data
 *
 * This must be contiguous memory (from an i/o perspective), and must be
 * DMA'able (which means for some systems, it will go through an IOMMU,
 * or be forced into a low address range).
 */
int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
{
	unsigned amt;
	u64 reg;

	if (!rcd->rcvhdrq) {
		dma_addr_t dma_hdrqtail;
		gfp_t gfp_flags;

		/*
		 * rcvhdrqentsize is in DWs, so we have to convert to bytes
		 * (* sizeof(u32)).
		 */
		amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
				 sizeof(u32));

		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
			gfp_flags = GFP_KERNEL;
		else
			gfp_flags = GFP_USER;
		rcd->rcvhdrq = dma_zalloc_coherent(
			&dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
			gfp_flags | __GFP_COMP);

		if (!rcd->rcvhdrq) {
			dd_dev_err(dd,
				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
				   amt, rcd->ctxt);
			goto bail;
		}

		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
				&dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail,
				gfp_flags);
			if (!rcd->rcvhdrtail_kvaddr)
				goto bail_free;
			rcd->rcvhdrqtailaddr_dma = dma_hdrqtail;
		}

		rcd->rcvhdrq_size = amt;
	}
	/*
	 * These values are per-context:
	 *	RcvHdrCnt
	 *	RcvHdrEntSize
	 *	RcvHdrSize
	 */
	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
			& RCV_HDR_CNT_CNT_MASK)
		<< RCV_HDR_CNT_CNT_SHIFT;
	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
	reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);

	/*
	 * Program dummy tail address for every receive context
	 * before enabling any receive context
	 */
	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
			dd->rcvhdrtail_dummy_dma);

	return 0;

bail_free:
	dd_dev_err(dd,
		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
		   rcd->ctxt);
	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
			  rcd->rcvhdrq_dma);
	rcd->rcvhdrq = NULL;
bail:
	return -ENOMEM;
}

/**
 * allocate eager buffers, both kernel and user contexts.
 * @rcd: the context we are setting up.
 *
 * Allocate the eager TID buffers and program them into hip.
 * They are no longer completely contiguous, we do multiple allocation
 * calls.  Otherwise we get the OOM code involved, by asking for too
 * much per call, with disastrous results on some kernels.
 */
int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
{
	struct hfi1_devdata *dd = rcd->dd;
	u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
	gfp_t gfp_flags;
	u16 order;
	int ret = 0;
	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);

	/*
	 * GFP_USER, but without GFP_FS, so buffer cache can be
	 * coalesced (we hope); otherwise, even at order 4,
	 * heavy filesystem activity makes these fail, and we can
	 * use compound pages.
	 */
	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;

	/*
	 * The minimum size of the eager buffers is a groups of MTU-sized
	 * buffers.
	 * The global eager_buffer_size parameter is checked against the
	 * theoretical lower limit of the value. Here, we check against the
	 * MTU.
	 */
	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
	/*
	 * If using one-pkt-per-egr-buffer, lower the eager buffer
	 * size to the max MTU (page-aligned).
	 */
	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
		rcd->egrbufs.rcvtid_size = round_mtu;

	/*
	 * Eager buffers sizes of 1MB or less require smaller TID sizes
	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
	 */
	if (rcd->egrbufs.size <= (1 << 20))
		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
			rounddown_pow_of_two(rcd->egrbufs.size / 8));

	while (alloced_bytes < rcd->egrbufs.size &&
	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
		rcd->egrbufs.buffers[idx].addr =
			dma_zalloc_coherent(&dd->pcidev->dev,
					    rcd->egrbufs.rcvtid_size,
					    &rcd->egrbufs.buffers[idx].dma,
					    gfp_flags);
		if (rcd->egrbufs.buffers[idx].addr) {
			rcd->egrbufs.buffers[idx].len =
				rcd->egrbufs.rcvtid_size;
			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
				rcd->egrbufs.buffers[idx].addr;
			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
				rcd->egrbufs.buffers[idx].dma;
			rcd->egrbufs.alloced++;
			alloced_bytes += rcd->egrbufs.rcvtid_size;
			idx++;
		} else {
			u32 new_size, i, j;
			u64 offset = 0;

			/*
			 * Fail the eager buffer allocation if:
			 *   - we are already using the lowest acceptable size
			 *   - we are using one-pkt-per-egr-buffer (this implies
			 *     that we are accepting only one size)
			 */
			if (rcd->egrbufs.rcvtid_size == round_mtu ||
			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
					   rcd->ctxt);
				ret = -ENOMEM;
				goto bail_rcvegrbuf_phys;
			}

			new_size = rcd->egrbufs.rcvtid_size / 2;

			/*
			 * If the first attempt to allocate memory failed, don't
			 * fail everything but continue with the next lower
			 * size.
			 */
			if (idx == 0) {
				rcd->egrbufs.rcvtid_size = new_size;
				continue;
			}

			/*
			 * Re-partition already allocated buffers to a smaller
			 * size.
			 */
			rcd->egrbufs.alloced = 0;
			for (i = 0, j = 0, offset = 0; j < idx; i++) {
				if (i >= rcd->egrbufs.count)
					break;
				rcd->egrbufs.rcvtids[i].dma =
					rcd->egrbufs.buffers[j].dma + offset;
				rcd->egrbufs.rcvtids[i].addr =
					rcd->egrbufs.buffers[j].addr + offset;
				rcd->egrbufs.alloced++;
				if ((rcd->egrbufs.buffers[j].dma + offset +
				     new_size) ==
				    (rcd->egrbufs.buffers[j].dma +
				     rcd->egrbufs.buffers[j].len)) {
					j++;
					offset = 0;
				} else {
					offset += new_size;
				}
			}
			rcd->egrbufs.rcvtid_size = new_size;
		}
	}
	rcd->egrbufs.numbufs = idx;
	rcd->egrbufs.size = alloced_bytes;

	hfi1_cdbg(PROC,
		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
		  rcd->ctxt, rcd->egrbufs.alloced,
		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);

	/*
	 * Set the contexts rcv array head update threshold to the closest
	 * power of 2 (so we can use a mask instead of modulo) below half
	 * the allocated entries.
	 */
	rcd->egrbufs.threshold =
		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
	/*
	 * Compute the expected RcvArray entry base. This is done after
	 * allocating the eager buffers in order to maximize the
	 * expected RcvArray entries for the context.
	 */
	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
	rcd->expected_count = max_entries - egrtop;
	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;

	rcd->expected_base = rcd->eager_base + egrtop;
	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
		  rcd->eager_base, rcd->expected_base);

	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
		hfi1_cdbg(PROC,
			  "ctxt%u: current Eager buffer size is invalid %u\n",
			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
		ret = -EINVAL;
		goto bail_rcvegrbuf_phys;
	}

	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
			     rcd->egrbufs.rcvtids[idx].dma, order);
		cond_resched();
	}

	return 0;

bail_rcvegrbuf_phys:
	for (idx = 0; idx < rcd->egrbufs.alloced &&
	     rcd->egrbufs.buffers[idx].addr;
	     idx++) {
		dma_free_coherent(&dd->pcidev->dev,
				  rcd->egrbufs.buffers[idx].len,
				  rcd->egrbufs.buffers[idx].addr,
				  rcd->egrbufs.buffers[idx].dma);
		rcd->egrbufs.buffers[idx].addr = NULL;
		rcd->egrbufs.buffers[idx].dma = 0;
		rcd->egrbufs.buffers[idx].len = 0;
	}

	return ret;
}