summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/sun4i/sun4i_frontend.c
blob: ec2a032e07b975be989928fe699c7ef7c0a61952 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2017 Free Electrons
 * Maxime Ripard <maxime.ripard@free-electrons.com>
 */

#include <linux/clk.h>
#include <linux/component.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>

#include <drm/drm_device.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_cma_helper.h>
#include <drm/drm_plane.h>

#include "sun4i_drv.h"
#include "sun4i_frontend.h"

static const u32 sun4i_frontend_vert_coef[32] = {
	0x00004000, 0x000140ff, 0x00033ffe, 0x00043ffd,
	0x00063efc, 0xff083dfc, 0x000a3bfb, 0xff0d39fb,
	0xff0f37fb, 0xff1136fa, 0xfe1433fb, 0xfe1631fb,
	0xfd192ffb, 0xfd1c2cfb, 0xfd1f29fb, 0xfc2127fc,
	0xfc2424fc, 0xfc2721fc, 0xfb291ffd, 0xfb2c1cfd,
	0xfb2f19fd, 0xfb3116fe, 0xfb3314fe, 0xfa3611ff,
	0xfb370fff, 0xfb390dff, 0xfb3b0a00, 0xfc3d08ff,
	0xfc3e0600, 0xfd3f0400, 0xfe3f0300, 0xff400100,
};

static const u32 sun4i_frontend_horz_coef[64] = {
	0x40000000, 0x00000000, 0x40fe0000, 0x0000ff03,
	0x3ffd0000, 0x0000ff05, 0x3ffc0000, 0x0000ff06,
	0x3efb0000, 0x0000ff08, 0x3dfb0000, 0x0000ff09,
	0x3bfa0000, 0x0000fe0d, 0x39fa0000, 0x0000fe0f,
	0x38fa0000, 0x0000fe10, 0x36fa0000, 0x0000fe12,
	0x33fa0000, 0x0000fd16, 0x31fa0000, 0x0000fd18,
	0x2ffa0000, 0x0000fd1a, 0x2cfa0000, 0x0000fc1e,
	0x29fa0000, 0x0000fc21, 0x27fb0000, 0x0000fb23,
	0x24fb0000, 0x0000fb26, 0x21fb0000, 0x0000fb29,
	0x1ffc0000, 0x0000fa2b, 0x1cfc0000, 0x0000fa2e,
	0x19fd0000, 0x0000fa30, 0x16fd0000, 0x0000fa33,
	0x14fd0000, 0x0000fa35, 0x11fe0000, 0x0000fa37,
	0x0ffe0000, 0x0000fa39, 0x0dfe0000, 0x0000fa3b,
	0x0afe0000, 0x0000fa3e, 0x08ff0000, 0x0000fb3e,
	0x06ff0000, 0x0000fb40, 0x05ff0000, 0x0000fc40,
	0x03ff0000, 0x0000fd41, 0x01ff0000, 0x0000fe42,
};

/*
 * These coefficients are taken from the A33 BSP from Allwinner.
 *
 * The first three values of each row are coded as 13-bit signed fixed-point
 * numbers, with 10 bits for the fractional part. The fourth value is a
 * constant coded as a 14-bit signed fixed-point number with 4 bits for the
 * fractional part.
 *
 * The values in table order give the following colorspace translation:
 * G = 1.164 * Y - 0.391 * U - 0.813 * V + 135
 * R = 1.164 * Y + 1.596 * V - 222
 * B = 1.164 * Y + 2.018 * U + 276
 *
 * This seems to be a conversion from Y[16:235] UV[16:240] to RGB[0:255],
 * following the BT601 spec.
 */
const u32 sunxi_bt601_yuv2rgb_coef[12] = {
	0x000004a7, 0x00001e6f, 0x00001cbf, 0x00000877,
	0x000004a7, 0x00000000, 0x00000662, 0x00003211,
	0x000004a7, 0x00000812, 0x00000000, 0x00002eb1,
};
EXPORT_SYMBOL(sunxi_bt601_yuv2rgb_coef);

static void sun4i_frontend_scaler_init(struct sun4i_frontend *frontend)
{
	int i;

	if (frontend->data->has_coef_access_ctrl)
		regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG,
				  SUN4I_FRONTEND_FRM_CTRL_COEF_ACCESS_CTRL,
				  SUN4I_FRONTEND_FRM_CTRL_COEF_ACCESS_CTRL);

	for (i = 0; i < 32; i++) {
		regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZCOEF0_REG(i),
			     sun4i_frontend_horz_coef[2 * i]);
		regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZCOEF0_REG(i),
			     sun4i_frontend_horz_coef[2 * i]);
		regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZCOEF1_REG(i),
			     sun4i_frontend_horz_coef[2 * i + 1]);
		regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZCOEF1_REG(i),
			     sun4i_frontend_horz_coef[2 * i + 1]);
		regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTCOEF_REG(i),
			     sun4i_frontend_vert_coef[i]);
		regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTCOEF_REG(i),
			     sun4i_frontend_vert_coef[i]);
	}

	if (frontend->data->has_coef_rdy)
		regmap_write_bits(frontend->regs,
				  SUN4I_FRONTEND_FRM_CTRL_REG,
				  SUN4I_FRONTEND_FRM_CTRL_COEF_RDY,
				  SUN4I_FRONTEND_FRM_CTRL_COEF_RDY);
}

int sun4i_frontend_init(struct sun4i_frontend *frontend)
{
	return pm_runtime_get_sync(frontend->dev);
}
EXPORT_SYMBOL(sun4i_frontend_init);

void sun4i_frontend_exit(struct sun4i_frontend *frontend)
{
	pm_runtime_put(frontend->dev);
}
EXPORT_SYMBOL(sun4i_frontend_exit);

static bool sun4i_frontend_format_chroma_requires_swap(uint32_t fmt)
{
	switch (fmt) {
	case DRM_FORMAT_YVU411:
	case DRM_FORMAT_YVU420:
	case DRM_FORMAT_YVU422:
	case DRM_FORMAT_YVU444:
		return true;

	default:
		return false;
	}
}

static bool sun4i_frontend_format_supports_tiling(uint32_t fmt)
{
	switch (fmt) {
	case DRM_FORMAT_NV12:
	case DRM_FORMAT_NV16:
	case DRM_FORMAT_NV21:
	case DRM_FORMAT_NV61:
	case DRM_FORMAT_YUV411:
	case DRM_FORMAT_YUV420:
	case DRM_FORMAT_YUV422:
	case DRM_FORMAT_YVU420:
	case DRM_FORMAT_YVU422:
	case DRM_FORMAT_YVU411:
		return true;

	default:
		return false;
	}
}

void sun4i_frontend_update_buffer(struct sun4i_frontend *frontend,
				  struct drm_plane *plane)
{
	struct drm_plane_state *state = plane->state;
	struct drm_framebuffer *fb = state->fb;
	unsigned int strides[3] = {};

	dma_addr_t paddr;
	bool swap;

	if (fb->modifier == DRM_FORMAT_MOD_ALLWINNER_TILED) {
		unsigned int width = state->src_w >> 16;
		unsigned int offset;

		strides[0] = SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[0]);

		/*
		 * The X1 offset is the offset to the bottom-right point in the
		 * end tile, which is the final pixel (at offset width - 1)
		 * within the end tile (with a 32-byte mask).
		 */
		offset = (width - 1) & (32 - 1);

		regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF0_REG,
			     SUN4I_FRONTEND_TB_OFF_X1(offset));

		if (fb->format->num_planes > 1) {
			strides[1] =
				SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[1]);

			regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF1_REG,
				     SUN4I_FRONTEND_TB_OFF_X1(offset));
		}

		if (fb->format->num_planes > 2) {
			strides[2] =
				SUN4I_FRONTEND_LINESTRD_TILED(fb->pitches[2]);

			regmap_write(frontend->regs, SUN4I_FRONTEND_TB_OFF2_REG,
				     SUN4I_FRONTEND_TB_OFF_X1(offset));
		}
	} else {
		strides[0] = fb->pitches[0];

		if (fb->format->num_planes > 1)
			strides[1] = fb->pitches[1];

		if (fb->format->num_planes > 2)
			strides[2] = fb->pitches[2];
	}

	/* Set the line width */
	DRM_DEBUG_DRIVER("Frontend stride: %d bytes\n", fb->pitches[0]);
	regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD0_REG,
		     strides[0]);

	if (fb->format->num_planes > 1)
		regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD1_REG,
			     strides[1]);

	if (fb->format->num_planes > 2)
		regmap_write(frontend->regs, SUN4I_FRONTEND_LINESTRD2_REG,
			     strides[2]);

	/* Some planar formats require chroma channel swapping by hand. */
	swap = sun4i_frontend_format_chroma_requires_swap(fb->format->format);

	/* Set the physical address of the buffer in memory */
	paddr = drm_fb_cma_get_gem_addr(fb, state, 0);
	paddr -= PHYS_OFFSET;
	DRM_DEBUG_DRIVER("Setting buffer #0 address to %pad\n", &paddr);
	regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR0_REG, paddr);

	if (fb->format->num_planes > 1) {
		paddr = drm_fb_cma_get_gem_addr(fb, state, swap ? 2 : 1);
		paddr -= PHYS_OFFSET;
		DRM_DEBUG_DRIVER("Setting buffer #1 address to %pad\n", &paddr);
		regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR1_REG,
			     paddr);
	}

	if (fb->format->num_planes > 2) {
		paddr = drm_fb_cma_get_gem_addr(fb, state, swap ? 1 : 2);
		paddr -= PHYS_OFFSET;
		DRM_DEBUG_DRIVER("Setting buffer #2 address to %pad\n", &paddr);
		regmap_write(frontend->regs, SUN4I_FRONTEND_BUF_ADDR2_REG,
			     paddr);
	}
}
EXPORT_SYMBOL(sun4i_frontend_update_buffer);

static int
sun4i_frontend_drm_format_to_input_fmt(const struct drm_format_info *format,
				       u32 *val)
{
	if (!format->is_yuv)
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_RGB;
	else if (drm_format_info_is_yuv_sampling_411(format))
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV411;
	else if (drm_format_info_is_yuv_sampling_420(format))
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV420;
	else if (drm_format_info_is_yuv_sampling_422(format))
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV422;
	else if (drm_format_info_is_yuv_sampling_444(format))
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_FMT_YUV444;
	else
		return -EINVAL;

	return 0;
}

static int
sun4i_frontend_drm_format_to_input_mode(const struct drm_format_info *format,
					uint64_t modifier, u32 *val)
{
	bool tiled = (modifier == DRM_FORMAT_MOD_ALLWINNER_TILED);

	switch (format->num_planes) {
	case 1:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_PACKED;
		return 0;

	case 2:
		*val = tiled ? SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_MB32_SEMIPLANAR
			     : SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_SEMIPLANAR;
		return 0;

	case 3:
		*val = tiled ? SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_MB32_PLANAR
			     : SUN4I_FRONTEND_INPUT_FMT_DATA_MOD_PLANAR;
		return 0;

	default:
		return -EINVAL;
	}
}

static int
sun4i_frontend_drm_format_to_input_sequence(const struct drm_format_info *format,
					    u32 *val)
{
	/* Planar formats have an explicit input sequence. */
	if (drm_format_info_is_yuv_planar(format)) {
		*val = 0;
		return 0;
	}

	switch (format->format) {
	case DRM_FORMAT_BGRX8888:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_BGRX;
		return 0;

	case DRM_FORMAT_NV12:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UV;
		return 0;

	case DRM_FORMAT_NV16:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UV;
		return 0;

	case DRM_FORMAT_NV21:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VU;
		return 0;

	case DRM_FORMAT_NV61:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VU;
		return 0;

	case DRM_FORMAT_UYVY:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_UYVY;
		return 0;

	case DRM_FORMAT_VYUY:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_VYUY;
		return 0;

	case DRM_FORMAT_XRGB8888:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_XRGB;
		return 0;

	case DRM_FORMAT_YUYV:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_YUYV;
		return 0;

	case DRM_FORMAT_YVYU:
		*val = SUN4I_FRONTEND_INPUT_FMT_DATA_PS_YVYU;
		return 0;

	default:
		return -EINVAL;
	}
}

static int sun4i_frontend_drm_format_to_output_fmt(uint32_t fmt, u32 *val)
{
	switch (fmt) {
	case DRM_FORMAT_BGRX8888:
		*val = SUN4I_FRONTEND_OUTPUT_FMT_DATA_FMT_BGRX8888;
		return 0;

	case DRM_FORMAT_XRGB8888:
		*val = SUN4I_FRONTEND_OUTPUT_FMT_DATA_FMT_XRGB8888;
		return 0;

	default:
		return -EINVAL;
	}
}

static const uint32_t sun4i_frontend_formats[] = {
	DRM_FORMAT_BGRX8888,
	DRM_FORMAT_NV12,
	DRM_FORMAT_NV16,
	DRM_FORMAT_NV21,
	DRM_FORMAT_NV61,
	DRM_FORMAT_UYVY,
	DRM_FORMAT_VYUY,
	DRM_FORMAT_XRGB8888,
	DRM_FORMAT_YUV411,
	DRM_FORMAT_YUV420,
	DRM_FORMAT_YUV422,
	DRM_FORMAT_YUV444,
	DRM_FORMAT_YUYV,
	DRM_FORMAT_YVU411,
	DRM_FORMAT_YVU420,
	DRM_FORMAT_YVU422,
	DRM_FORMAT_YVU444,
	DRM_FORMAT_YVYU,
};

bool sun4i_frontend_format_is_supported(uint32_t fmt, uint64_t modifier)
{
	unsigned int i;

	if (modifier == DRM_FORMAT_MOD_ALLWINNER_TILED)
		return sun4i_frontend_format_supports_tiling(fmt);
	else if (modifier != DRM_FORMAT_MOD_LINEAR)
		return false;

	for (i = 0; i < ARRAY_SIZE(sun4i_frontend_formats); i++)
		if (sun4i_frontend_formats[i] == fmt)
			return true;

	return false;
}
EXPORT_SYMBOL(sun4i_frontend_format_is_supported);

int sun4i_frontend_update_formats(struct sun4i_frontend *frontend,
				  struct drm_plane *plane, uint32_t out_fmt)
{
	struct drm_plane_state *state = plane->state;
	struct drm_framebuffer *fb = state->fb;
	const struct drm_format_info *format = fb->format;
	uint64_t modifier = fb->modifier;
	u32 out_fmt_val;
	u32 in_fmt_val, in_mod_val, in_ps_val;
	unsigned int i;
	u32 bypass;
	int ret;

	ret = sun4i_frontend_drm_format_to_input_fmt(format, &in_fmt_val);
	if (ret) {
		DRM_DEBUG_DRIVER("Invalid input format\n");
		return ret;
	}

	ret = sun4i_frontend_drm_format_to_input_mode(format, modifier,
						      &in_mod_val);
	if (ret) {
		DRM_DEBUG_DRIVER("Invalid input mode\n");
		return ret;
	}

	ret = sun4i_frontend_drm_format_to_input_sequence(format, &in_ps_val);
	if (ret) {
		DRM_DEBUG_DRIVER("Invalid pixel sequence\n");
		return ret;
	}

	ret = sun4i_frontend_drm_format_to_output_fmt(out_fmt, &out_fmt_val);
	if (ret) {
		DRM_DEBUG_DRIVER("Invalid output format\n");
		return ret;
	}

	/*
	 * I have no idea what this does exactly, but it seems to be
	 * related to the scaler FIR filter phase parameters.
	 */
	regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZPHASE_REG,
		     frontend->data->ch_phase[0].horzphase);
	regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZPHASE_REG,
		     frontend->data->ch_phase[1].horzphase);
	regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTPHASE0_REG,
		     frontend->data->ch_phase[0].vertphase[0]);
	regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTPHASE0_REG,
		     frontend->data->ch_phase[1].vertphase[0]);
	regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTPHASE1_REG,
		     frontend->data->ch_phase[0].vertphase[1]);
	regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTPHASE1_REG,
		     frontend->data->ch_phase[1].vertphase[1]);

	/*
	 * Checking the input format is sufficient since we currently only
	 * support RGB output formats to the backend. If YUV output formats
	 * ever get supported, an YUV input and output would require bypassing
	 * the CSC engine too.
	 */
	if (format->is_yuv) {
		/* Setup the CSC engine for YUV to RGB conversion. */
		bypass = 0;

		for (i = 0; i < ARRAY_SIZE(sunxi_bt601_yuv2rgb_coef); i++)
			regmap_write(frontend->regs,
				     SUN4I_FRONTEND_CSC_COEF_REG(i),
				     sunxi_bt601_yuv2rgb_coef[i]);
	} else {
		bypass = SUN4I_FRONTEND_BYPASS_CSC_EN;
	}

	regmap_update_bits(frontend->regs, SUN4I_FRONTEND_BYPASS_REG,
			   SUN4I_FRONTEND_BYPASS_CSC_EN, bypass);

	regmap_write(frontend->regs, SUN4I_FRONTEND_INPUT_FMT_REG,
		     in_mod_val | in_fmt_val | in_ps_val);

	/*
	 * TODO: It look like the A31 and A80 at least will need the
	 * bit 7 (ALPHA_EN) enabled when using a format with alpha (so
	 * ARGB8888).
	 */
	regmap_write(frontend->regs, SUN4I_FRONTEND_OUTPUT_FMT_REG,
		     out_fmt_val);

	return 0;
}
EXPORT_SYMBOL(sun4i_frontend_update_formats);

void sun4i_frontend_update_coord(struct sun4i_frontend *frontend,
				 struct drm_plane *plane)
{
	struct drm_plane_state *state = plane->state;
	struct drm_framebuffer *fb = state->fb;
	uint32_t luma_width, luma_height;
	uint32_t chroma_width, chroma_height;

	/* Set height and width */
	DRM_DEBUG_DRIVER("Frontend size W: %u H: %u\n",
			 state->crtc_w, state->crtc_h);

	luma_width = state->src_w >> 16;
	luma_height = state->src_h >> 16;

	chroma_width = DIV_ROUND_UP(luma_width, fb->format->hsub);
	chroma_height = DIV_ROUND_UP(luma_height, fb->format->vsub);

	regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_INSIZE_REG,
		     SUN4I_FRONTEND_INSIZE(luma_height, luma_width));
	regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_INSIZE_REG,
		     SUN4I_FRONTEND_INSIZE(chroma_height, chroma_width));

	regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_OUTSIZE_REG,
		     SUN4I_FRONTEND_OUTSIZE(state->crtc_h, state->crtc_w));
	regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_OUTSIZE_REG,
		     SUN4I_FRONTEND_OUTSIZE(state->crtc_h, state->crtc_w));

	regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_HORZFACT_REG,
		     (luma_width << 16) / state->crtc_w);
	regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_HORZFACT_REG,
		     (chroma_width << 16) / state->crtc_w);

	regmap_write(frontend->regs, SUN4I_FRONTEND_CH0_VERTFACT_REG,
		     (luma_height << 16) / state->crtc_h);
	regmap_write(frontend->regs, SUN4I_FRONTEND_CH1_VERTFACT_REG,
		     (chroma_height << 16) / state->crtc_h);

	regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG,
			  SUN4I_FRONTEND_FRM_CTRL_REG_RDY,
			  SUN4I_FRONTEND_FRM_CTRL_REG_RDY);
}
EXPORT_SYMBOL(sun4i_frontend_update_coord);

int sun4i_frontend_enable(struct sun4i_frontend *frontend)
{
	regmap_write_bits(frontend->regs, SUN4I_FRONTEND_FRM_CTRL_REG,
			  SUN4I_FRONTEND_FRM_CTRL_FRM_START,
			  SUN4I_FRONTEND_FRM_CTRL_FRM_START);

	return 0;
}
EXPORT_SYMBOL(sun4i_frontend_enable);

static struct regmap_config sun4i_frontend_regmap_config = {
	.reg_bits	= 32,
	.val_bits	= 32,
	.reg_stride	= 4,
	.max_register	= 0x0a14,
};

static int sun4i_frontend_bind(struct device *dev, struct device *master,
			 void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct sun4i_frontend *frontend;
	struct drm_device *drm = data;
	struct sun4i_drv *drv = drm->dev_private;
	struct resource *res;
	void __iomem *regs;

	frontend = devm_kzalloc(dev, sizeof(*frontend), GFP_KERNEL);
	if (!frontend)
		return -ENOMEM;

	dev_set_drvdata(dev, frontend);
	frontend->dev = dev;
	frontend->node = dev->of_node;

	frontend->data = of_device_get_match_data(dev);
	if (!frontend->data)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(regs))
		return PTR_ERR(regs);

	frontend->regs = devm_regmap_init_mmio(dev, regs,
					       &sun4i_frontend_regmap_config);
	if (IS_ERR(frontend->regs)) {
		dev_err(dev, "Couldn't create the frontend regmap\n");
		return PTR_ERR(frontend->regs);
	}

	frontend->reset = devm_reset_control_get(dev, NULL);
	if (IS_ERR(frontend->reset)) {
		dev_err(dev, "Couldn't get our reset line\n");
		return PTR_ERR(frontend->reset);
	}

	frontend->bus_clk = devm_clk_get(dev, "ahb");
	if (IS_ERR(frontend->bus_clk)) {
		dev_err(dev, "Couldn't get our bus clock\n");
		return PTR_ERR(frontend->bus_clk);
	}

	frontend->mod_clk = devm_clk_get(dev, "mod");
	if (IS_ERR(frontend->mod_clk)) {
		dev_err(dev, "Couldn't get our mod clock\n");
		return PTR_ERR(frontend->mod_clk);
	}

	frontend->ram_clk = devm_clk_get(dev, "ram");
	if (IS_ERR(frontend->ram_clk)) {
		dev_err(dev, "Couldn't get our ram clock\n");
		return PTR_ERR(frontend->ram_clk);
	}

	list_add_tail(&frontend->list, &drv->frontend_list);
	pm_runtime_enable(dev);

	return 0;
}

static void sun4i_frontend_unbind(struct device *dev, struct device *master,
			    void *data)
{
	struct sun4i_frontend *frontend = dev_get_drvdata(dev);

	list_del(&frontend->list);
	pm_runtime_force_suspend(dev);
}

static const struct component_ops sun4i_frontend_ops = {
	.bind	= sun4i_frontend_bind,
	.unbind	= sun4i_frontend_unbind,
};

static int sun4i_frontend_probe(struct platform_device *pdev)
{
	return component_add(&pdev->dev, &sun4i_frontend_ops);
}

static int sun4i_frontend_remove(struct platform_device *pdev)
{
	component_del(&pdev->dev, &sun4i_frontend_ops);

	return 0;
}

static int sun4i_frontend_runtime_resume(struct device *dev)
{
	struct sun4i_frontend *frontend = dev_get_drvdata(dev);
	int ret;

	clk_set_rate(frontend->mod_clk, 300000000);

	clk_prepare_enable(frontend->bus_clk);
	clk_prepare_enable(frontend->mod_clk);
	clk_prepare_enable(frontend->ram_clk);

	ret = reset_control_reset(frontend->reset);
	if (ret) {
		dev_err(dev, "Couldn't reset our device\n");
		return ret;
	}

	regmap_update_bits(frontend->regs, SUN4I_FRONTEND_EN_REG,
			   SUN4I_FRONTEND_EN_EN,
			   SUN4I_FRONTEND_EN_EN);

	sun4i_frontend_scaler_init(frontend);

	return 0;
}

static int sun4i_frontend_runtime_suspend(struct device *dev)
{
	struct sun4i_frontend *frontend = dev_get_drvdata(dev);

	clk_disable_unprepare(frontend->ram_clk);
	clk_disable_unprepare(frontend->mod_clk);
	clk_disable_unprepare(frontend->bus_clk);

	reset_control_assert(frontend->reset);

	return 0;
}

static const struct dev_pm_ops sun4i_frontend_pm_ops = {
	.runtime_resume		= sun4i_frontend_runtime_resume,
	.runtime_suspend	= sun4i_frontend_runtime_suspend,
};

static const struct sun4i_frontend_data sun4i_a10_frontend = {
	.ch_phase		= {
		{
			.horzphase = 0,
			.vertphase = { 0, 0 },
		},
		{
			.horzphase = 0xfc000,
			.vertphase = { 0xfc000, 0xfc000 },
		},
	},
	.has_coef_rdy		= true,
};

static const struct sun4i_frontend_data sun8i_a33_frontend = {
	.ch_phase		= {
		{
			.horzphase = 0x400,
			.vertphase = { 0x400, 0x400 },
		},
		{
			.horzphase = 0x400,
			.vertphase = { 0x400, 0x400 },
		},
	},
	.has_coef_access_ctrl	= true,
};

const struct of_device_id sun4i_frontend_of_table[] = {
	{
		.compatible = "allwinner,sun4i-a10-display-frontend",
		.data = &sun4i_a10_frontend
	},
	{
		.compatible = "allwinner,sun7i-a20-display-frontend",
		.data = &sun4i_a10_frontend
	},
	{
		.compatible = "allwinner,sun8i-a23-display-frontend",
		.data = &sun8i_a33_frontend
	},
	{
		.compatible = "allwinner,sun8i-a33-display-frontend",
		.data = &sun8i_a33_frontend
	},
	{ }
};
EXPORT_SYMBOL(sun4i_frontend_of_table);
MODULE_DEVICE_TABLE(of, sun4i_frontend_of_table);

static struct platform_driver sun4i_frontend_driver = {
	.probe		= sun4i_frontend_probe,
	.remove		= sun4i_frontend_remove,
	.driver		= {
		.name		= "sun4i-frontend",
		.of_match_table	= sun4i_frontend_of_table,
		.pm		= &sun4i_frontend_pm_ops,
	},
};
module_platform_driver(sun4i_frontend_driver);

MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A10 Display Engine Frontend Driver");
MODULE_LICENSE("GPL");