summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/intel_hdcp.c
blob: 2db5da550a1c1686d98e9d6c2895f1f7dbf6f0e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
/* SPDX-License-Identifier: MIT */
/*
 * Copyright (C) 2017 Google, Inc.
 *
 * Authors:
 * Sean Paul <seanpaul@chromium.org>
 */

#include <drm/drmP.h>
#include <drm/drm_hdcp.h>
#include <linux/i2c.h>
#include <linux/random.h>

#include "intel_drv.h"
#include "i915_reg.h"

#define KEY_LOAD_TRIES	5

static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
				    const struct intel_hdcp_shim *shim)
{
	int ret, read_ret;
	bool ksv_ready;

	/* Poll for ksv list ready (spec says max time allowed is 5s) */
	ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
							 &ksv_ready),
			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
			 100 * 1000);
	if (ret)
		return ret;
	if (read_ret)
		return read_ret;
	if (!ksv_ready)
		return -ETIMEDOUT;

	return 0;
}

static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
	enum i915_power_well_id id;
	bool enabled = false;

	/*
	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
	 */
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		id = HSW_DISP_PW_GLOBAL;
	else
		id = SKL_DISP_PW_1;

	mutex_lock(&power_domains->lock);

	/* PG1 (power well #1) needs to be enabled */
	for_each_power_well(dev_priv, power_well) {
		if (power_well->id == id) {
			enabled = power_well->ops->is_enabled(dev_priv,
							      power_well);
			break;
		}
	}
	mutex_unlock(&power_domains->lock);

	/*
	 * Another req for hdcp key loadability is enabled state of pll for
	 * cdclk. Without active crtc we wont land here. So we are assuming that
	 * cdclk is already on.
	 */

	return enabled;
}

static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
{
	I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
	I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
		   HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
}

static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
{
	int ret;
	u32 val;

	val = I915_READ(HDCP_KEY_STATUS);
	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
		return 0;

	/*
	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
	 * out of reset. So if Key is not already loaded, its an error state.
	 */
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
			return -ENXIO;

	/*
	 * Initiate loading the HDCP key from fuses.
	 *
	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only SKL and KBL
	 * differ in the key load trigger process from other platforms.
	 */
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
		mutex_lock(&dev_priv->pcu_lock);
		ret = sandybridge_pcode_write(dev_priv,
					      SKL_PCODE_LOAD_HDCP_KEYS, 1);
		mutex_unlock(&dev_priv->pcu_lock);
		if (ret) {
			DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
			          ret);
			return ret;
		}
	} else {
		I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
	}

	/* Wait for the keys to load (500us) */
	ret = __intel_wait_for_register(dev_priv, HDCP_KEY_STATUS,
					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
					10, 1, &val);
	if (ret)
		return ret;
	else if (!(val & HDCP_KEY_LOAD_STATUS))
		return -ENXIO;

	/* Send Aksv over to PCH display for use in authentication */
	I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);

	return 0;
}

/* Returns updated SHA-1 index */
static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
{
	I915_WRITE(HDCP_SHA_TEXT, sha_text);
	if (intel_wait_for_register(dev_priv, HDCP_REP_CTL,
				    HDCP_SHA1_READY, HDCP_SHA1_READY, 1)) {
		DRM_ERROR("Timed out waiting for SHA1 ready\n");
		return -ETIMEDOUT;
	}
	return 0;
}

static
u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	switch (port) {
	case PORT_A:
		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
	case PORT_B:
		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
	case PORT_C:
		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
	case PORT_D:
		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
	case PORT_E:
		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
	default:
		break;
	}
	DRM_ERROR("Unknown port %d\n", port);
	return -EINVAL;
}

static
bool intel_hdcp_is_ksv_valid(u8 *ksv)
{
	int i, ones = 0;
	/* KSV has 20 1's and 20 0's */
	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
		ones += hweight8(ksv[i]);
	if (ones != 20)
		return false;
	return true;
}

static
int intel_hdcp_validate_v_prime(struct intel_digital_port *intel_dig_port,
				const struct intel_hdcp_shim *shim,
				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
{
	struct drm_i915_private *dev_priv;
	u32 vprime, sha_text, sha_leftovers, rep_ctl;
	int ret, i, j, sha_idx;

	dev_priv = intel_dig_port->base.base.dev->dev_private;

	/* Process V' values from the receiver */
	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
		ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
		if (ret)
			return ret;
		I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
	}

	/*
	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
	 * index will keep track of our progress through the 64 bytes as well as
	 * helping us work the 40-bit KSVs through our 32-bit register.
	 *
	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
	 */
	sha_idx = 0;
	sha_text = 0;
	sha_leftovers = 0;
	rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port);
	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
	for (i = 0; i < num_downstream; i++) {
		unsigned int sha_empty;
		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];

		/* Fill up the empty slots in sha_text and write it out */
		sha_empty = sizeof(sha_text) - sha_leftovers;
		for (j = 0; j < sha_empty; j++)
			sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);

		ret = intel_write_sha_text(dev_priv, sha_text);
		if (ret < 0)
			return ret;

		/* Programming guide writes this every 64 bytes */
		sha_idx += sizeof(sha_text);
		if (!(sha_idx % 64))
			I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);

		/* Store the leftover bytes from the ksv in sha_text */
		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
		sha_text = 0;
		for (j = 0; j < sha_leftovers; j++)
			sha_text |= ksv[sha_empty + j] <<
					((sizeof(sha_text) - j - 1) * 8);

		/*
		 * If we still have room in sha_text for more data, continue.
		 * Otherwise, write it out immediately.
		 */
		if (sizeof(sha_text) > sha_leftovers)
			continue;

		ret = intel_write_sha_text(dev_priv, sha_text);
		if (ret < 0)
			return ret;
		sha_leftovers = 0;
		sha_text = 0;
		sha_idx += sizeof(sha_text);
	}

	/*
	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
	 * bytes are leftover from the last ksv, we might be able to fit them
	 * all in sha_text (first 2 cases), or we might need to split them up
	 * into 2 writes (last 2 cases).
	 */
	if (sha_leftovers == 0) {
		/* Write 16 bits of text, 16 bits of M0 */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
		ret = intel_write_sha_text(dev_priv,
					   bstatus[0] << 8 | bstatus[1]);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);

		/* Write 32 bits of M0 */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
		ret = intel_write_sha_text(dev_priv, 0);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);

		/* Write 16 bits of M0 */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
		ret = intel_write_sha_text(dev_priv, 0);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);

	} else if (sha_leftovers == 1) {
		/* Write 24 bits of text, 8 bits of M0 */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
		/* Only 24-bits of data, must be in the LSB */
		sha_text = (sha_text & 0xffffff00) >> 8;
		ret = intel_write_sha_text(dev_priv, sha_text);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);

		/* Write 32 bits of M0 */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
		ret = intel_write_sha_text(dev_priv, 0);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);

		/* Write 24 bits of M0 */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
		ret = intel_write_sha_text(dev_priv, 0);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);

	} else if (sha_leftovers == 2) {
		/* Write 32 bits of text */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
		sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
		ret = intel_write_sha_text(dev_priv, sha_text);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);

		/* Write 64 bits of M0 */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
		for (i = 0; i < 2; i++) {
			ret = intel_write_sha_text(dev_priv, 0);
			if (ret < 0)
				return ret;
			sha_idx += sizeof(sha_text);
		}
	} else if (sha_leftovers == 3) {
		/* Write 32 bits of text */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
		sha_text |= bstatus[0] << 24;
		ret = intel_write_sha_text(dev_priv, sha_text);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);

		/* Write 8 bits of text, 24 bits of M0 */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
		ret = intel_write_sha_text(dev_priv, bstatus[1]);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);

		/* Write 32 bits of M0 */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
		ret = intel_write_sha_text(dev_priv, 0);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);

		/* Write 8 bits of M0 */
		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
		ret = intel_write_sha_text(dev_priv, 0);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);
	} else {
		DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
			      sha_leftovers);
		return -EINVAL;
	}

	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
		ret = intel_write_sha_text(dev_priv, 0);
		if (ret < 0)
			return ret;
		sha_idx += sizeof(sha_text);
	}

	/*
	 * Last write gets the length of the concatenation in bits. That is:
	 *  - 5 bytes per device
	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
	 */
	sha_text = (num_downstream * 5 + 10) * 8;
	ret = intel_write_sha_text(dev_priv, sha_text);
	if (ret < 0)
		return ret;

	/* Tell the HW we're done with the hash and wait for it to ACK */
	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
	if (intel_wait_for_register(dev_priv, HDCP_REP_CTL,
				    HDCP_SHA1_COMPLETE,
				    HDCP_SHA1_COMPLETE, 1)) {
		DRM_DEBUG_KMS("Timed out waiting for SHA1 complete\n");
		return -ETIMEDOUT;
	}
	if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
		DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
		return -ENXIO;
	}

	return 0;
}

/* Implements Part 2 of the HDCP authorization procedure */
static
int intel_hdcp_auth_downstream(struct intel_digital_port *intel_dig_port,
			       const struct intel_hdcp_shim *shim)
{
	u8 bstatus[2], num_downstream, *ksv_fifo;
	int ret, i, tries = 3;

	ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
	if (ret) {
		DRM_ERROR("KSV list failed to become ready (%d)\n", ret);
		return ret;
	}

	ret = shim->read_bstatus(intel_dig_port, bstatus);
	if (ret)
		return ret;

	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
		DRM_ERROR("Max Topology Limit Exceeded\n");
		return -EPERM;
	}

	/*
	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
	 * the HDCP encryption. That implies that repeater can't have its own
	 * display. As there is no consumption of encrypted content in the
	 * repeater with 0 downstream devices, we are failing the
	 * authentication.
	 */
	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
	if (num_downstream == 0)
		return -EINVAL;

	ksv_fifo = kzalloc(num_downstream * DRM_HDCP_KSV_LEN, GFP_KERNEL);
	if (!ksv_fifo)
		return -ENOMEM;

	ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
	if (ret)
		goto err;

	/*
	 * When V prime mismatches, DP Spec mandates re-read of
	 * V prime atleast twice.
	 */
	for (i = 0; i < tries; i++) {
		ret = intel_hdcp_validate_v_prime(intel_dig_port, shim,
						  ksv_fifo, num_downstream,
						  bstatus);
		if (!ret)
			break;
	}

	if (i == tries) {
		DRM_ERROR("V Prime validation failed.(%d)\n", ret);
		goto err;
	}

	DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
		      num_downstream);
	ret = 0;
err:
	kfree(ksv_fifo);
	return ret;
}

/* Implements Part 1 of the HDCP authorization procedure */
static int intel_hdcp_auth(struct intel_digital_port *intel_dig_port,
			   const struct intel_hdcp_shim *shim)
{
	struct drm_i915_private *dev_priv;
	enum port port;
	unsigned long r0_prime_gen_start;
	int ret, i, tries = 2;
	union {
		u32 reg[2];
		u8 shim[DRM_HDCP_AN_LEN];
	} an;
	union {
		u32 reg[2];
		u8 shim[DRM_HDCP_KSV_LEN];
	} bksv;
	union {
		u32 reg;
		u8 shim[DRM_HDCP_RI_LEN];
	} ri;
	bool repeater_present, hdcp_capable;

	dev_priv = intel_dig_port->base.base.dev->dev_private;

	port = intel_dig_port->base.port;

	/*
	 * Detects whether the display is HDCP capable. Although we check for
	 * valid Bksv below, the HDCP over DP spec requires that we check
	 * whether the display supports HDCP before we write An. For HDMI
	 * displays, this is not necessary.
	 */
	if (shim->hdcp_capable) {
		ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
		if (ret)
			return ret;
		if (!hdcp_capable) {
			DRM_ERROR("Panel is not HDCP capable\n");
			return -EINVAL;
		}
	}

	/* Initialize An with 2 random values and acquire it */
	for (i = 0; i < 2; i++)
		I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32());
	I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN);

	/* Wait for An to be acquired */
	if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port),
				    HDCP_STATUS_AN_READY,
				    HDCP_STATUS_AN_READY, 1)) {
		DRM_ERROR("Timed out waiting for An\n");
		return -ETIMEDOUT;
	}

	an.reg[0] = I915_READ(PORT_HDCP_ANLO(port));
	an.reg[1] = I915_READ(PORT_HDCP_ANHI(port));
	ret = shim->write_an_aksv(intel_dig_port, an.shim);
	if (ret)
		return ret;

	r0_prime_gen_start = jiffies;

	memset(&bksv, 0, sizeof(bksv));

	/* HDCP spec states that we must retry the bksv if it is invalid */
	for (i = 0; i < tries; i++) {
		ret = shim->read_bksv(intel_dig_port, bksv.shim);
		if (ret)
			return ret;
		if (intel_hdcp_is_ksv_valid(bksv.shim))
			break;
	}
	if (i == tries) {
		DRM_ERROR("HDCP failed, Bksv is invalid\n");
		return -ENODEV;
	}

	I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]);
	I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]);

	ret = shim->repeater_present(intel_dig_port, &repeater_present);
	if (ret)
		return ret;
	if (repeater_present)
		I915_WRITE(HDCP_REP_CTL,
			   intel_hdcp_get_repeater_ctl(intel_dig_port));

	ret = shim->toggle_signalling(intel_dig_port, true);
	if (ret)
		return ret;

	I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC);

	/* Wait for R0 ready */
	if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
		DRM_ERROR("Timed out waiting for R0 ready\n");
		return -ETIMEDOUT;
	}

	/*
	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
	 * some monitors can take longer than this. We'll set the timeout at
	 * 300ms just to be sure.
	 *
	 * On DP, there's an R0_READY bit available but no such bit
	 * exists on HDMI. Since the upper-bound is the same, we'll just do
	 * the stupid thing instead of polling on one and not the other.
	 */
	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);

	tries = 3;

	/*
	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
	 * of R0 mismatch.
	 */
	for (i = 0; i < tries; i++) {
		ri.reg = 0;
		ret = shim->read_ri_prime(intel_dig_port, ri.shim);
		if (ret)
			return ret;
		I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);

		/* Wait for Ri prime match */
		if (!wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
		    (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
			break;
	}

	if (i == tries) {
		DRM_ERROR("Timed out waiting for Ri prime match (%x)\n",
			  I915_READ(PORT_HDCP_STATUS(port)));
		return -ETIMEDOUT;
	}

	/* Wait for encryption confirmation */
	if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port),
				    HDCP_STATUS_ENC, HDCP_STATUS_ENC, 20)) {
		DRM_ERROR("Timed out waiting for encryption\n");
		return -ETIMEDOUT;
	}

	/*
	 * XXX: If we have MST-connected devices, we need to enable encryption
	 * on those as well.
	 */

	if (repeater_present)
		return intel_hdcp_auth_downstream(intel_dig_port, shim);

	DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
	return 0;
}

static
struct intel_digital_port *conn_to_dig_port(struct intel_connector *connector)
{
	return enc_to_dig_port(&intel_attached_encoder(&connector->base)->base);
}

static int _intel_hdcp_disable(struct intel_connector *connector)
{
	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
	enum port port = intel_dig_port->base.port;
	int ret;

	DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
		      connector->base.name, connector->base.base.id);

	I915_WRITE(PORT_HDCP_CONF(port), 0);
	if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), ~0, 0,
				    20)) {
		DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
		return -ETIMEDOUT;
	}

	ret = connector->hdcp_shim->toggle_signalling(intel_dig_port, false);
	if (ret) {
		DRM_ERROR("Failed to disable HDCP signalling\n");
		return ret;
	}

	DRM_DEBUG_KMS("HDCP is disabled\n");
	return 0;
}

static int _intel_hdcp_enable(struct intel_connector *connector)
{
	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
	int i, ret, tries = 3;

	DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
		      connector->base.name, connector->base.base.id);

	if (!hdcp_key_loadable(dev_priv)) {
		DRM_ERROR("HDCP key Load is not possible\n");
		return -ENXIO;
	}

	for (i = 0; i < KEY_LOAD_TRIES; i++) {
		ret = intel_hdcp_load_keys(dev_priv);
		if (!ret)
			break;
		intel_hdcp_clear_keys(dev_priv);
	}
	if (ret) {
		DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
		return ret;
	}

	/* Incase of authentication failures, HDCP spec expects reauth. */
	for (i = 0; i < tries; i++) {
		ret = intel_hdcp_auth(conn_to_dig_port(connector),
				      connector->hdcp_shim);
		if (!ret)
			return 0;

		DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);

		/* Ensuring HDCP encryption and signalling are stopped. */
		_intel_hdcp_disable(connector);
	}

	DRM_ERROR("HDCP authentication failed (%d tries/%d)\n", tries, ret);
	return ret;
}

static void intel_hdcp_check_work(struct work_struct *work)
{
	struct intel_connector *connector = container_of(to_delayed_work(work),
							 struct intel_connector,
							 hdcp_check_work);
	if (!intel_hdcp_check_link(connector))
		schedule_delayed_work(&connector->hdcp_check_work,
				      DRM_HDCP_CHECK_PERIOD_MS);
}

static void intel_hdcp_prop_work(struct work_struct *work)
{
	struct intel_connector *connector = container_of(work,
							 struct intel_connector,
							 hdcp_prop_work);
	struct drm_device *dev = connector->base.dev;
	struct drm_connector_state *state;

	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
	mutex_lock(&connector->hdcp_mutex);

	/*
	 * This worker is only used to flip between ENABLED/DESIRED. Either of
	 * those to UNDESIRED is handled by core. If hdcp_value == UNDESIRED,
	 * we're running just after hdcp has been disabled, so just exit
	 */
	if (connector->hdcp_value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
		state = connector->base.state;
		state->content_protection = connector->hdcp_value;
	}

	mutex_unlock(&connector->hdcp_mutex);
	drm_modeset_unlock(&dev->mode_config.connection_mutex);
}

bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
{
	/* PORT E doesn't have HDCP, and PORT F is disabled */
	return ((INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
		!IS_CHERRYVIEW(dev_priv) && port < PORT_E);
}

int intel_hdcp_init(struct intel_connector *connector,
		    const struct intel_hdcp_shim *hdcp_shim)
{
	int ret;

	ret = drm_connector_attach_content_protection_property(
			&connector->base);
	if (ret)
		return ret;

	connector->hdcp_shim = hdcp_shim;
	mutex_init(&connector->hdcp_mutex);
	INIT_DELAYED_WORK(&connector->hdcp_check_work, intel_hdcp_check_work);
	INIT_WORK(&connector->hdcp_prop_work, intel_hdcp_prop_work);
	return 0;
}

int intel_hdcp_enable(struct intel_connector *connector)
{
	int ret;

	if (!connector->hdcp_shim)
		return -ENOENT;

	mutex_lock(&connector->hdcp_mutex);

	ret = _intel_hdcp_enable(connector);
	if (ret)
		goto out;

	connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
	schedule_work(&connector->hdcp_prop_work);
	schedule_delayed_work(&connector->hdcp_check_work,
			      DRM_HDCP_CHECK_PERIOD_MS);
out:
	mutex_unlock(&connector->hdcp_mutex);
	return ret;
}

int intel_hdcp_disable(struct intel_connector *connector)
{
	int ret = 0;

	if (!connector->hdcp_shim)
		return -ENOENT;

	mutex_lock(&connector->hdcp_mutex);

	if (connector->hdcp_value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
		connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
		ret = _intel_hdcp_disable(connector);
	}

	mutex_unlock(&connector->hdcp_mutex);
	cancel_delayed_work_sync(&connector->hdcp_check_work);
	return ret;
}

void intel_hdcp_atomic_check(struct drm_connector *connector,
			     struct drm_connector_state *old_state,
			     struct drm_connector_state *new_state)
{
	uint64_t old_cp = old_state->content_protection;
	uint64_t new_cp = new_state->content_protection;
	struct drm_crtc_state *crtc_state;

	if (!new_state->crtc) {
		/*
		 * If the connector is being disabled with CP enabled, mark it
		 * desired so it's re-enabled when the connector is brought back
		 */
		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
			new_state->content_protection =
				DRM_MODE_CONTENT_PROTECTION_DESIRED;
		return;
	}

	/*
	 * Nothing to do if the state didn't change, or HDCP was activated since
	 * the last commit
	 */
	if (old_cp == new_cp ||
	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED))
		return;

	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
						   new_state->crtc);
	crtc_state->mode_changed = true;
}

/* Implements Part 3 of the HDCP authorization procedure */
int intel_hdcp_check_link(struct intel_connector *connector)
{
	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
	enum port port = intel_dig_port->base.port;
	int ret = 0;

	if (!connector->hdcp_shim)
		return -ENOENT;

	mutex_lock(&connector->hdcp_mutex);

	if (connector->hdcp_value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
		goto out;

	if (!(I915_READ(PORT_HDCP_STATUS(port)) & HDCP_STATUS_ENC)) {
		DRM_ERROR("%s:%d HDCP check failed: link is not encrypted,%x\n",
			  connector->base.name, connector->base.base.id,
			  I915_READ(PORT_HDCP_STATUS(port)));
		ret = -ENXIO;
		connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
		schedule_work(&connector->hdcp_prop_work);
		goto out;
	}

	if (connector->hdcp_shim->check_link(intel_dig_port)) {
		if (connector->hdcp_value !=
		    DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
			connector->hdcp_value =
				DRM_MODE_CONTENT_PROTECTION_ENABLED;
			schedule_work(&connector->hdcp_prop_work);
		}
		goto out;
	}

	DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
		      connector->base.name, connector->base.base.id);

	ret = _intel_hdcp_disable(connector);
	if (ret) {
		DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
		connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
		schedule_work(&connector->hdcp_prop_work);
		goto out;
	}

	ret = _intel_hdcp_enable(connector);
	if (ret) {
		DRM_ERROR("Failed to enable hdcp (%d)\n", ret);
		connector->hdcp_value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
		schedule_work(&connector->hdcp_prop_work);
		goto out;
	}

out:
	mutex_unlock(&connector->hdcp_mutex);
	return ret;
}