summaryrefslogtreecommitdiff
path: root/drivers/firewire/core-iso.c
blob: 42566b7be8f51f00085432992994def48b7d4585 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Isochronous I/O functionality:
 *   - Isochronous DMA context management
 *   - Isochronous bus resource management (channels, bandwidth), client side
 *
 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
 */

#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/export.h>

#include <asm/byteorder.h>

#include "core.h"

/*
 * Isochronous DMA context management
 */

int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
{
	int i;

	buffer->page_count = 0;
	buffer->page_count_mapped = 0;
	buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
				      GFP_KERNEL);
	if (buffer->pages == NULL)
		return -ENOMEM;

	for (i = 0; i < page_count; i++) {
		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
		if (buffer->pages[i] == NULL)
			break;
	}
	buffer->page_count = i;
	if (i < page_count) {
		fw_iso_buffer_destroy(buffer, NULL);
		return -ENOMEM;
	}

	return 0;
}

int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
			  enum dma_data_direction direction)
{
	dma_addr_t address;
	int i;

	buffer->direction = direction;

	for (i = 0; i < buffer->page_count; i++) {
		address = dma_map_page(card->device, buffer->pages[i],
				       0, PAGE_SIZE, direction);
		if (dma_mapping_error(card->device, address))
			break;

		set_page_private(buffer->pages[i], address);
	}
	buffer->page_count_mapped = i;
	if (i < buffer->page_count)
		return -ENOMEM;

	return 0;
}

int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
		       int page_count, enum dma_data_direction direction)
{
	int ret;

	ret = fw_iso_buffer_alloc(buffer, page_count);
	if (ret < 0)
		return ret;

	ret = fw_iso_buffer_map_dma(buffer, card, direction);
	if (ret < 0)
		fw_iso_buffer_destroy(buffer, card);

	return ret;
}
EXPORT_SYMBOL(fw_iso_buffer_init);

int fw_iso_buffer_map_vma(struct fw_iso_buffer *buffer,
			  struct vm_area_struct *vma)
{
	return vm_map_pages_zero(vma, buffer->pages,
					buffer->page_count);
}

void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
			   struct fw_card *card)
{
	int i;
	dma_addr_t address;

	for (i = 0; i < buffer->page_count_mapped; i++) {
		address = page_private(buffer->pages[i]);
		dma_unmap_page(card->device, address,
			       PAGE_SIZE, buffer->direction);
	}
	for (i = 0; i < buffer->page_count; i++)
		__free_page(buffer->pages[i]);

	kfree(buffer->pages);
	buffer->pages = NULL;
	buffer->page_count = 0;
	buffer->page_count_mapped = 0;
}
EXPORT_SYMBOL(fw_iso_buffer_destroy);

/* Convert DMA address to offset into virtually contiguous buffer. */
size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
{
	size_t i;
	dma_addr_t address;
	ssize_t offset;

	for (i = 0; i < buffer->page_count; i++) {
		address = page_private(buffer->pages[i]);
		offset = (ssize_t)completed - (ssize_t)address;
		if (offset > 0 && offset <= PAGE_SIZE)
			return (i << PAGE_SHIFT) + offset;
	}

	return 0;
}

struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
		int type, int channel, int speed, size_t header_size,
		fw_iso_callback_t callback, void *callback_data)
{
	struct fw_iso_context *ctx;

	ctx = card->driver->allocate_iso_context(card,
						 type, channel, header_size);
	if (IS_ERR(ctx))
		return ctx;

	ctx->card = card;
	ctx->type = type;
	ctx->channel = channel;
	ctx->speed = speed;
	ctx->header_size = header_size;
	ctx->callback.sc = callback;
	ctx->callback_data = callback_data;

	return ctx;
}
EXPORT_SYMBOL(fw_iso_context_create);

void fw_iso_context_destroy(struct fw_iso_context *ctx)
{
	ctx->card->driver->free_iso_context(ctx);
}
EXPORT_SYMBOL(fw_iso_context_destroy);

int fw_iso_context_start(struct fw_iso_context *ctx,
			 int cycle, int sync, int tags)
{
	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
}
EXPORT_SYMBOL(fw_iso_context_start);

int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
{
	return ctx->card->driver->set_iso_channels(ctx, channels);
}

int fw_iso_context_queue(struct fw_iso_context *ctx,
			 struct fw_iso_packet *packet,
			 struct fw_iso_buffer *buffer,
			 unsigned long payload)
{
	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
}
EXPORT_SYMBOL(fw_iso_context_queue);

void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
{
	ctx->card->driver->flush_queue_iso(ctx);
}
EXPORT_SYMBOL(fw_iso_context_queue_flush);

int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
{
	return ctx->card->driver->flush_iso_completions(ctx);
}
EXPORT_SYMBOL(fw_iso_context_flush_completions);

int fw_iso_context_stop(struct fw_iso_context *ctx)
{
	return ctx->card->driver->stop_iso(ctx);
}
EXPORT_SYMBOL(fw_iso_context_stop);

/*
 * Isochronous bus resource management (channels, bandwidth), client side
 */

static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
			    int bandwidth, bool allocate)
{
	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
	__be32 data[2];

	/*
	 * On a 1394a IRM with low contention, try < 1 is enough.
	 * On a 1394-1995 IRM, we need at least try < 2.
	 * Let's just do try < 5.
	 */
	for (try = 0; try < 5; try++) {
		new = allocate ? old - bandwidth : old + bandwidth;
		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
			return -EBUSY;

		data[0] = cpu_to_be32(old);
		data[1] = cpu_to_be32(new);
		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
				irm_id, generation, SCODE_100,
				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
				data, 8)) {
		case RCODE_GENERATION:
			/* A generation change frees all bandwidth. */
			return allocate ? -EAGAIN : bandwidth;

		case RCODE_COMPLETE:
			if (be32_to_cpup(data) == old)
				return bandwidth;

			old = be32_to_cpup(data);
			/* Fall through. */
		}
	}

	return -EIO;
}

static int manage_channel(struct fw_card *card, int irm_id, int generation,
		u32 channels_mask, u64 offset, bool allocate)
{
	__be32 bit, all, old;
	__be32 data[2];
	int channel, ret = -EIO, retry = 5;

	old = all = allocate ? cpu_to_be32(~0) : 0;

	for (channel = 0; channel < 32; channel++) {
		if (!(channels_mask & 1 << channel))
			continue;

		ret = -EBUSY;

		bit = cpu_to_be32(1 << (31 - channel));
		if ((old & bit) != (all & bit))
			continue;

		data[0] = old;
		data[1] = old ^ bit;
		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
					   irm_id, generation, SCODE_100,
					   offset, data, 8)) {
		case RCODE_GENERATION:
			/* A generation change frees all channels. */
			return allocate ? -EAGAIN : channel;

		case RCODE_COMPLETE:
			if (data[0] == old)
				return channel;

			old = data[0];

			/* Is the IRM 1394a-2000 compliant? */
			if ((data[0] & bit) == (data[1] & bit))
				continue;

			/* 1394-1995 IRM, fall through to retry. */
		default:
			if (retry) {
				retry--;
				channel--;
			} else {
				ret = -EIO;
			}
		}
	}

	return ret;
}

static void deallocate_channel(struct fw_card *card, int irm_id,
			       int generation, int channel)
{
	u32 mask;
	u64 offset;

	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;

	manage_channel(card, irm_id, generation, mask, offset, false);
}

/**
 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
 * @card: card interface for this action
 * @generation: bus generation
 * @channels_mask: bitmask for channel allocation
 * @channel: pointer for returning channel allocation result
 * @bandwidth: pointer for returning bandwidth allocation result
 * @allocate: whether to allocate (true) or deallocate (false)
 *
 * In parameters: card, generation, channels_mask, bandwidth, allocate
 * Out parameters: channel, bandwidth
 *
 * This function blocks (sleeps) during communication with the IRM.
 *
 * Allocates or deallocates at most one channel out of channels_mask.
 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
 * channel 0 and LSB for channel 63.)
 * Allocates or deallocates as many bandwidth allocation units as specified.
 *
 * Returns channel < 0 if no channel was allocated or deallocated.
 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
 *
 * If generation is stale, deallocations succeed but allocations fail with
 * channel = -EAGAIN.
 *
 * If channel allocation fails, no bandwidth will be allocated either.
 * If bandwidth allocation fails, no channel will be allocated either.
 * But deallocations of channel and bandwidth are tried independently
 * of each other's success.
 */
void fw_iso_resource_manage(struct fw_card *card, int generation,
			    u64 channels_mask, int *channel, int *bandwidth,
			    bool allocate)
{
	u32 channels_hi = channels_mask;	/* channels 31...0 */
	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
	int irm_id, ret, c = -EINVAL;

	spin_lock_irq(&card->lock);
	irm_id = card->irm_node->node_id;
	spin_unlock_irq(&card->lock);

	if (channels_hi)
		c = manage_channel(card, irm_id, generation, channels_hi,
				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
				allocate);
	if (channels_lo && c < 0) {
		c = manage_channel(card, irm_id, generation, channels_lo,
				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
				allocate);
		if (c >= 0)
			c += 32;
	}
	*channel = c;

	if (allocate && channels_mask != 0 && c < 0)
		*bandwidth = 0;

	if (*bandwidth == 0)
		return;

	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
	if (ret < 0)
		*bandwidth = 0;

	if (allocate && ret < 0) {
		if (c >= 0)
			deallocate_channel(card, irm_id, generation, c);
		*channel = ret;
	}
}
EXPORT_SYMBOL(fw_iso_resource_manage);