1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
|
/*
* i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
* Copyright (C) 2004 Arcom Control Systems
* Copyright (C) 2008 Pengutronix
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/i2c-algo-pca.h>
#define DEB1(fmt, args...) do { if (i2c_debug >= 1) \
printk(KERN_DEBUG fmt, ## args); } while (0)
#define DEB2(fmt, args...) do { if (i2c_debug >= 2) \
printk(KERN_DEBUG fmt, ## args); } while (0)
#define DEB3(fmt, args...) do { if (i2c_debug >= 3) \
printk(KERN_DEBUG fmt, ## args); } while (0)
static int i2c_debug;
#define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
#define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
#define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
#define pca_clock(adap) adap->i2c_clock
#define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
#define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
#define pca_wait(adap) adap->wait_for_completion(adap->data)
static void pca_reset(struct i2c_algo_pca_data *adap)
{
if (adap->chip == I2C_PCA_CHIP_9665) {
/* Ignore the reset function from the module,
* we can use the parallel bus reset.
*/
pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET);
pca_outw(adap, I2C_PCA_IND, 0xA5);
pca_outw(adap, I2C_PCA_IND, 0x5A);
} else {
adap->reset_chip(adap->data);
}
}
/*
* Generate a start condition on the i2c bus.
*
* returns after the start condition has occurred
*/
static int pca_start(struct i2c_algo_pca_data *adap)
{
int sta = pca_get_con(adap);
DEB2("=== START\n");
sta |= I2C_PCA_CON_STA;
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
pca_set_con(adap, sta);
return pca_wait(adap);
}
/*
* Generate a repeated start condition on the i2c bus
*
* return after the repeated start condition has occurred
*/
static int pca_repeated_start(struct i2c_algo_pca_data *adap)
{
int sta = pca_get_con(adap);
DEB2("=== REPEATED START\n");
sta |= I2C_PCA_CON_STA;
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
pca_set_con(adap, sta);
return pca_wait(adap);
}
/*
* Generate a stop condition on the i2c bus
*
* returns after the stop condition has been generated
*
* STOPs do not generate an interrupt or set the SI flag, since the
* part returns the idle state (0xf8). Hence we don't need to
* pca_wait here.
*/
static void pca_stop(struct i2c_algo_pca_data *adap)
{
int sta = pca_get_con(adap);
DEB2("=== STOP\n");
sta |= I2C_PCA_CON_STO;
sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI);
pca_set_con(adap, sta);
}
/*
* Send the slave address and R/W bit
*
* returns after the address has been sent
*/
static int pca_address(struct i2c_algo_pca_data *adap,
struct i2c_msg *msg)
{
int sta = pca_get_con(adap);
int addr;
addr = ((0x7f & msg->addr) << 1);
if (msg->flags & I2C_M_RD)
addr |= 1;
DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
pca_outw(adap, I2C_PCA_DAT, addr);
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
pca_set_con(adap, sta);
return pca_wait(adap);
}
/*
* Transmit a byte.
*
* Returns after the byte has been transmitted
*/
static int pca_tx_byte(struct i2c_algo_pca_data *adap,
__u8 b)
{
int sta = pca_get_con(adap);
DEB2("=== WRITE %#04x\n", b);
pca_outw(adap, I2C_PCA_DAT, b);
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
pca_set_con(adap, sta);
return pca_wait(adap);
}
/*
* Receive a byte
*
* returns immediately.
*/
static void pca_rx_byte(struct i2c_algo_pca_data *adap,
__u8 *b, int ack)
{
*b = pca_inw(adap, I2C_PCA_DAT);
DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
}
/*
* Setup ACK or NACK for next received byte and wait for it to arrive.
*
* Returns after next byte has arrived.
*/
static int pca_rx_ack(struct i2c_algo_pca_data *adap,
int ack)
{
int sta = pca_get_con(adap);
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA);
if (ack)
sta |= I2C_PCA_CON_AA;
pca_set_con(adap, sta);
return pca_wait(adap);
}
static int pca_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs,
int num)
{
struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
struct i2c_msg *msg = NULL;
int curmsg;
int numbytes = 0;
int state;
int ret;
int completed = 1;
unsigned long timeout = jiffies + i2c_adap->timeout;
while ((state = pca_status(adap)) != 0xf8) {
if (time_before(jiffies, timeout)) {
msleep(10);
} else {
dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
"%#04x\n", state);
return -EBUSY;
}
}
DEB1("{{{ XFER %d messages\n", num);
if (i2c_debug >= 2) {
for (curmsg = 0; curmsg < num; curmsg++) {
int addr, i;
msg = &msgs[curmsg];
addr = (0x7f & msg->addr) ;
if (msg->flags & I2C_M_RD)
printk(KERN_INFO " [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
curmsg, msg->len, addr, (addr << 1) | 1);
else {
printk(KERN_INFO " [%02d] WR %d bytes to %#02x [%#02x%s",
curmsg, msg->len, addr, addr << 1,
msg->len == 0 ? "" : ", ");
for (i = 0; i < msg->len; i++)
printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
printk("]\n");
}
}
}
curmsg = 0;
ret = -EIO;
while (curmsg < num) {
state = pca_status(adap);
DEB3("STATE is 0x%02x\n", state);
msg = &msgs[curmsg];
switch (state) {
case 0xf8: /* On reset or stop the bus is idle */
completed = pca_start(adap);
break;
case 0x08: /* A START condition has been transmitted */
case 0x10: /* A repeated start condition has been transmitted */
completed = pca_address(adap, msg);
break;
case 0x18: /* SLA+W has been transmitted; ACK has been received */
case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
if (numbytes < msg->len) {
completed = pca_tx_byte(adap,
msg->buf[numbytes]);
numbytes++;
break;
}
curmsg++; numbytes = 0;
if (curmsg == num)
pca_stop(adap);
else
completed = pca_repeated_start(adap);
break;
case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
DEB2("NOT ACK received after SLA+W\n");
pca_stop(adap);
ret = -ENXIO;
goto out;
case 0x40: /* SLA+R has been transmitted; ACK has been received */
completed = pca_rx_ack(adap, msg->len > 1);
break;
case 0x50: /* Data bytes has been received; ACK has been returned */
if (numbytes < msg->len) {
pca_rx_byte(adap, &msg->buf[numbytes], 1);
numbytes++;
completed = pca_rx_ack(adap,
numbytes < msg->len - 1);
break;
}
curmsg++; numbytes = 0;
if (curmsg == num)
pca_stop(adap);
else
completed = pca_repeated_start(adap);
break;
case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
DEB2("NOT ACK received after SLA+R\n");
pca_stop(adap);
ret = -ENXIO;
goto out;
case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
DEB2("NOT ACK received after data byte\n");
pca_stop(adap);
goto out;
case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
DEB2("Arbitration lost\n");
/*
* The PCA9564 data sheet (2006-09-01) says "A
* START condition will be transmitted when the
* bus becomes free (STOP or SCL and SDA high)"
* when the STA bit is set (p. 11).
*
* In case this won't work, try pca_reset()
* instead.
*/
pca_start(adap);
goto out;
case 0x58: /* Data byte has been received; NOT ACK has been returned */
if (numbytes == msg->len - 1) {
pca_rx_byte(adap, &msg->buf[numbytes], 0);
curmsg++; numbytes = 0;
if (curmsg == num)
pca_stop(adap);
else
completed = pca_repeated_start(adap);
} else {
DEB2("NOT ACK sent after data byte received. "
"Not final byte. numbytes %d. len %d\n",
numbytes, msg->len);
pca_stop(adap);
goto out;
}
break;
case 0x70: /* Bus error - SDA stuck low */
DEB2("BUS ERROR - SDA Stuck low\n");
pca_reset(adap);
goto out;
case 0x90: /* Bus error - SCL stuck low */
DEB2("BUS ERROR - SCL Stuck low\n");
pca_reset(adap);
goto out;
case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
DEB2("BUS ERROR - Illegal START or STOP\n");
pca_reset(adap);
goto out;
default:
dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
break;
}
if (!completed)
goto out;
}
ret = curmsg;
out:
DEB1("}}} transferred %d/%d messages. "
"status is %#04x. control is %#04x\n",
curmsg, num, pca_status(adap),
pca_get_con(adap));
return ret;
}
static u32 pca_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm pca_algo = {
.master_xfer = pca_xfer,
.functionality = pca_func,
};
static unsigned int pca_probe_chip(struct i2c_adapter *adap)
{
struct i2c_algo_pca_data *pca_data = adap->algo_data;
/* The trick here is to check if there is an indirect register
* available. If there is one, we will read the value we first
* wrote on I2C_PCA_IADR. Otherwise, we will read the last value
* we wrote on I2C_PCA_ADR
*/
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
pca_outw(pca_data, I2C_PCA_IND, 0xAA);
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
pca_outw(pca_data, I2C_PCA_IND, 0x00);
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
pca_data->chip = I2C_PCA_CHIP_9665;
} else {
printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
pca_data->chip = I2C_PCA_CHIP_9564;
}
return pca_data->chip;
}
static int pca_init(struct i2c_adapter *adap)
{
struct i2c_algo_pca_data *pca_data = adap->algo_data;
adap->algo = &pca_algo;
if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
int clock;
if (pca_data->i2c_clock > 7) {
switch (pca_data->i2c_clock) {
case 330000:
pca_data->i2c_clock = I2C_PCA_CON_330kHz;
break;
case 288000:
pca_data->i2c_clock = I2C_PCA_CON_288kHz;
break;
case 217000:
pca_data->i2c_clock = I2C_PCA_CON_217kHz;
break;
case 146000:
pca_data->i2c_clock = I2C_PCA_CON_146kHz;
break;
case 88000:
pca_data->i2c_clock = I2C_PCA_CON_88kHz;
break;
case 59000:
pca_data->i2c_clock = I2C_PCA_CON_59kHz;
break;
case 44000:
pca_data->i2c_clock = I2C_PCA_CON_44kHz;
break;
case 36000:
pca_data->i2c_clock = I2C_PCA_CON_36kHz;
break;
default:
printk(KERN_WARNING
"%s: Invalid I2C clock speed selected."
" Using default 59kHz.\n", adap->name);
pca_data->i2c_clock = I2C_PCA_CON_59kHz;
}
} else {
printk(KERN_WARNING "%s: "
"Choosing the clock frequency based on "
"index is deprecated."
" Use the nominal frequency.\n", adap->name);
}
pca_reset(pca_data);
clock = pca_clock(pca_data);
printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
adap->name, freqs[clock]);
pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock);
} else {
int clock;
int mode;
int tlow, thi;
/* Values can be found on PCA9665 datasheet section 7.3.2.6 */
int min_tlow, min_thi;
/* These values are the maximum raise and fall values allowed
* by the I2C operation mode (Standard, Fast or Fast+)
* They are used (added) below to calculate the clock dividers
* of PCA9665. Note that they are slightly different of the
* real maximum, to allow the change on mode exactly on the
* maximum clock rate for each mode
*/
int raise_fall_time;
if (pca_data->i2c_clock > 1265800) {
printk(KERN_WARNING "%s: I2C clock speed too high."
" Using 1265.8kHz.\n", adap->name);
pca_data->i2c_clock = 1265800;
}
if (pca_data->i2c_clock < 60300) {
printk(KERN_WARNING "%s: I2C clock speed too low."
" Using 60.3kHz.\n", adap->name);
pca_data->i2c_clock = 60300;
}
/* To avoid integer overflow, use clock/100 for calculations */
clock = pca_clock(pca_data) / 100;
if (pca_data->i2c_clock > 1000000) {
mode = I2C_PCA_MODE_TURBO;
min_tlow = 14;
min_thi = 5;
raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
} else if (pca_data->i2c_clock > 400000) {
mode = I2C_PCA_MODE_FASTP;
min_tlow = 17;
min_thi = 9;
raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
} else if (pca_data->i2c_clock > 100000) {
mode = I2C_PCA_MODE_FAST;
min_tlow = 44;
min_thi = 20;
raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
} else {
mode = I2C_PCA_MODE_STD;
min_tlow = 157;
min_thi = 134;
raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
}
/* The minimum clock that respects the thi/tlow = 134/157 is
* 64800 Hz. Below that, we have to fix the tlow to 255 and
* calculate the thi factor.
*/
if (clock < 648) {
tlow = 255;
thi = 1000000 - clock * raise_fall_time;
thi /= (I2C_PCA_OSC_PER * clock) - tlow;
} else {
tlow = (1000000 - clock * raise_fall_time) * min_tlow;
tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
thi = tlow * min_thi / min_tlow;
}
pca_reset(pca_data);
printk(KERN_INFO
"%s: Clock frequency is %dHz\n", adap->name, clock * 100);
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE);
pca_outw(pca_data, I2C_PCA_IND, mode);
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL);
pca_outw(pca_data, I2C_PCA_IND, tlow);
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH);
pca_outw(pca_data, I2C_PCA_IND, thi);
pca_set_con(pca_data, I2C_PCA_CON_ENSIO);
}
udelay(500); /* 500 us for oscilator to stabilise */
return 0;
}
/*
* registering functions to load algorithms at runtime
*/
int i2c_pca_add_bus(struct i2c_adapter *adap)
{
int rval;
rval = pca_init(adap);
if (rval)
return rval;
return i2c_add_adapter(adap);
}
EXPORT_SYMBOL(i2c_pca_add_bus);
int i2c_pca_add_numbered_bus(struct i2c_adapter *adap)
{
int rval;
rval = pca_init(adap);
if (rval)
return rval;
return i2c_add_numbered_adapter(adap);
}
EXPORT_SYMBOL(i2c_pca_add_numbered_bus);
MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>, "
"Wolfram Sang <w.sang@pengutronix.de>");
MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
MODULE_LICENSE("GPL");
module_param(i2c_debug, int, 0);
|