summaryrefslogtreecommitdiff
path: root/drivers/fpga/dfl-fme-main.c
blob: 864924f68f5e2c4f2a87989ad4b96800d0bbe6e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
// SPDX-License-Identifier: GPL-2.0
/*
 * Driver for FPGA Management Engine (FME)
 *
 * Copyright (C) 2017-2018 Intel Corporation, Inc.
 *
 * Authors:
 *   Kang Luwei <luwei.kang@intel.com>
 *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
 *   Joseph Grecco <joe.grecco@intel.com>
 *   Enno Luebbers <enno.luebbers@intel.com>
 *   Tim Whisonant <tim.whisonant@intel.com>
 *   Ananda Ravuri <ananda.ravuri@intel.com>
 *   Henry Mitchel <henry.mitchel@intel.com>
 */

#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/units.h>
#include <linux/fpga-dfl.h>

#include "dfl.h"
#include "dfl-fme.h"

static ssize_t ports_num_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_CAP);

	return scnprintf(buf, PAGE_SIZE, "%u\n",
			 (unsigned int)FIELD_GET(FME_CAP_NUM_PORTS, v));
}
static DEVICE_ATTR_RO(ports_num);

/*
 * Bitstream (static FPGA region) identifier number. It contains the
 * detailed version and other information of this static FPGA region.
 */
static ssize_t bitstream_id_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_BITSTREAM_ID);

	return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
}
static DEVICE_ATTR_RO(bitstream_id);

/*
 * Bitstream (static FPGA region) meta data. It contains the synthesis
 * date, seed and other information of this static FPGA region.
 */
static ssize_t bitstream_metadata_show(struct device *dev,
				       struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_BITSTREAM_MD);

	return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
}
static DEVICE_ATTR_RO(bitstream_metadata);

static ssize_t cache_size_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_CAP);

	return sprintf(buf, "%u\n",
		       (unsigned int)FIELD_GET(FME_CAP_CACHE_SIZE, v));
}
static DEVICE_ATTR_RO(cache_size);

static ssize_t fabric_version_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_CAP);

	return sprintf(buf, "%u\n",
		       (unsigned int)FIELD_GET(FME_CAP_FABRIC_VERID, v));
}
static DEVICE_ATTR_RO(fabric_version);

static ssize_t socket_id_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_CAP);

	return sprintf(buf, "%u\n",
		       (unsigned int)FIELD_GET(FME_CAP_SOCKET_ID, v));
}
static DEVICE_ATTR_RO(socket_id);

static struct attribute *fme_hdr_attrs[] = {
	&dev_attr_ports_num.attr,
	&dev_attr_bitstream_id.attr,
	&dev_attr_bitstream_metadata.attr,
	&dev_attr_cache_size.attr,
	&dev_attr_fabric_version.attr,
	&dev_attr_socket_id.attr,
	NULL,
};

static const struct attribute_group fme_hdr_group = {
	.attrs = fme_hdr_attrs,
};

static long fme_hdr_ioctl_release_port(struct dfl_feature_platform_data *pdata,
				       unsigned long arg)
{
	struct dfl_fpga_cdev *cdev = pdata->dfl_cdev;
	int port_id;

	if (get_user(port_id, (int __user *)arg))
		return -EFAULT;

	return dfl_fpga_cdev_release_port(cdev, port_id);
}

static long fme_hdr_ioctl_assign_port(struct dfl_feature_platform_data *pdata,
				      unsigned long arg)
{
	struct dfl_fpga_cdev *cdev = pdata->dfl_cdev;
	int port_id;

	if (get_user(port_id, (int __user *)arg))
		return -EFAULT;

	return dfl_fpga_cdev_assign_port(cdev, port_id);
}

static long fme_hdr_ioctl(struct platform_device *pdev,
			  struct dfl_feature *feature,
			  unsigned int cmd, unsigned long arg)
{
	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);

	switch (cmd) {
	case DFL_FPGA_FME_PORT_RELEASE:
		return fme_hdr_ioctl_release_port(pdata, arg);
	case DFL_FPGA_FME_PORT_ASSIGN:
		return fme_hdr_ioctl_assign_port(pdata, arg);
	}

	return -ENODEV;
}

static const struct dfl_feature_id fme_hdr_id_table[] = {
	{.id = FME_FEATURE_ID_HEADER,},
	{0,}
};

static const struct dfl_feature_ops fme_hdr_ops = {
	.ioctl = fme_hdr_ioctl,
};

#define FME_THERM_THRESHOLD	0x8
#define TEMP_THRESHOLD1		GENMASK_ULL(6, 0)
#define TEMP_THRESHOLD1_EN	BIT_ULL(7)
#define TEMP_THRESHOLD2		GENMASK_ULL(14, 8)
#define TEMP_THRESHOLD2_EN	BIT_ULL(15)
#define TRIP_THRESHOLD		GENMASK_ULL(30, 24)
#define TEMP_THRESHOLD1_STATUS	BIT_ULL(32)		/* threshold1 reached */
#define TEMP_THRESHOLD2_STATUS	BIT_ULL(33)		/* threshold2 reached */
/* threshold1 policy: 0 - AP2 (90% throttle) / 1 - AP1 (50% throttle) */
#define TEMP_THRESHOLD1_POLICY	BIT_ULL(44)

#define FME_THERM_RDSENSOR_FMT1	0x10
#define FPGA_TEMPERATURE	GENMASK_ULL(6, 0)

#define FME_THERM_CAP		0x20
#define THERM_NO_THROTTLE	BIT_ULL(0)

#define MD_PRE_DEG

static bool fme_thermal_throttle_support(void __iomem *base)
{
	u64 v = readq(base + FME_THERM_CAP);

	return FIELD_GET(THERM_NO_THROTTLE, v) ? false : true;
}

static umode_t thermal_hwmon_attrs_visible(const void *drvdata,
					   enum hwmon_sensor_types type,
					   u32 attr, int channel)
{
	const struct dfl_feature *feature = drvdata;

	/* temperature is always supported, and check hardware cap for others */
	if (attr == hwmon_temp_input)
		return 0444;

	return fme_thermal_throttle_support(feature->ioaddr) ? 0444 : 0;
}

static int thermal_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
			      u32 attr, int channel, long *val)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u64 v;

	switch (attr) {
	case hwmon_temp_input:
		v = readq(feature->ioaddr + FME_THERM_RDSENSOR_FMT1);
		*val = (long)(FIELD_GET(FPGA_TEMPERATURE, v) * MILLI);
		break;
	case hwmon_temp_max:
		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
		*val = (long)(FIELD_GET(TEMP_THRESHOLD1, v) * MILLI);
		break;
	case hwmon_temp_crit:
		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
		*val = (long)(FIELD_GET(TEMP_THRESHOLD2, v) * MILLI);
		break;
	case hwmon_temp_emergency:
		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
		*val = (long)(FIELD_GET(TRIP_THRESHOLD, v) * MILLI);
		break;
	case hwmon_temp_max_alarm:
		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
		*val = (long)FIELD_GET(TEMP_THRESHOLD1_STATUS, v);
		break;
	case hwmon_temp_crit_alarm:
		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
		*val = (long)FIELD_GET(TEMP_THRESHOLD2_STATUS, v);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static const struct hwmon_ops thermal_hwmon_ops = {
	.is_visible = thermal_hwmon_attrs_visible,
	.read = thermal_hwmon_read,
};

static const struct hwmon_channel_info * const thermal_hwmon_info[] = {
	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_EMERGENCY |
				 HWMON_T_MAX   | HWMON_T_MAX_ALARM |
				 HWMON_T_CRIT  | HWMON_T_CRIT_ALARM),
	NULL
};

static const struct hwmon_chip_info thermal_hwmon_chip_info = {
	.ops = &thermal_hwmon_ops,
	.info = thermal_hwmon_info,
};

static ssize_t temp1_max_policy_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u64 v;

	v = readq(feature->ioaddr + FME_THERM_THRESHOLD);

	return sprintf(buf, "%u\n",
		       (unsigned int)FIELD_GET(TEMP_THRESHOLD1_POLICY, v));
}

static DEVICE_ATTR_RO(temp1_max_policy);

static struct attribute *thermal_extra_attrs[] = {
	&dev_attr_temp1_max_policy.attr,
	NULL,
};

static umode_t thermal_extra_attrs_visible(struct kobject *kobj,
					   struct attribute *attr, int index)
{
	struct device *dev = kobj_to_dev(kobj);
	struct dfl_feature *feature = dev_get_drvdata(dev);

	return fme_thermal_throttle_support(feature->ioaddr) ? attr->mode : 0;
}

static const struct attribute_group thermal_extra_group = {
	.attrs		= thermal_extra_attrs,
	.is_visible	= thermal_extra_attrs_visible,
};
__ATTRIBUTE_GROUPS(thermal_extra);

static int fme_thermal_mgmt_init(struct platform_device *pdev,
				 struct dfl_feature *feature)
{
	struct device *hwmon;

	/*
	 * create hwmon to allow userspace monitoring temperature and other
	 * threshold information.
	 *
	 * temp1_input      -> FPGA device temperature
	 * temp1_max        -> hardware threshold 1 -> 50% or 90% throttling
	 * temp1_crit       -> hardware threshold 2 -> 100% throttling
	 * temp1_emergency  -> hardware trip_threshold to shutdown FPGA
	 * temp1_max_alarm  -> hardware threshold 1 alarm
	 * temp1_crit_alarm -> hardware threshold 2 alarm
	 *
	 * create device specific sysfs interfaces, e.g. read temp1_max_policy
	 * to understand the actual hardware throttling action (50% vs 90%).
	 *
	 * If hardware doesn't support automatic throttling per thresholds,
	 * then all above sysfs interfaces are not visible except temp1_input
	 * for temperature.
	 */
	hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
						     "dfl_fme_thermal", feature,
						     &thermal_hwmon_chip_info,
						     thermal_extra_groups);
	if (IS_ERR(hwmon)) {
		dev_err(&pdev->dev, "Fail to register thermal hwmon\n");
		return PTR_ERR(hwmon);
	}

	return 0;
}

static const struct dfl_feature_id fme_thermal_mgmt_id_table[] = {
	{.id = FME_FEATURE_ID_THERMAL_MGMT,},
	{0,}
};

static const struct dfl_feature_ops fme_thermal_mgmt_ops = {
	.init = fme_thermal_mgmt_init,
};

#define FME_PWR_STATUS		0x8
#define FME_LATENCY_TOLERANCE	BIT_ULL(18)
#define PWR_CONSUMED		GENMASK_ULL(17, 0)

#define FME_PWR_THRESHOLD	0x10
#define PWR_THRESHOLD1		GENMASK_ULL(6, 0)	/* in Watts */
#define PWR_THRESHOLD2		GENMASK_ULL(14, 8)	/* in Watts */
#define PWR_THRESHOLD_MAX	0x7f			/* in Watts */
#define PWR_THRESHOLD1_STATUS	BIT_ULL(16)
#define PWR_THRESHOLD2_STATUS	BIT_ULL(17)

#define FME_PWR_XEON_LIMIT	0x18
#define XEON_PWR_LIMIT		GENMASK_ULL(14, 0)	/* in 0.1 Watts */
#define XEON_PWR_EN		BIT_ULL(15)
#define FME_PWR_FPGA_LIMIT	0x20
#define FPGA_PWR_LIMIT		GENMASK_ULL(14, 0)	/* in 0.1 Watts */
#define FPGA_PWR_EN		BIT_ULL(15)

static int power_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
			    u32 attr, int channel, long *val)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u64 v;

	switch (attr) {
	case hwmon_power_input:
		v = readq(feature->ioaddr + FME_PWR_STATUS);
		*val = (long)(FIELD_GET(PWR_CONSUMED, v) * MICRO);
		break;
	case hwmon_power_max:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		*val = (long)(FIELD_GET(PWR_THRESHOLD1, v) * MICRO);
		break;
	case hwmon_power_crit:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		*val = (long)(FIELD_GET(PWR_THRESHOLD2, v) * MICRO);
		break;
	case hwmon_power_max_alarm:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		*val = (long)FIELD_GET(PWR_THRESHOLD1_STATUS, v);
		break;
	case hwmon_power_crit_alarm:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		*val = (long)FIELD_GET(PWR_THRESHOLD2_STATUS, v);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static int power_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
			     u32 attr, int channel, long val)
{
	struct dfl_feature_platform_data *pdata = dev_get_platdata(dev->parent);
	struct dfl_feature *feature = dev_get_drvdata(dev);
	int ret = 0;
	u64 v;

	val = clamp_val(val / MICRO, 0, PWR_THRESHOLD_MAX);

	mutex_lock(&pdata->lock);

	switch (attr) {
	case hwmon_power_max:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		v &= ~PWR_THRESHOLD1;
		v |= FIELD_PREP(PWR_THRESHOLD1, val);
		writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
		break;
	case hwmon_power_crit:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		v &= ~PWR_THRESHOLD2;
		v |= FIELD_PREP(PWR_THRESHOLD2, val);
		writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&pdata->lock);

	return ret;
}

static umode_t power_hwmon_attrs_visible(const void *drvdata,
					 enum hwmon_sensor_types type,
					 u32 attr, int channel)
{
	switch (attr) {
	case hwmon_power_input:
	case hwmon_power_max_alarm:
	case hwmon_power_crit_alarm:
		return 0444;
	case hwmon_power_max:
	case hwmon_power_crit:
		return 0644;
	}

	return 0;
}

static const struct hwmon_ops power_hwmon_ops = {
	.is_visible = power_hwmon_attrs_visible,
	.read = power_hwmon_read,
	.write = power_hwmon_write,
};

static const struct hwmon_channel_info * const power_hwmon_info[] = {
	HWMON_CHANNEL_INFO(power, HWMON_P_INPUT |
				  HWMON_P_MAX   | HWMON_P_MAX_ALARM |
				  HWMON_P_CRIT  | HWMON_P_CRIT_ALARM),
	NULL
};

static const struct hwmon_chip_info power_hwmon_chip_info = {
	.ops = &power_hwmon_ops,
	.info = power_hwmon_info,
};

static ssize_t power1_xeon_limit_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u16 xeon_limit = 0;
	u64 v;

	v = readq(feature->ioaddr + FME_PWR_XEON_LIMIT);

	if (FIELD_GET(XEON_PWR_EN, v))
		xeon_limit = FIELD_GET(XEON_PWR_LIMIT, v);

	return sprintf(buf, "%u\n", xeon_limit * 100000);
}

static ssize_t power1_fpga_limit_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u16 fpga_limit = 0;
	u64 v;

	v = readq(feature->ioaddr + FME_PWR_FPGA_LIMIT);

	if (FIELD_GET(FPGA_PWR_EN, v))
		fpga_limit = FIELD_GET(FPGA_PWR_LIMIT, v);

	return sprintf(buf, "%u\n", fpga_limit * 100000);
}

static ssize_t power1_ltr_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u64 v;

	v = readq(feature->ioaddr + FME_PWR_STATUS);

	return sprintf(buf, "%u\n",
		       (unsigned int)FIELD_GET(FME_LATENCY_TOLERANCE, v));
}

static DEVICE_ATTR_RO(power1_xeon_limit);
static DEVICE_ATTR_RO(power1_fpga_limit);
static DEVICE_ATTR_RO(power1_ltr);

static struct attribute *power_extra_attrs[] = {
	&dev_attr_power1_xeon_limit.attr,
	&dev_attr_power1_fpga_limit.attr,
	&dev_attr_power1_ltr.attr,
	NULL
};

ATTRIBUTE_GROUPS(power_extra);

static int fme_power_mgmt_init(struct platform_device *pdev,
			       struct dfl_feature *feature)
{
	struct device *hwmon;

	hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
						     "dfl_fme_power", feature,
						     &power_hwmon_chip_info,
						     power_extra_groups);
	if (IS_ERR(hwmon)) {
		dev_err(&pdev->dev, "Fail to register power hwmon\n");
		return PTR_ERR(hwmon);
	}

	return 0;
}

static const struct dfl_feature_id fme_power_mgmt_id_table[] = {
	{.id = FME_FEATURE_ID_POWER_MGMT,},
	{0,}
};

static const struct dfl_feature_ops fme_power_mgmt_ops = {
	.init = fme_power_mgmt_init,
};

static struct dfl_feature_driver fme_feature_drvs[] = {
	{
		.id_table = fme_hdr_id_table,
		.ops = &fme_hdr_ops,
	},
	{
		.id_table = fme_pr_mgmt_id_table,
		.ops = &fme_pr_mgmt_ops,
	},
	{
		.id_table = fme_global_err_id_table,
		.ops = &fme_global_err_ops,
	},
	{
		.id_table = fme_thermal_mgmt_id_table,
		.ops = &fme_thermal_mgmt_ops,
	},
	{
		.id_table = fme_power_mgmt_id_table,
		.ops = &fme_power_mgmt_ops,
	},
	{
		.id_table = fme_perf_id_table,
		.ops = &fme_perf_ops,
	},
	{
		.ops = NULL,
	},
};

static long fme_ioctl_check_extension(struct dfl_feature_platform_data *pdata,
				      unsigned long arg)
{
	/* No extension support for now */
	return 0;
}

static int fme_open(struct inode *inode, struct file *filp)
{
	struct platform_device *fdev = dfl_fpga_inode_to_feature_dev(inode);
	struct dfl_feature_platform_data *pdata = dev_get_platdata(&fdev->dev);
	int ret;

	if (WARN_ON(!pdata))
		return -ENODEV;

	mutex_lock(&pdata->lock);
	ret = dfl_feature_dev_use_begin(pdata, filp->f_flags & O_EXCL);
	if (!ret) {
		dev_dbg(&fdev->dev, "Device File Opened %d Times\n",
			dfl_feature_dev_use_count(pdata));
		filp->private_data = pdata;
	}
	mutex_unlock(&pdata->lock);

	return ret;
}

static int fme_release(struct inode *inode, struct file *filp)
{
	struct dfl_feature_platform_data *pdata = filp->private_data;
	struct platform_device *pdev = pdata->dev;
	struct dfl_feature *feature;

	dev_dbg(&pdev->dev, "Device File Release\n");

	mutex_lock(&pdata->lock);
	dfl_feature_dev_use_end(pdata);

	if (!dfl_feature_dev_use_count(pdata))
		dfl_fpga_dev_for_each_feature(pdata, feature)
			dfl_fpga_set_irq_triggers(feature, 0,
						  feature->nr_irqs, NULL);
	mutex_unlock(&pdata->lock);

	return 0;
}

static long fme_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	struct dfl_feature_platform_data *pdata = filp->private_data;
	struct platform_device *pdev = pdata->dev;
	struct dfl_feature *f;
	long ret;

	dev_dbg(&pdev->dev, "%s cmd 0x%x\n", __func__, cmd);

	switch (cmd) {
	case DFL_FPGA_GET_API_VERSION:
		return DFL_FPGA_API_VERSION;
	case DFL_FPGA_CHECK_EXTENSION:
		return fme_ioctl_check_extension(pdata, arg);
	default:
		/*
		 * Let sub-feature's ioctl function to handle the cmd.
		 * Sub-feature's ioctl returns -ENODEV when cmd is not
		 * handled in this sub feature, and returns 0 or other
		 * error code if cmd is handled.
		 */
		dfl_fpga_dev_for_each_feature(pdata, f) {
			if (f->ops && f->ops->ioctl) {
				ret = f->ops->ioctl(pdev, f, cmd, arg);
				if (ret != -ENODEV)
					return ret;
			}
		}
	}

	return -EINVAL;
}

static int fme_dev_init(struct platform_device *pdev)
{
	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
	struct dfl_fme *fme;

	fme = devm_kzalloc(&pdev->dev, sizeof(*fme), GFP_KERNEL);
	if (!fme)
		return -ENOMEM;

	mutex_lock(&pdata->lock);
	dfl_fpga_pdata_set_private(pdata, fme);
	mutex_unlock(&pdata->lock);

	return 0;
}

static void fme_dev_destroy(struct platform_device *pdev)
{
	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);

	mutex_lock(&pdata->lock);
	dfl_fpga_pdata_set_private(pdata, NULL);
	mutex_unlock(&pdata->lock);
}

static const struct file_operations fme_fops = {
	.owner		= THIS_MODULE,
	.open		= fme_open,
	.release	= fme_release,
	.unlocked_ioctl = fme_ioctl,
};

static int fme_probe(struct platform_device *pdev)
{
	int ret;

	ret = fme_dev_init(pdev);
	if (ret)
		goto exit;

	ret = dfl_fpga_dev_feature_init(pdev, fme_feature_drvs);
	if (ret)
		goto dev_destroy;

	ret = dfl_fpga_dev_ops_register(pdev, &fme_fops, THIS_MODULE);
	if (ret)
		goto feature_uinit;

	return 0;

feature_uinit:
	dfl_fpga_dev_feature_uinit(pdev);
dev_destroy:
	fme_dev_destroy(pdev);
exit:
	return ret;
}

static void fme_remove(struct platform_device *pdev)
{
	dfl_fpga_dev_ops_unregister(pdev);
	dfl_fpga_dev_feature_uinit(pdev);
	fme_dev_destroy(pdev);
}

static const struct attribute_group *fme_dev_groups[] = {
	&fme_hdr_group,
	&fme_global_err_group,
	NULL
};

static struct platform_driver fme_driver = {
	.driver	= {
		.name       = DFL_FPGA_FEATURE_DEV_FME,
		.dev_groups = fme_dev_groups,
	},
	.probe   = fme_probe,
	.remove_new = fme_remove,
};

module_platform_driver(fme_driver);

MODULE_DESCRIPTION("FPGA Management Engine driver");
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:dfl-fme");