1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Emil Renner Berthing <kernel@esmil.dk>
* Copyright (C) 2021 Samin Guo <samin.guo@starfivetech.com>
*/
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/hwmon.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
/* TempSensor reset. The RSTN can be de-asserted once the analog core has
* powered up. Trst(min 100ns)
* 0:reset 1:de-assert */
#define SFCTEMP_RSTN BIT(0)
/* TempSensor analog core power down. The analog core will be powered up
* Tpu(min 50us) after PD is de-asserted. RSTN should be held low until the
* analog core is powered up.
* 0:power up 1:power down */
#define SFCTEMP_PD BIT(1)
/* TempSensor start conversion enable.
* 0:disable 1:enable */
#define SFCTEMP_RUN BIT(2)
/* TempSensor calibration mode enable.
* 0:disable 1:enable */
#define SFCTEMP_CAL BIT(4)
/* TempSensor signature enable. Generate a toggle value outputting on DOUT for
* test purpose.
* 0:disable 1:enable */
#define SFCTEMP_SGN BIT(5)
/* TempSensor test access control.
* 0000:normal 0001:Test1 0010:Test2 0011:Test3
* 0100:Test4 1000:Test8 1001:Test9 */
#define SFCTEMP_TM_Pos 12
#define SFCTEMP_TM_Msk GENMASK(15, 12)
/* TempSensor conversion value output.
* Temp(c)=DOUT*Y/4094 - K */
#define SFCTEMP_DOUT_Pos 16
#define SFCTEMP_DOUT_Msk GENMASK(27, 16)
/* TempSensor digital test output. */
#define SFCTEMP_DIGO BIT(31)
/* DOUT to Celcius conversion constants */
#define SFCTEMP_Y1000 237500L
#define SFCTEMP_Z 4094L
#define SFCTEMP_K1000 81100L
struct sfctemp {
struct mutex lock;
struct completion conversion_done;
void __iomem *regs;
bool enabled;
};
static irqreturn_t sfctemp_isr(int irq, void *data)
{
struct sfctemp *sfctemp = data;
complete(&sfctemp->conversion_done);
return IRQ_HANDLED;
}
static void sfctemp_power_up(struct sfctemp *sfctemp)
{
/* make sure we're powered down first */
writel(SFCTEMP_PD, sfctemp->regs);
udelay(1);
writel(0, sfctemp->regs);
/* wait t_pu(50us) + t_rst(100ns) */
usleep_range(60, 200);
/* de-assert reset */
writel(SFCTEMP_RSTN, sfctemp->regs);
udelay(1); /* wait t_su(500ps) */
}
static void sfctemp_power_down(struct sfctemp *sfctemp)
{
writel(SFCTEMP_PD, sfctemp->regs);
}
static void sfctemp_run_single(struct sfctemp *sfctemp)
{
writel(SFCTEMP_RSTN | SFCTEMP_RUN, sfctemp->regs);
udelay(1);
writel(SFCTEMP_RSTN, sfctemp->regs);
}
static int sfctemp_enable(struct sfctemp *sfctemp)
{
mutex_lock(&sfctemp->lock);
if (sfctemp->enabled)
goto done;
sfctemp_power_up(sfctemp);
sfctemp->enabled = true;
done:
mutex_unlock(&sfctemp->lock);
return 0;
}
static int sfctemp_disable(struct sfctemp *sfctemp)
{
mutex_lock(&sfctemp->lock);
if (!sfctemp->enabled)
goto done;
sfctemp_power_down(sfctemp);
sfctemp->enabled = false;
done:
mutex_unlock(&sfctemp->lock);
return 0;
}
static int sfctemp_convert(struct sfctemp *sfctemp, long *val)
{
long ret;
mutex_lock(&sfctemp->lock);
if (!sfctemp->enabled) {
ret = -ENODATA;
goto out;
}
sfctemp_run_single(sfctemp);
ret = wait_for_completion_interruptible_timeout(&sfctemp->conversion_done,
msecs_to_jiffies(10));
if (ret < 0)
goto out;
/* calculate temperature in milli Celcius */
*val = (long)((readl(sfctemp->regs) & SFCTEMP_DOUT_Msk) >> SFCTEMP_DOUT_Pos)
* SFCTEMP_Y1000 / SFCTEMP_Z - SFCTEMP_K1000;
ret = 0;
out:
mutex_unlock(&sfctemp->lock);
return ret;
}
static umode_t sfctemp_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_enable:
return 0644;
case hwmon_temp_input:
return 0444;
}
return 0;
default:
return 0;
}
}
static int sfctemp_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct sfctemp *sfctemp = dev_get_drvdata(dev);
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_enable:
*val = sfctemp->enabled;
return 0;
case hwmon_temp_input:
return sfctemp_convert(sfctemp, val);
}
return -EINVAL;
default:
return -EINVAL;
}
}
static int sfctemp_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
struct sfctemp *sfctemp = dev_get_drvdata(dev);
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_enable:
if (val == 0)
return sfctemp_disable(sfctemp);
if (val == 1)
return sfctemp_enable(sfctemp);
break;
}
return -EINVAL;
default:
return -EINVAL;
}
}
static const struct hwmon_channel_info *sfctemp_info[] = {
HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ),
HWMON_CHANNEL_INFO(temp, HWMON_T_ENABLE | HWMON_T_INPUT),
NULL
};
static const struct hwmon_ops sfctemp_hwmon_ops = {
.is_visible = sfctemp_is_visible,
.read = sfctemp_read,
.write = sfctemp_write,
};
static const struct hwmon_chip_info sfctemp_chip_info = {
.ops = &sfctemp_hwmon_ops,
.info = sfctemp_info,
};
static int sfctemp_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device *hwmon_dev;
struct resource *mem;
struct sfctemp *sfctemp;
long val;
int ret;
sfctemp = devm_kzalloc(dev, sizeof(*sfctemp), GFP_KERNEL);
if (!sfctemp)
return -ENOMEM;
dev_set_drvdata(dev, sfctemp);
mutex_init(&sfctemp->lock);
init_completion(&sfctemp->conversion_done);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sfctemp->regs = devm_ioremap_resource(dev, mem);
if (IS_ERR(sfctemp->regs))
return PTR_ERR(sfctemp->regs);
ret = platform_get_irq(pdev, 0);
if (ret < 0)
return ret;
ret = devm_request_irq(dev, ret, sfctemp_isr,
IRQF_SHARED, pdev->name, sfctemp);
if (ret) {
dev_err(dev, "request irq failed: %d\n", ret);
return ret;
}
ret = sfctemp_enable(sfctemp);
if (ret)
return ret;
hwmon_dev = hwmon_device_register_with_info(dev, pdev->name, sfctemp,
&sfctemp_chip_info, NULL);
if (IS_ERR(hwmon_dev))
return PTR_ERR(hwmon_dev);
/* do a conversion to check everything works */
ret = sfctemp_convert(sfctemp, &val);
if (ret) {
hwmon_device_unregister(hwmon_dev);
return ret;
}
dev_info(dev, "%ld.%03ld C\n", val / 1000, val % 1000);
return 0;
}
static int sfctemp_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sfctemp *sfctemp = dev_get_drvdata(dev);
hwmon_device_unregister(dev);
return sfctemp_disable(sfctemp);
}
static const struct of_device_id sfctemp_of_match[] = {
{ .compatible = "starfive,jh7100-temp" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sfctemp_of_match);
static struct platform_driver sfctemp_driver = {
.driver = {
.name = "sfctemp",
.of_match_table = of_match_ptr(sfctemp_of_match),
},
.probe = sfctemp_probe,
.remove = sfctemp_remove,
};
module_platform_driver(sfctemp_driver);
MODULE_AUTHOR("Emil Renner Berthing");
MODULE_DESCRIPTION("StarFive JH7100 temperature sensor driver");
MODULE_LICENSE("GPL");
|