1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
* datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
*/
#include <linux/atomic.h>
#include <linux/auxiliary_bus.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/i2c.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/pm_runtime.h>
#include <linux/pwm.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <asm/unaligned.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_dp_aux_bus.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#define SN_DEVICE_REV_REG 0x08
#define SN_DPPLL_SRC_REG 0x0A
#define DPPLL_CLK_SRC_DSICLK BIT(0)
#define REFCLK_FREQ_MASK GENMASK(3, 1)
#define REFCLK_FREQ(x) ((x) << 1)
#define DPPLL_SRC_DP_PLL_LOCK BIT(7)
#define SN_PLL_ENABLE_REG 0x0D
#define SN_DSI_LANES_REG 0x10
#define CHA_DSI_LANES_MASK GENMASK(4, 3)
#define CHA_DSI_LANES(x) ((x) << 3)
#define SN_DSIA_CLK_FREQ_REG 0x12
#define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG 0x20
#define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG 0x24
#define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG 0x2C
#define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG 0x2D
#define CHA_HSYNC_POLARITY BIT(7)
#define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG 0x30
#define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG 0x31
#define CHA_VSYNC_POLARITY BIT(7)
#define SN_CHA_HORIZONTAL_BACK_PORCH_REG 0x34
#define SN_CHA_VERTICAL_BACK_PORCH_REG 0x36
#define SN_CHA_HORIZONTAL_FRONT_PORCH_REG 0x38
#define SN_CHA_VERTICAL_FRONT_PORCH_REG 0x3A
#define SN_LN_ASSIGN_REG 0x59
#define LN_ASSIGN_WIDTH 2
#define SN_ENH_FRAME_REG 0x5A
#define VSTREAM_ENABLE BIT(3)
#define LN_POLRS_OFFSET 4
#define LN_POLRS_MASK 0xf0
#define SN_DATA_FORMAT_REG 0x5B
#define BPP_18_RGB BIT(0)
#define SN_HPD_DISABLE_REG 0x5C
#define HPD_DISABLE BIT(0)
#define SN_GPIO_IO_REG 0x5E
#define SN_GPIO_INPUT_SHIFT 4
#define SN_GPIO_OUTPUT_SHIFT 0
#define SN_GPIO_CTRL_REG 0x5F
#define SN_GPIO_MUX_INPUT 0
#define SN_GPIO_MUX_OUTPUT 1
#define SN_GPIO_MUX_SPECIAL 2
#define SN_GPIO_MUX_MASK 0x3
#define SN_AUX_WDATA_REG(x) (0x64 + (x))
#define SN_AUX_ADDR_19_16_REG 0x74
#define SN_AUX_ADDR_15_8_REG 0x75
#define SN_AUX_ADDR_7_0_REG 0x76
#define SN_AUX_ADDR_MASK GENMASK(19, 0)
#define SN_AUX_LENGTH_REG 0x77
#define SN_AUX_CMD_REG 0x78
#define AUX_CMD_SEND BIT(0)
#define AUX_CMD_REQ(x) ((x) << 4)
#define SN_AUX_RDATA_REG(x) (0x79 + (x))
#define SN_SSC_CONFIG_REG 0x93
#define DP_NUM_LANES_MASK GENMASK(5, 4)
#define DP_NUM_LANES(x) ((x) << 4)
#define SN_DATARATE_CONFIG_REG 0x94
#define DP_DATARATE_MASK GENMASK(7, 5)
#define DP_DATARATE(x) ((x) << 5)
#define SN_ML_TX_MODE_REG 0x96
#define ML_TX_MAIN_LINK_OFF 0
#define ML_TX_NORMAL_MODE BIT(0)
#define SN_PWM_PRE_DIV_REG 0xA0
#define SN_BACKLIGHT_SCALE_REG 0xA1
#define BACKLIGHT_SCALE_MAX 0xFFFF
#define SN_BACKLIGHT_REG 0xA3
#define SN_PWM_EN_INV_REG 0xA5
#define SN_PWM_INV_MASK BIT(0)
#define SN_PWM_EN_MASK BIT(1)
#define SN_AUX_CMD_STATUS_REG 0xF4
#define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3)
#define AUX_IRQ_STATUS_AUX_SHORT BIT(5)
#define AUX_IRQ_STATUS_NAT_I2C_FAIL BIT(6)
#define MIN_DSI_CLK_FREQ_MHZ 40
/* fudge factor required to account for 8b/10b encoding */
#define DP_CLK_FUDGE_NUM 10
#define DP_CLK_FUDGE_DEN 8
/* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
#define SN_AUX_MAX_PAYLOAD_BYTES 16
#define SN_REGULATOR_SUPPLY_NUM 4
#define SN_MAX_DP_LANES 4
#define SN_NUM_GPIOS 4
#define SN_GPIO_PHYSICAL_OFFSET 1
#define SN_LINK_TRAINING_TRIES 10
#define SN_PWM_GPIO_IDX 3 /* 4th GPIO */
/**
* struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
* @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality.
* @gpio_aux: AUX-bus sub device for GPIO controller functionality.
* @aux_aux: AUX-bus sub device for eDP AUX channel functionality.
* @pwm_aux: AUX-bus sub device for PWM controller functionality.
*
* @dev: Pointer to the top level (i2c) device.
* @regmap: Regmap for accessing i2c.
* @aux: Our aux channel.
* @bridge: Our bridge.
* @connector: Our connector.
* @host_node: Remote DSI node.
* @dsi: Our MIPI DSI source.
* @refclk: Our reference clock.
* @next_bridge: The bridge on the eDP side.
* @enable_gpio: The GPIO we toggle to enable the bridge.
* @supplies: Data for bulk enabling/disabling our regulators.
* @dp_lanes: Count of dp_lanes we're using.
* @ln_assign: Value to program to the LN_ASSIGN register.
* @ln_polrs: Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
* @comms_enabled: If true then communication over the aux channel is enabled.
* @comms_mutex: Protects modification of comms_enabled.
*
* @gchip: If we expose our GPIOs, this is used.
* @gchip_output: A cache of whether we've set GPIOs to output. This
* serves double-duty of keeping track of the direction and
* also keeping track of whether we've incremented the
* pm_runtime reference count for this pin, which we do
* whenever a pin is configured as an output. This is a
* bitmap so we can do atomic ops on it without an extra
* lock so concurrent users of our 4 GPIOs don't stomp on
* each other's read-modify-write.
*
* @pchip: pwm_chip if the PWM is exposed.
* @pwm_enabled: Used to track if the PWM signal is currently enabled.
* @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
* @pwm_refclk_freq: Cache for the reference clock input to the PWM.
*/
struct ti_sn65dsi86 {
struct auxiliary_device bridge_aux;
struct auxiliary_device gpio_aux;
struct auxiliary_device aux_aux;
struct auxiliary_device pwm_aux;
struct device *dev;
struct regmap *regmap;
struct drm_dp_aux aux;
struct drm_bridge bridge;
struct drm_connector connector;
struct device_node *host_node;
struct mipi_dsi_device *dsi;
struct clk *refclk;
struct drm_bridge *next_bridge;
struct gpio_desc *enable_gpio;
struct regulator_bulk_data supplies[SN_REGULATOR_SUPPLY_NUM];
int dp_lanes;
u8 ln_assign;
u8 ln_polrs;
bool comms_enabled;
struct mutex comms_mutex;
#if defined(CONFIG_OF_GPIO)
struct gpio_chip gchip;
DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
#endif
#if defined(CONFIG_PWM)
struct pwm_chip pchip;
bool pwm_enabled;
atomic_t pwm_pin_busy;
#endif
unsigned int pwm_refclk_freq;
};
static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
{ .range_min = 0, .range_max = 0xFF },
};
static const struct regmap_access_table ti_sn_bridge_volatile_table = {
.yes_ranges = ti_sn65dsi86_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
};
static const struct regmap_config ti_sn65dsi86_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.volatile_table = &ti_sn_bridge_volatile_table,
.cache_type = REGCACHE_NONE,
.max_register = 0xFF,
};
static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
unsigned int reg, u16 *val)
{
u8 buf[2];
int ret;
ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
if (ret)
return ret;
*val = buf[0] | (buf[1] << 8);
return 0;
}
static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
unsigned int reg, u16 val)
{
u8 buf[2] = { val & 0xff, val >> 8 };
regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
}
static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
{
u32 bit_rate_khz, clk_freq_khz;
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
bit_rate_khz = mode->clock *
mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
return clk_freq_khz;
}
/* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
static const u32 ti_sn_bridge_refclk_lut[] = {
12000000,
19200000,
26000000,
27000000,
38400000,
};
/* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
static const u32 ti_sn_bridge_dsiclk_lut[] = {
468000000,
384000000,
416000000,
486000000,
460800000,
};
static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
{
int i;
u32 refclk_rate;
const u32 *refclk_lut;
size_t refclk_lut_size;
if (pdata->refclk) {
refclk_rate = clk_get_rate(pdata->refclk);
refclk_lut = ti_sn_bridge_refclk_lut;
refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
clk_prepare_enable(pdata->refclk);
} else {
refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
refclk_lut = ti_sn_bridge_dsiclk_lut;
refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
}
/* for i equals to refclk_lut_size means default frequency */
for (i = 0; i < refclk_lut_size; i++)
if (refclk_lut[i] == refclk_rate)
break;
regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
REFCLK_FREQ(i));
/*
* The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
* regardless of its actual sourcing.
*/
pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
}
static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
{
mutex_lock(&pdata->comms_mutex);
/* configure bridge ref_clk */
ti_sn_bridge_set_refclk_freq(pdata);
/*
* HPD on this bridge chip is a bit useless. This is an eDP bridge
* so the HPD is an internal signal that's only there to signal that
* the panel is done powering up. ...but the bridge chip debounces
* this signal by between 100 ms and 400 ms (depending on process,
* voltage, and temperate--I measured it at about 200 ms). One
* particular panel asserted HPD 84 ms after it was powered on meaning
* that we saw HPD 284 ms after power on. ...but the same panel said
* that instead of looking at HPD you could just hardcode a delay of
* 200 ms. We'll assume that the panel driver will have the hardcoded
* delay in its prepare and always disable HPD.
*
* If HPD somehow makes sense on some future panel we'll have to
* change this to be conditional on someone specifying that HPD should
* be used.
*/
regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
HPD_DISABLE);
pdata->comms_enabled = true;
mutex_unlock(&pdata->comms_mutex);
}
static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
{
mutex_lock(&pdata->comms_mutex);
pdata->comms_enabled = false;
clk_disable_unprepare(pdata->refclk);
mutex_unlock(&pdata->comms_mutex);
}
static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
int ret;
ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
if (ret) {
DRM_ERROR("failed to enable supplies %d\n", ret);
return ret;
}
/* td2: min 100 us after regulators before enabling the GPIO */
usleep_range(100, 110);
gpiod_set_value(pdata->enable_gpio, 1);
/*
* If we have a reference clock we can enable communication w/ the
* panel (including the aux channel) w/out any need for an input clock
* so we can do it in resume which lets us read the EDID before
* pre_enable(). Without a reference clock we need the MIPI reference
* clock so reading early doesn't work.
*/
if (pdata->refclk)
ti_sn65dsi86_enable_comms(pdata);
return ret;
}
static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
int ret;
if (pdata->refclk)
ti_sn65dsi86_disable_comms(pdata);
gpiod_set_value(pdata->enable_gpio, 0);
ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
if (ret)
DRM_ERROR("failed to disable supplies %d\n", ret);
return ret;
}
static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static int status_show(struct seq_file *s, void *data)
{
struct ti_sn65dsi86 *pdata = s->private;
unsigned int reg, val;
seq_puts(s, "STATUS REGISTERS:\n");
pm_runtime_get_sync(pdata->dev);
/* IRQ Status Registers, see Table 31 in datasheet */
for (reg = 0xf0; reg <= 0xf8; reg++) {
regmap_read(pdata->regmap, reg, &val);
seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
}
pm_runtime_put_autosuspend(pdata->dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(status);
static void ti_sn65dsi86_debugfs_remove(void *data)
{
debugfs_remove_recursive(data);
}
static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
{
struct device *dev = pdata->dev;
struct dentry *debugfs;
int ret;
debugfs = debugfs_create_dir(dev_name(dev), NULL);
/*
* We might get an error back if debugfs wasn't enabled in the kernel
* so let's just silently return upon failure.
*/
if (IS_ERR_OR_NULL(debugfs))
return;
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
if (ret)
return;
debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
}
/* -----------------------------------------------------------------------------
* Auxiliary Devices (*not* AUX)
*/
static void ti_sn65dsi86_uninit_aux(void *data)
{
auxiliary_device_uninit(data);
}
static void ti_sn65dsi86_delete_aux(void *data)
{
auxiliary_device_delete(data);
}
/*
* AUX bus docs say that a non-NULL release is mandatory, but it makes no
* sense for the model used here where all of the aux devices are allocated
* in the single shared structure. We'll use this noop as a workaround.
*/
static void ti_sn65dsi86_noop(struct device *dev) {}
static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
struct auxiliary_device *aux,
const char *name)
{
struct device *dev = pdata->dev;
int ret;
aux->name = name;
aux->dev.parent = dev;
aux->dev.release = ti_sn65dsi86_noop;
device_set_of_node_from_dev(&aux->dev, dev);
ret = auxiliary_device_init(aux);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
if (ret)
return ret;
ret = auxiliary_device_add(aux);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
return ret;
}
/* -----------------------------------------------------------------------------
* AUX Adapter
*/
static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
{
return container_of(aux, struct ti_sn65dsi86, aux);
}
static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
u32 request_val = AUX_CMD_REQ(msg->request);
u8 *buf = msg->buffer;
unsigned int len = msg->size;
unsigned int val;
int ret;
u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
if (len > SN_AUX_MAX_PAYLOAD_BYTES)
return -EINVAL;
pm_runtime_get_sync(pdata->dev);
mutex_lock(&pdata->comms_mutex);
/*
* If someone tries to do a DDC over AUX transaction before pre_enable()
* on a device without a dedicated reference clock then we just can't
* do it. Fail right away. This prevents non-refclk users from reading
* the EDID before enabling the panel but such is life.
*/
if (!pdata->comms_enabled) {
ret = -EIO;
goto exit;
}
switch (request) {
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
/* Assume it's good */
msg->reply = 0;
break;
default:
ret = -EINVAL;
goto exit;
}
BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
addr_len);
regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
ARRAY_SIZE(addr_len));
if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
/* Clear old status bits before start so we don't get confused */
regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
AUX_IRQ_STATUS_NAT_I2C_FAIL |
AUX_IRQ_STATUS_AUX_RPLY_TOUT |
AUX_IRQ_STATUS_AUX_SHORT);
regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
/* Zero delay loop because i2c transactions are slow already */
ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
!(val & AUX_CMD_SEND), 0, 50 * 1000);
if (ret)
goto exit;
ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
if (ret)
goto exit;
if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
/*
* The hardware tried the message seven times per the DP spec
* but it hit a timeout. We ignore defers here because they're
* handled in hardware.
*/
ret = -ETIMEDOUT;
goto exit;
}
if (val & AUX_IRQ_STATUS_AUX_SHORT) {
ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
if (ret)
goto exit;
} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
switch (request) {
case DP_AUX_I2C_WRITE:
case DP_AUX_I2C_READ:
msg->reply |= DP_AUX_I2C_REPLY_NACK;
break;
case DP_AUX_NATIVE_READ:
case DP_AUX_NATIVE_WRITE:
msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
break;
}
len = 0;
goto exit;
}
if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
exit:
mutex_unlock(&pdata->comms_mutex);
pm_runtime_mark_last_busy(pdata->dev);
pm_runtime_put_autosuspend(pdata->dev);
if (ret)
return ret;
return len;
}
static int ti_sn_aux_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
int ret;
pdata->aux.name = "ti-sn65dsi86-aux";
pdata->aux.dev = &adev->dev;
pdata->aux.transfer = ti_sn_aux_transfer;
drm_dp_aux_init(&pdata->aux);
ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
if (ret)
return ret;
/*
* The eDP to MIPI bridge parts don't work until the AUX channel is
* setup so we don't add it in the main driver probe, we add it now.
*/
return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
}
static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
{ .name = "ti_sn65dsi86.aux", },
{},
};
static struct auxiliary_driver ti_sn_aux_driver = {
.name = "aux",
.probe = ti_sn_aux_probe,
.id_table = ti_sn_aux_id_table,
};
/* -----------------------------------------------------------------------------
* DRM Connector Operations
*/
static struct ti_sn65dsi86 *
connector_to_ti_sn65dsi86(struct drm_connector *connector)
{
return container_of(connector, struct ti_sn65dsi86, connector);
}
static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
{
struct ti_sn65dsi86 *pdata = connector_to_ti_sn65dsi86(connector);
return drm_bridge_get_modes(pdata->next_bridge, connector);
}
static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
.get_modes = ti_sn_bridge_connector_get_modes,
};
static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int ti_sn_bridge_connector_init(struct ti_sn65dsi86 *pdata)
{
int ret;
ret = drm_connector_init(pdata->bridge.dev, &pdata->connector,
&ti_sn_bridge_connector_funcs,
DRM_MODE_CONNECTOR_eDP);
if (ret) {
DRM_ERROR("Failed to initialize connector with drm\n");
return ret;
}
drm_connector_helper_add(&pdata->connector,
&ti_sn_bridge_connector_helper_funcs);
drm_connector_attach_encoder(&pdata->connector, pdata->bridge.encoder);
return 0;
}
/*------------------------------------------------------------------------------
* DRM Bridge
*/
static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
{
return container_of(bridge, struct ti_sn65dsi86, bridge);
}
static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
{
int val;
struct mipi_dsi_host *host;
struct mipi_dsi_device *dsi;
struct device *dev = pdata->dev;
const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
.channel = 0,
.node = NULL,
};
host = of_find_mipi_dsi_host_by_node(pdata->host_node);
if (!host)
return -EPROBE_DEFER;
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi))
return PTR_ERR(dsi);
/* TODO: setting to 4 MIPI lanes always for now */
dsi->lanes = 4;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
/* check if continuous dsi clock is required or not */
pm_runtime_get_sync(dev);
regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
pm_runtime_put_autosuspend(dev);
if (!(val & DPPLL_CLK_SRC_DSICLK))
dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
pdata->dsi = dsi;
return devm_mipi_dsi_attach(dev, dsi);
}
static int ti_sn_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
int ret;
if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
DRM_ERROR("Fix bridge driver to make connector optional!");
return -EINVAL;
}
pdata->aux.drm_dev = bridge->dev;
ret = drm_dp_aux_register(&pdata->aux);
if (ret < 0) {
drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
return ret;
}
ret = ti_sn_bridge_connector_init(pdata);
if (ret < 0)
goto err_conn_init;
/* We never want the next bridge to *also* create a connector: */
flags |= DRM_BRIDGE_ATTACH_NO_CONNECTOR;
/* Attach the next bridge */
ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
&pdata->bridge, flags);
if (ret < 0)
goto err_dsi_host;
return 0;
err_dsi_host:
drm_connector_cleanup(&pdata->connector);
err_conn_init:
drm_dp_aux_unregister(&pdata->aux);
return ret;
}
static void ti_sn_bridge_detach(struct drm_bridge *bridge)
{
drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
}
static enum drm_mode_status
ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
/* maximum supported resolution is 4K at 60 fps */
if (mode->clock > 594000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static void ti_sn_bridge_disable(struct drm_bridge *bridge)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
/* disable video stream */
regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
}
static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
{
unsigned int bit_rate_mhz, clk_freq_mhz;
unsigned int val;
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
/* set DSIA clk frequency */
bit_rate_mhz = (mode->clock / 1000) *
mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
/* for each increment in val, frequency increases by 5MHz */
val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
}
static unsigned int ti_sn_bridge_get_bpp(struct ti_sn65dsi86 *pdata)
{
if (pdata->connector.display_info.bpc <= 6)
return 18;
else
return 24;
}
/*
* LUT index corresponds to register value and
* LUT values corresponds to dp data rate supported
* by the bridge in Mbps unit.
*/
static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
};
static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata)
{
unsigned int bit_rate_khz, dp_rate_mhz;
unsigned int i;
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
/* Calculate minimum bit rate based on our pixel clock. */
bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
/* Calculate minimum DP data rate, taking 80% as per DP spec */
dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
break;
return i;
}
static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
{
unsigned int valid_rates = 0;
unsigned int rate_per_200khz;
unsigned int rate_mhz;
u8 dpcd_val;
int ret;
int i, j;
ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
if (ret != 1) {
DRM_DEV_ERROR(pdata->dev,
"Can't read eDP rev (%d), assuming 1.1\n", ret);
dpcd_val = DP_EDP_11;
}
if (dpcd_val >= DP_EDP_14) {
/* eDP 1.4 devices must provide a custom table */
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
sink_rates, sizeof(sink_rates));
if (ret != sizeof(sink_rates)) {
DRM_DEV_ERROR(pdata->dev,
"Can't read supported rate table (%d)\n", ret);
/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
memset(sink_rates, 0, sizeof(sink_rates));
}
for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
rate_per_200khz = le16_to_cpu(sink_rates[i]);
if (!rate_per_200khz)
break;
rate_mhz = rate_per_200khz * 200 / 1000;
for (j = 0;
j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
j++) {
if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
valid_rates |= BIT(j);
}
}
for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
if (valid_rates & BIT(i))
return valid_rates;
}
DRM_DEV_ERROR(pdata->dev,
"No matching eDP rates in table; falling back\n");
}
/* On older versions best we can do is use DP_MAX_LINK_RATE */
ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
if (ret != 1) {
DRM_DEV_ERROR(pdata->dev,
"Can't read max rate (%d); assuming 5.4 GHz\n",
ret);
dpcd_val = DP_LINK_BW_5_4;
}
switch (dpcd_val) {
default:
DRM_DEV_ERROR(pdata->dev,
"Unexpected max rate (%#x); assuming 5.4 GHz\n",
(int)dpcd_val);
fallthrough;
case DP_LINK_BW_5_4:
valid_rates |= BIT(7);
fallthrough;
case DP_LINK_BW_2_7:
valid_rates |= BIT(4);
fallthrough;
case DP_LINK_BW_1_62:
valid_rates |= BIT(1);
break;
}
return valid_rates;
}
static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
{
struct drm_display_mode *mode =
&pdata->bridge.encoder->crtc->state->adjusted_mode;
u8 hsync_polarity = 0, vsync_polarity = 0;
if (mode->flags & DRM_MODE_FLAG_PHSYNC)
hsync_polarity = CHA_HSYNC_POLARITY;
if (mode->flags & DRM_MODE_FLAG_PVSYNC)
vsync_polarity = CHA_VSYNC_POLARITY;
ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
mode->hdisplay);
ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
mode->vdisplay);
regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
(mode->hsync_end - mode->hsync_start) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
(((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
hsync_polarity);
regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
(mode->vsync_end - mode->vsync_start) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
(((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
vsync_polarity);
regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
(mode->htotal - mode->hsync_end) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
(mode->vtotal - mode->vsync_end) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
(mode->hsync_start - mode->hdisplay) & 0xFF);
regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
(mode->vsync_start - mode->vdisplay) & 0xFF);
usleep_range(10000, 10500); /* 10ms delay recommended by spec */
}
static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
{
u8 data;
int ret;
ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
if (ret != 1) {
DRM_DEV_ERROR(pdata->dev,
"Can't read lane count (%d); assuming 4\n", ret);
return 4;
}
return data & DP_LANE_COUNT_MASK;
}
static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
const char **last_err_str)
{
unsigned int val;
int ret;
int i;
/* set dp clk frequency value */
regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
/* enable DP PLL */
regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
val & DPPLL_SRC_DP_PLL_LOCK, 1000,
50 * 1000);
if (ret) {
*last_err_str = "DP_PLL_LOCK polling failed";
goto exit;
}
/*
* We'll try to link train several times. As part of link training
* the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER. If
* the panel isn't ready quite it might respond NAK here which means
* we need to try again.
*/
for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
/* Semi auto link training mode */
regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
val == ML_TX_MAIN_LINK_OFF ||
val == ML_TX_NORMAL_MODE, 1000,
500 * 1000);
if (ret) {
*last_err_str = "Training complete polling failed";
} else if (val == ML_TX_MAIN_LINK_OFF) {
*last_err_str = "Link training failed, link is off";
ret = -EIO;
continue;
}
break;
}
/* If we saw quite a few retries, add a note about it */
if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
exit:
/* Disable the PLL if we failed */
if (ret)
regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
return ret;
}
static void ti_sn_bridge_enable(struct drm_bridge *bridge)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
const char *last_err_str = "No supported DP rate";
unsigned int valid_rates;
int dp_rate_idx;
unsigned int val;
int ret = -EINVAL;
int max_dp_lanes;
max_dp_lanes = ti_sn_get_max_lanes(pdata);
pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
/* DSI_A lane config */
val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
CHA_DSI_LANES_MASK, val);
regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
pdata->ln_polrs << LN_POLRS_OFFSET);
/* set dsi clk frequency value */
ti_sn_bridge_set_dsi_rate(pdata);
/*
* The SN65DSI86 only supports ASSR Display Authentication method and
* this method is enabled by default. An eDP panel must support this
* authentication method. We need to enable this method in the eDP panel
* at DisplayPort address 0x0010A prior to link training.
*/
drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
/* Set the DP output format (18 bpp or 24 bpp) */
val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
/* DP lane config */
val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
val);
valid_rates = ti_sn_bridge_read_valid_rates(pdata);
/* Train until we run out of rates */
for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
dp_rate_idx++) {
if (!(valid_rates & BIT(dp_rate_idx)))
continue;
ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
if (!ret)
break;
}
if (ret) {
DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
return;
}
/* config video parameters */
ti_sn_bridge_set_video_timings(pdata);
/* enable video stream */
regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
VSTREAM_ENABLE);
}
static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
pm_runtime_get_sync(pdata->dev);
if (!pdata->refclk)
ti_sn65dsi86_enable_comms(pdata);
/* td7: min 100 us after enable before DSI data */
usleep_range(100, 110);
}
static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
{
struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
/* semi auto link training mode OFF */
regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
/* Num lanes to 0 as per power sequencing in data sheet */
regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
/* disable DP PLL */
regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
if (!pdata->refclk)
ti_sn65dsi86_disable_comms(pdata);
pm_runtime_put_sync(pdata->dev);
}
static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
.attach = ti_sn_bridge_attach,
.detach = ti_sn_bridge_detach,
.mode_valid = ti_sn_bridge_mode_valid,
.pre_enable = ti_sn_bridge_pre_enable,
.enable = ti_sn_bridge_enable,
.disable = ti_sn_bridge_disable,
.post_disable = ti_sn_bridge_post_disable,
};
static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
struct device_node *np)
{
u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
u32 lane_polarities[SN_MAX_DP_LANES] = { };
struct device_node *endpoint;
u8 ln_assign = 0;
u8 ln_polrs = 0;
int dp_lanes;
int i;
/*
* Read config from the device tree about lane remapping and lane
* polarities. These are optional and we assume identity map and
* normal polarity if nothing is specified. It's OK to specify just
* data-lanes but not lane-polarities but not vice versa.
*
* Error checking is light (we just make sure we don't crash or
* buffer overrun) and we assume dts is well formed and specifying
* mappings that the hardware supports.
*/
endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
of_property_read_u32_array(endpoint, "data-lanes",
lane_assignments, dp_lanes);
of_property_read_u32_array(endpoint, "lane-polarities",
lane_polarities, dp_lanes);
} else {
dp_lanes = SN_MAX_DP_LANES;
}
of_node_put(endpoint);
/*
* Convert into register format. Loop over all lanes even if
* data-lanes had fewer elements so that we nicely initialize
* the LN_ASSIGN register.
*/
for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
ln_polrs = ln_polrs << 1 | lane_polarities[i];
}
/* Stash in our struct for when we power on */
pdata->dp_lanes = dp_lanes;
pdata->ln_assign = ln_assign;
pdata->ln_polrs = ln_polrs;
}
static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
{
struct device_node *np = pdata->dev->of_node;
pdata->host_node = of_graph_get_remote_node(np, 0, 0);
if (!pdata->host_node) {
DRM_ERROR("remote dsi host node not found\n");
return -ENODEV;
}
return 0;
}
static int ti_sn_bridge_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
struct device_node *np = pdata->dev->of_node;
struct drm_panel *panel;
int ret;
ret = drm_of_find_panel_or_bridge(np, 1, 0, &panel, NULL);
if (ret)
return dev_err_probe(&adev->dev, ret,
"could not find any panel node\n");
pdata->next_bridge = devm_drm_panel_bridge_add(pdata->dev, panel);
if (IS_ERR(pdata->next_bridge)) {
DRM_ERROR("failed to create panel bridge\n");
return PTR_ERR(pdata->next_bridge);
}
ti_sn_bridge_parse_lanes(pdata, np);
ret = ti_sn_bridge_parse_dsi_host(pdata);
if (ret)
return ret;
pdata->bridge.funcs = &ti_sn_bridge_funcs;
pdata->bridge.of_node = np;
drm_bridge_add(&pdata->bridge);
ret = ti_sn_attach_host(pdata);
if (ret) {
dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
goto err_remove_bridge;
}
return 0;
err_remove_bridge:
drm_bridge_remove(&pdata->bridge);
return ret;
}
static void ti_sn_bridge_remove(struct auxiliary_device *adev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
if (!pdata)
return;
drm_bridge_remove(&pdata->bridge);
of_node_put(pdata->host_node);
}
static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
{ .name = "ti_sn65dsi86.bridge", },
{},
};
static struct auxiliary_driver ti_sn_bridge_driver = {
.name = "bridge",
.probe = ti_sn_bridge_probe,
.remove = ti_sn_bridge_remove,
.id_table = ti_sn_bridge_id_table,
};
/* -----------------------------------------------------------------------------
* PWM Controller
*/
#if defined(CONFIG_PWM)
static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
{
return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
}
static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
{
atomic_set(&pdata->pwm_pin_busy, 0);
}
static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
{
return container_of(chip, struct ti_sn65dsi86, pchip);
}
static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
return ti_sn_pwm_pin_request(pdata);
}
static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
ti_sn_pwm_pin_release(pdata);
}
/*
* Limitations:
* - The PWM signal is not driven when the chip is powered down, or in its
* reset state and the driver does not implement the "suspend state"
* described in the documentation. In order to save power, state->enabled is
* interpreted as denoting if the signal is expected to be valid, and is used
* to determine if the chip needs to be kept powered.
* - Changing both period and duty_cycle is not done atomically, neither is the
* multi-byte register updates, so the output might briefly be undefined
* during update.
*/
static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
unsigned int pwm_en_inv;
unsigned int backlight;
unsigned int pre_div;
unsigned int scale;
u64 period_max;
u64 period;
int ret;
if (!pdata->pwm_enabled) {
ret = pm_runtime_get_sync(pdata->dev);
if (ret < 0) {
pm_runtime_put_sync(pdata->dev);
return ret;
}
}
if (state->enabled) {
if (!pdata->pwm_enabled) {
/*
* The chip might have been powered down while we
* didn't hold a PM runtime reference, so mux in the
* PWM function on the GPIO pin again.
*/
ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
if (ret) {
dev_err(pdata->dev, "failed to mux in PWM function\n");
goto out;
}
}
/*
* Per the datasheet the PWM frequency is given by:
*
* REFCLK_FREQ
* PWM_FREQ = -----------------------------------
* PWM_PRE_DIV * BACKLIGHT_SCALE + 1
*
* However, after careful review the author is convinced that
* the documentation has lost some parenthesis around
* "BACKLIGHT_SCALE + 1".
*
* With the period T_pwm = 1/PWM_FREQ this can be written:
*
* T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
*
* In order to keep BACKLIGHT_SCALE within its 16 bits,
* PWM_PRE_DIV must be:
*
* T_pwm * REFCLK_FREQ
* PWM_PRE_DIV >= -------------------------
* BACKLIGHT_SCALE_MAX + 1
*
* To simplify the search and to favour higher resolution of
* the duty cycle over accuracy of the period, the lowest
* possible PWM_PRE_DIV is used. Finally the scale is
* calculated as:
*
* T_pwm * REFCLK_FREQ
* BACKLIGHT_SCALE = ---------------------- - 1
* PWM_PRE_DIV
*
* Here T_pwm is represented in seconds, so appropriate scaling
* to nanoseconds is necessary.
*/
/* Minimum T_pwm is 1 / REFCLK_FREQ */
if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
ret = -EINVAL;
goto out;
}
/*
* Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
* Limit period to this to avoid overflows
*/
period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
pdata->pwm_refclk_freq);
period = min(state->period, period_max);
pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
(u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
/*
* The documentation has the duty ratio given as:
*
* duty BACKLIGHT
* ------- = ---------------------
* period BACKLIGHT_SCALE + 1
*
* Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
* to definition above and adjusting for nanosecond
* representation of duty cycle gives us:
*/
backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
(u64)NSEC_PER_SEC * pre_div);
if (backlight > scale)
backlight = scale;
ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
if (ret) {
dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
goto out;
}
ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
}
pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
if (ret) {
dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
goto out;
}
pdata->pwm_enabled = state->enabled;
out:
if (!pdata->pwm_enabled)
pm_runtime_put_sync(pdata->dev);
return ret;
}
static void ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
unsigned int pwm_en_inv;
unsigned int pre_div;
u16 backlight;
u16 scale;
int ret;
ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
if (ret)
return;
ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
if (ret)
return;
ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
if (ret)
return;
ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
if (ret)
return;
state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
state->polarity = PWM_POLARITY_INVERSED;
else
state->polarity = PWM_POLARITY_NORMAL;
state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
pdata->pwm_refclk_freq);
state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
pdata->pwm_refclk_freq);
if (state->duty_cycle > state->period)
state->duty_cycle = state->period;
}
static const struct pwm_ops ti_sn_pwm_ops = {
.request = ti_sn_pwm_request,
.free = ti_sn_pwm_free,
.apply = ti_sn_pwm_apply,
.get_state = ti_sn_pwm_get_state,
.owner = THIS_MODULE,
};
static int ti_sn_pwm_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
pdata->pchip.dev = pdata->dev;
pdata->pchip.ops = &ti_sn_pwm_ops;
pdata->pchip.npwm = 1;
pdata->pchip.of_xlate = of_pwm_single_xlate;
pdata->pchip.of_pwm_n_cells = 1;
return pwmchip_add(&pdata->pchip);
}
static void ti_sn_pwm_remove(struct auxiliary_device *adev)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
pwmchip_remove(&pdata->pchip);
if (pdata->pwm_enabled)
pm_runtime_put_sync(pdata->dev);
}
static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
{ .name = "ti_sn65dsi86.pwm", },
{},
};
static struct auxiliary_driver ti_sn_pwm_driver = {
.name = "pwm",
.probe = ti_sn_pwm_probe,
.remove = ti_sn_pwm_remove,
.id_table = ti_sn_pwm_id_table,
};
static int __init ti_sn_pwm_register(void)
{
return auxiliary_driver_register(&ti_sn_pwm_driver);
}
static void ti_sn_pwm_unregister(void)
{
auxiliary_driver_unregister(&ti_sn_pwm_driver);
}
#else
static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
static inline int ti_sn_pwm_register(void) { return 0; }
static inline void ti_sn_pwm_unregister(void) {}
#endif
/* -----------------------------------------------------------------------------
* GPIO Controller
*/
#if defined(CONFIG_OF_GPIO)
static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
const struct of_phandle_args *gpiospec,
u32 *flags)
{
if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
return -EINVAL;
if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
return -EINVAL;
if (flags)
*flags = gpiospec->args[1];
return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
}
static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
/*
* We already have to keep track of the direction because we use
* that to figure out whether we've powered the device. We can
* just return that rather than (maybe) powering up the device
* to ask its direction.
*/
return test_bit(offset, pdata->gchip_output) ?
GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
}
static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
unsigned int val;
int ret;
/*
* When the pin is an input we don't forcibly keep the bridge
* powered--we just power it on to read the pin. NOTE: part of
* the reason this works is that the bridge defaults (when
* powered back on) to all 4 GPIOs being configured as GPIO input.
* Also note that if something else is keeping the chip powered the
* pm_runtime functions are lightweight increments of a refcount.
*/
pm_runtime_get_sync(pdata->dev);
ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
pm_runtime_put_autosuspend(pdata->dev);
if (ret)
return ret;
return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
}
static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
int val)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
int ret;
if (!test_bit(offset, pdata->gchip_output)) {
dev_err(pdata->dev, "Ignoring GPIO set while input\n");
return;
}
val &= 1;
ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
BIT(SN_GPIO_OUTPUT_SHIFT + offset),
val << (SN_GPIO_OUTPUT_SHIFT + offset));
if (ret)
dev_warn(pdata->dev,
"Failed to set bridge GPIO %u: %d\n", offset, ret);
}
static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
int shift = offset * 2;
int ret;
if (!test_and_clear_bit(offset, pdata->gchip_output))
return 0;
ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
SN_GPIO_MUX_MASK << shift,
SN_GPIO_MUX_INPUT << shift);
if (ret) {
set_bit(offset, pdata->gchip_output);
return ret;
}
/*
* NOTE: if nobody else is powering the device this may fully power
* it off and when it comes back it will have lost all state, but
* that's OK because the default is input and we're now an input.
*/
pm_runtime_put_autosuspend(pdata->dev);
return 0;
}
static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
unsigned int offset, int val)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
int shift = offset * 2;
int ret;
if (test_and_set_bit(offset, pdata->gchip_output))
return 0;
pm_runtime_get_sync(pdata->dev);
/* Set value first to avoid glitching */
ti_sn_bridge_gpio_set(chip, offset, val);
/* Set direction */
ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
SN_GPIO_MUX_MASK << shift,
SN_GPIO_MUX_OUTPUT << shift);
if (ret) {
clear_bit(offset, pdata->gchip_output);
pm_runtime_put_autosuspend(pdata->dev);
}
return ret;
}
static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
if (offset == SN_PWM_GPIO_IDX)
return ti_sn_pwm_pin_request(pdata);
return 0;
}
static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
{
struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
/* We won't keep pm_runtime if we're input, so switch there on free */
ti_sn_bridge_gpio_direction_input(chip, offset);
if (offset == SN_PWM_GPIO_IDX)
ti_sn_pwm_pin_release(pdata);
}
static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
"GPIO1", "GPIO2", "GPIO3", "GPIO4"
};
static int ti_sn_gpio_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
int ret;
/* Only init if someone is going to use us as a GPIO controller */
if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
return 0;
pdata->gchip.label = dev_name(pdata->dev);
pdata->gchip.parent = pdata->dev;
pdata->gchip.owner = THIS_MODULE;
pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
pdata->gchip.of_gpio_n_cells = 2;
pdata->gchip.request = ti_sn_bridge_gpio_request;
pdata->gchip.free = ti_sn_bridge_gpio_free;
pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
pdata->gchip.get = ti_sn_bridge_gpio_get;
pdata->gchip.set = ti_sn_bridge_gpio_set;
pdata->gchip.can_sleep = true;
pdata->gchip.names = ti_sn_bridge_gpio_names;
pdata->gchip.ngpio = SN_NUM_GPIOS;
pdata->gchip.base = -1;
ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
if (ret)
dev_err(pdata->dev, "can't add gpio chip\n");
return ret;
}
static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
{ .name = "ti_sn65dsi86.gpio", },
{},
};
MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
static struct auxiliary_driver ti_sn_gpio_driver = {
.name = "gpio",
.probe = ti_sn_gpio_probe,
.id_table = ti_sn_gpio_id_table,
};
static int __init ti_sn_gpio_register(void)
{
return auxiliary_driver_register(&ti_sn_gpio_driver);
}
static void ti_sn_gpio_unregister(void)
{
auxiliary_driver_unregister(&ti_sn_gpio_driver);
}
#else
static inline int ti_sn_gpio_register(void) { return 0; }
static inline void ti_sn_gpio_unregister(void) {}
#endif
/* -----------------------------------------------------------------------------
* Probe & Remove
*/
static void ti_sn65dsi86_runtime_disable(void *data)
{
pm_runtime_disable(data);
}
static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
{
unsigned int i;
const char * const ti_sn_bridge_supply_names[] = {
"vcca", "vcc", "vccio", "vpll",
};
for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
pdata->supplies);
}
static int ti_sn65dsi86_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct ti_sn65dsi86 *pdata;
int ret;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
DRM_ERROR("device doesn't support I2C\n");
return -ENODEV;
}
pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
dev_set_drvdata(dev, pdata);
pdata->dev = dev;
mutex_init(&pdata->comms_mutex);
pdata->regmap = devm_regmap_init_i2c(client,
&ti_sn65dsi86_regmap_config);
if (IS_ERR(pdata->regmap))
return dev_err_probe(dev, PTR_ERR(pdata->regmap),
"regmap i2c init failed\n");
pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(pdata->enable_gpio))
return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
"failed to get enable gpio from DT\n");
ret = ti_sn65dsi86_parse_regulators(pdata);
if (ret)
return dev_err_probe(dev, ret, "failed to parse regulators\n");
pdata->refclk = devm_clk_get_optional(dev, "refclk");
if (IS_ERR(pdata->refclk))
return dev_err_probe(dev, PTR_ERR(pdata->refclk),
"failed to get reference clock\n");
pm_runtime_enable(dev);
ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
if (ret)
return ret;
pm_runtime_set_autosuspend_delay(pdata->dev, 500);
pm_runtime_use_autosuspend(pdata->dev);
ti_sn65dsi86_debugfs_init(pdata);
/*
* Break ourselves up into a collection of aux devices. The only real
* motiviation here is to solve the chicken-and-egg problem of probe
* ordering. The bridge wants the panel to be there when it probes.
* The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
* when it probes. The panel and maybe backlight might want the DDC
* bus or the pwm_chip. Having sub-devices allows the some sub devices
* to finish probing even if others return -EPROBE_DEFER and gets us
* around the problems.
*/
if (IS_ENABLED(CONFIG_OF_GPIO)) {
ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
if (ret)
return ret;
}
if (IS_ENABLED(CONFIG_PWM)) {
ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
if (ret)
return ret;
}
/*
* NOTE: At the end of the AUX channel probe we'll add the aux device
* for the bridge. This is because the bridge can't be used until the
* AUX channel is there and this is a very simple solution to the
* dependency problem.
*/
return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
}
static struct i2c_device_id ti_sn65dsi86_id[] = {
{ "ti,sn65dsi86", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
static const struct of_device_id ti_sn65dsi86_match_table[] = {
{.compatible = "ti,sn65dsi86"},
{},
};
MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
static struct i2c_driver ti_sn65dsi86_driver = {
.driver = {
.name = "ti_sn65dsi86",
.of_match_table = ti_sn65dsi86_match_table,
.pm = &ti_sn65dsi86_pm_ops,
},
.probe = ti_sn65dsi86_probe,
.id_table = ti_sn65dsi86_id,
};
static int __init ti_sn65dsi86_init(void)
{
int ret;
ret = i2c_add_driver(&ti_sn65dsi86_driver);
if (ret)
return ret;
ret = ti_sn_gpio_register();
if (ret)
goto err_main_was_registered;
ret = ti_sn_pwm_register();
if (ret)
goto err_gpio_was_registered;
ret = auxiliary_driver_register(&ti_sn_aux_driver);
if (ret)
goto err_pwm_was_registered;
ret = auxiliary_driver_register(&ti_sn_bridge_driver);
if (ret)
goto err_aux_was_registered;
return 0;
err_aux_was_registered:
auxiliary_driver_unregister(&ti_sn_aux_driver);
err_pwm_was_registered:
ti_sn_pwm_unregister();
err_gpio_was_registered:
ti_sn_gpio_unregister();
err_main_was_registered:
i2c_del_driver(&ti_sn65dsi86_driver);
return ret;
}
module_init(ti_sn65dsi86_init);
static void __exit ti_sn65dsi86_exit(void)
{
auxiliary_driver_unregister(&ti_sn_bridge_driver);
auxiliary_driver_unregister(&ti_sn_aux_driver);
ti_sn_pwm_unregister();
ti_sn_gpio_unregister();
i2c_del_driver(&ti_sn65dsi86_driver);
}
module_exit(ti_sn65dsi86_exit);
MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
MODULE_LICENSE("GPL v2");
|