1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
*/
#include <linux/bitfield.h>
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/interconnect.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#define LUT_MAX_ENTRIES 40U
#define LUT_SRC GENMASK(31, 30)
#define LUT_L_VAL GENMASK(7, 0)
#define LUT_CORE_COUNT GENMASK(18, 16)
#define LUT_VOLT GENMASK(11, 0)
#define CLK_HW_DIV 2
#define LUT_TURBO_IND 1
#define HZ_PER_KHZ 1000
struct qcom_cpufreq_soc_data {
u32 reg_enable;
u32 reg_freq_lut;
u32 reg_volt_lut;
u32 reg_current_vote;
u32 reg_perf_state;
u8 lut_row_size;
};
struct qcom_cpufreq_data {
void __iomem *base;
struct resource *res;
const struct qcom_cpufreq_soc_data *soc_data;
/*
* Mutex to synchronize between de-init sequence and re-starting LMh
* polling/interrupts
*/
struct mutex throttle_lock;
int throttle_irq;
char irq_name[15];
bool cancel_throttle;
struct delayed_work throttle_work;
struct cpufreq_policy *policy;
};
static unsigned long cpu_hw_rate, xo_rate;
static bool icc_scaling_enabled;
static int qcom_cpufreq_set_bw(struct cpufreq_policy *policy,
unsigned long freq_khz)
{
unsigned long freq_hz = freq_khz * 1000;
struct dev_pm_opp *opp;
struct device *dev;
int ret;
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
opp = dev_pm_opp_find_freq_exact(dev, freq_hz, true);
if (IS_ERR(opp))
return PTR_ERR(opp);
ret = dev_pm_opp_set_opp(dev, opp);
dev_pm_opp_put(opp);
return ret;
}
static int qcom_cpufreq_update_opp(struct device *cpu_dev,
unsigned long freq_khz,
unsigned long volt)
{
unsigned long freq_hz = freq_khz * 1000;
int ret;
/* Skip voltage update if the opp table is not available */
if (!icc_scaling_enabled)
return dev_pm_opp_add(cpu_dev, freq_hz, volt);
ret = dev_pm_opp_adjust_voltage(cpu_dev, freq_hz, volt, volt, volt);
if (ret) {
dev_err(cpu_dev, "Voltage update failed freq=%ld\n", freq_khz);
return ret;
}
return dev_pm_opp_enable(cpu_dev, freq_hz);
}
static int qcom_cpufreq_hw_target_index(struct cpufreq_policy *policy,
unsigned int index)
{
struct qcom_cpufreq_data *data = policy->driver_data;
const struct qcom_cpufreq_soc_data *soc_data = data->soc_data;
unsigned long freq = policy->freq_table[index].frequency;
writel_relaxed(index, data->base + soc_data->reg_perf_state);
if (icc_scaling_enabled)
qcom_cpufreq_set_bw(policy, freq);
return 0;
}
static unsigned int qcom_cpufreq_hw_get(unsigned int cpu)
{
struct qcom_cpufreq_data *data;
const struct qcom_cpufreq_soc_data *soc_data;
struct cpufreq_policy *policy;
unsigned int index;
policy = cpufreq_cpu_get_raw(cpu);
if (!policy)
return 0;
data = policy->driver_data;
soc_data = data->soc_data;
index = readl_relaxed(data->base + soc_data->reg_perf_state);
index = min(index, LUT_MAX_ENTRIES - 1);
return policy->freq_table[index].frequency;
}
static unsigned int qcom_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct qcom_cpufreq_data *data = policy->driver_data;
const struct qcom_cpufreq_soc_data *soc_data = data->soc_data;
unsigned int index;
index = policy->cached_resolved_idx;
writel_relaxed(index, data->base + soc_data->reg_perf_state);
return policy->freq_table[index].frequency;
}
static int qcom_cpufreq_hw_read_lut(struct device *cpu_dev,
struct cpufreq_policy *policy)
{
u32 data, src, lval, i, core_count, prev_freq = 0, freq;
u32 volt;
struct cpufreq_frequency_table *table;
struct dev_pm_opp *opp;
unsigned long rate;
int ret;
struct qcom_cpufreq_data *drv_data = policy->driver_data;
const struct qcom_cpufreq_soc_data *soc_data = drv_data->soc_data;
table = kcalloc(LUT_MAX_ENTRIES + 1, sizeof(*table), GFP_KERNEL);
if (!table)
return -ENOMEM;
ret = dev_pm_opp_of_add_table(cpu_dev);
if (!ret) {
/* Disable all opps and cross-validate against LUT later */
icc_scaling_enabled = true;
for (rate = 0; ; rate++) {
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp))
break;
dev_pm_opp_put(opp);
dev_pm_opp_disable(cpu_dev, rate);
}
} else if (ret != -ENODEV) {
dev_err(cpu_dev, "Invalid opp table in device tree\n");
return ret;
} else {
policy->fast_switch_possible = true;
icc_scaling_enabled = false;
}
for (i = 0; i < LUT_MAX_ENTRIES; i++) {
data = readl_relaxed(drv_data->base + soc_data->reg_freq_lut +
i * soc_data->lut_row_size);
src = FIELD_GET(LUT_SRC, data);
lval = FIELD_GET(LUT_L_VAL, data);
core_count = FIELD_GET(LUT_CORE_COUNT, data);
data = readl_relaxed(drv_data->base + soc_data->reg_volt_lut +
i * soc_data->lut_row_size);
volt = FIELD_GET(LUT_VOLT, data) * 1000;
if (src)
freq = xo_rate * lval / 1000;
else
freq = cpu_hw_rate / 1000;
if (freq != prev_freq && core_count != LUT_TURBO_IND) {
if (!qcom_cpufreq_update_opp(cpu_dev, freq, volt)) {
table[i].frequency = freq;
dev_dbg(cpu_dev, "index=%d freq=%d, core_count %d\n", i,
freq, core_count);
} else {
dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", freq);
table[i].frequency = CPUFREQ_ENTRY_INVALID;
}
} else if (core_count == LUT_TURBO_IND) {
table[i].frequency = CPUFREQ_ENTRY_INVALID;
}
/*
* Two of the same frequencies with the same core counts means
* end of table
*/
if (i > 0 && prev_freq == freq) {
struct cpufreq_frequency_table *prev = &table[i - 1];
/*
* Only treat the last frequency that might be a boost
* as the boost frequency
*/
if (prev->frequency == CPUFREQ_ENTRY_INVALID) {
if (!qcom_cpufreq_update_opp(cpu_dev, prev_freq, volt)) {
prev->frequency = prev_freq;
prev->flags = CPUFREQ_BOOST_FREQ;
} else {
dev_warn(cpu_dev, "failed to update OPP for freq=%d\n",
freq);
}
}
break;
}
prev_freq = freq;
}
table[i].frequency = CPUFREQ_TABLE_END;
policy->freq_table = table;
dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
return 0;
}
static void qcom_get_related_cpus(int index, struct cpumask *m)
{
struct device_node *cpu_np;
struct of_phandle_args args;
int cpu, ret;
for_each_possible_cpu(cpu) {
cpu_np = of_cpu_device_node_get(cpu);
if (!cpu_np)
continue;
ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
"#freq-domain-cells", 0,
&args);
of_node_put(cpu_np);
if (ret < 0)
continue;
if (index == args.args[0])
cpumask_set_cpu(cpu, m);
}
}
static unsigned int qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data)
{
unsigned int val = readl_relaxed(data->base + data->soc_data->reg_current_vote);
return (val & 0x3FF) * 19200;
}
static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data)
{
struct cpufreq_policy *policy = data->policy;
int cpu = cpumask_first(policy->cpus);
struct device *dev = get_cpu_device(cpu);
unsigned long freq_hz, throttled_freq;
struct dev_pm_opp *opp;
unsigned int freq;
/*
* Get the h/w throttled frequency, normalize it using the
* registered opp table and use it to calculate thermal pressure.
*/
freq = qcom_lmh_get_throttle_freq(data);
freq_hz = freq * HZ_PER_KHZ;
opp = dev_pm_opp_find_freq_floor(dev, &freq_hz);
if (IS_ERR(opp) && PTR_ERR(opp) == -ERANGE)
dev_pm_opp_find_freq_ceil(dev, &freq_hz);
throttled_freq = freq_hz / HZ_PER_KHZ;
/* Update thermal pressure (the boost frequencies are accepted) */
arch_update_thermal_pressure(policy->related_cpus, throttled_freq);
/*
* In the unlikely case policy is unregistered do not enable
* polling or h/w interrupt
*/
mutex_lock(&data->throttle_lock);
if (data->cancel_throttle)
goto out;
/*
* If h/w throttled frequency is higher than what cpufreq has requested
* for, then stop polling and switch back to interrupt mechanism.
*/
if (throttled_freq >= qcom_cpufreq_hw_get(cpu))
enable_irq(data->throttle_irq);
else
mod_delayed_work(system_highpri_wq, &data->throttle_work,
msecs_to_jiffies(10));
out:
mutex_unlock(&data->throttle_lock);
}
static void qcom_lmh_dcvs_poll(struct work_struct *work)
{
struct qcom_cpufreq_data *data;
data = container_of(work, struct qcom_cpufreq_data, throttle_work.work);
qcom_lmh_dcvs_notify(data);
}
static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data)
{
struct qcom_cpufreq_data *c_data = data;
/* Disable interrupt and enable polling */
disable_irq_nosync(c_data->throttle_irq);
schedule_delayed_work(&c_data->throttle_work, 0);
return IRQ_HANDLED;
}
static const struct qcom_cpufreq_soc_data qcom_soc_data = {
.reg_enable = 0x0,
.reg_freq_lut = 0x110,
.reg_volt_lut = 0x114,
.reg_current_vote = 0x704,
.reg_perf_state = 0x920,
.lut_row_size = 32,
};
static const struct qcom_cpufreq_soc_data epss_soc_data = {
.reg_enable = 0x0,
.reg_freq_lut = 0x100,
.reg_volt_lut = 0x200,
.reg_perf_state = 0x320,
.lut_row_size = 4,
};
static const struct of_device_id qcom_cpufreq_hw_match[] = {
{ .compatible = "qcom,cpufreq-hw", .data = &qcom_soc_data },
{ .compatible = "qcom,cpufreq-epss", .data = &epss_soc_data },
{}
};
MODULE_DEVICE_TABLE(of, qcom_cpufreq_hw_match);
static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index)
{
struct qcom_cpufreq_data *data = policy->driver_data;
struct platform_device *pdev = cpufreq_get_driver_data();
int ret;
/*
* Look for LMh interrupt. If no interrupt line is specified /
* if there is an error, allow cpufreq to be enabled as usual.
*/
data->throttle_irq = platform_get_irq_optional(pdev, index);
if (data->throttle_irq == -ENXIO)
return 0;
if (data->throttle_irq < 0)
return data->throttle_irq;
data->cancel_throttle = false;
data->policy = policy;
mutex_init(&data->throttle_lock);
INIT_DEFERRABLE_WORK(&data->throttle_work, qcom_lmh_dcvs_poll);
snprintf(data->irq_name, sizeof(data->irq_name), "dcvsh-irq-%u", policy->cpu);
ret = request_threaded_irq(data->throttle_irq, NULL, qcom_lmh_dcvs_handle_irq,
IRQF_ONESHOT | IRQF_NO_AUTOEN, data->irq_name, data);
if (ret) {
dev_err(&pdev->dev, "Error registering %s: %d\n", data->irq_name, ret);
return 0;
}
ret = irq_set_affinity_hint(data->throttle_irq, policy->cpus);
if (ret)
dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n",
data->irq_name, data->throttle_irq);
return 0;
}
static void qcom_cpufreq_hw_lmh_exit(struct qcom_cpufreq_data *data)
{
if (data->throttle_irq <= 0)
return;
mutex_lock(&data->throttle_lock);
data->cancel_throttle = true;
mutex_unlock(&data->throttle_lock);
cancel_delayed_work_sync(&data->throttle_work);
free_irq(data->throttle_irq, data);
}
static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
{
struct platform_device *pdev = cpufreq_get_driver_data();
struct device *dev = &pdev->dev;
struct of_phandle_args args;
struct device_node *cpu_np;
struct device *cpu_dev;
struct resource *res;
void __iomem *base;
struct qcom_cpufreq_data *data;
int ret, index;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
policy->cpu);
return -ENODEV;
}
cpu_np = of_cpu_device_node_get(policy->cpu);
if (!cpu_np)
return -EINVAL;
ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
"#freq-domain-cells", 0, &args);
of_node_put(cpu_np);
if (ret)
return ret;
index = args.args[0];
res = platform_get_resource(pdev, IORESOURCE_MEM, index);
if (!res) {
dev_err(dev, "failed to get mem resource %d\n", index);
return -ENODEV;
}
if (!request_mem_region(res->start, resource_size(res), res->name)) {
dev_err(dev, "failed to request resource %pR\n", res);
return -EBUSY;
}
base = ioremap(res->start, resource_size(res));
if (!base) {
dev_err(dev, "failed to map resource %pR\n", res);
ret = -ENOMEM;
goto release_region;
}
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
ret = -ENOMEM;
goto unmap_base;
}
data->soc_data = of_device_get_match_data(&pdev->dev);
data->base = base;
data->res = res;
/* HW should be in enabled state to proceed */
if (!(readl_relaxed(base + data->soc_data->reg_enable) & 0x1)) {
dev_err(dev, "Domain-%d cpufreq hardware not enabled\n", index);
ret = -ENODEV;
goto error;
}
qcom_get_related_cpus(index, policy->cpus);
if (!cpumask_weight(policy->cpus)) {
dev_err(dev, "Domain-%d failed to get related CPUs\n", index);
ret = -ENOENT;
goto error;
}
policy->driver_data = data;
policy->dvfs_possible_from_any_cpu = true;
ret = qcom_cpufreq_hw_read_lut(cpu_dev, policy);
if (ret) {
dev_err(dev, "Domain-%d failed to read LUT\n", index);
goto error;
}
ret = dev_pm_opp_get_opp_count(cpu_dev);
if (ret <= 0) {
dev_err(cpu_dev, "Failed to add OPPs\n");
ret = -ENODEV;
goto error;
}
if (policy_has_boost_freq(policy)) {
ret = cpufreq_enable_boost_support();
if (ret)
dev_warn(cpu_dev, "failed to enable boost: %d\n", ret);
}
ret = qcom_cpufreq_hw_lmh_init(policy, index);
if (ret)
goto error;
return 0;
error:
kfree(data);
unmap_base:
iounmap(base);
release_region:
release_mem_region(res->start, resource_size(res));
return ret;
}
static int qcom_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
{
struct device *cpu_dev = get_cpu_device(policy->cpu);
struct qcom_cpufreq_data *data = policy->driver_data;
struct resource *res = data->res;
void __iomem *base = data->base;
dev_pm_opp_remove_all_dynamic(cpu_dev);
dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
qcom_cpufreq_hw_lmh_exit(data);
kfree(policy->freq_table);
kfree(data);
iounmap(base);
release_mem_region(res->start, resource_size(res));
return 0;
}
static void qcom_cpufreq_ready(struct cpufreq_policy *policy)
{
struct qcom_cpufreq_data *data = policy->driver_data;
if (data->throttle_irq >= 0)
enable_irq(data->throttle_irq);
}
static struct freq_attr *qcom_cpufreq_hw_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
&cpufreq_freq_attr_scaling_boost_freqs,
NULL
};
static struct cpufreq_driver cpufreq_qcom_hw_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = qcom_cpufreq_hw_target_index,
.get = qcom_cpufreq_hw_get,
.init = qcom_cpufreq_hw_cpu_init,
.exit = qcom_cpufreq_hw_cpu_exit,
.register_em = cpufreq_register_em_with_opp,
.fast_switch = qcom_cpufreq_hw_fast_switch,
.name = "qcom-cpufreq-hw",
.attr = qcom_cpufreq_hw_attr,
.ready = qcom_cpufreq_ready,
};
static int qcom_cpufreq_hw_driver_probe(struct platform_device *pdev)
{
struct device *cpu_dev;
struct clk *clk;
int ret;
clk = clk_get(&pdev->dev, "xo");
if (IS_ERR(clk))
return PTR_ERR(clk);
xo_rate = clk_get_rate(clk);
clk_put(clk);
clk = clk_get(&pdev->dev, "alternate");
if (IS_ERR(clk))
return PTR_ERR(clk);
cpu_hw_rate = clk_get_rate(clk) / CLK_HW_DIV;
clk_put(clk);
cpufreq_qcom_hw_driver.driver_data = pdev;
/* Check for optional interconnect paths on CPU0 */
cpu_dev = get_cpu_device(0);
if (!cpu_dev)
return -EPROBE_DEFER;
ret = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL);
if (ret)
return ret;
ret = cpufreq_register_driver(&cpufreq_qcom_hw_driver);
if (ret)
dev_err(&pdev->dev, "CPUFreq HW driver failed to register\n");
else
dev_dbg(&pdev->dev, "QCOM CPUFreq HW driver initialized\n");
return ret;
}
static int qcom_cpufreq_hw_driver_remove(struct platform_device *pdev)
{
return cpufreq_unregister_driver(&cpufreq_qcom_hw_driver);
}
static struct platform_driver qcom_cpufreq_hw_driver = {
.probe = qcom_cpufreq_hw_driver_probe,
.remove = qcom_cpufreq_hw_driver_remove,
.driver = {
.name = "qcom-cpufreq-hw",
.of_match_table = qcom_cpufreq_hw_match,
},
};
static int __init qcom_cpufreq_hw_init(void)
{
return platform_driver_register(&qcom_cpufreq_hw_driver);
}
postcore_initcall(qcom_cpufreq_hw_init);
static void __exit qcom_cpufreq_hw_exit(void)
{
platform_driver_unregister(&qcom_cpufreq_hw_driver);
}
module_exit(qcom_cpufreq_hw_exit);
MODULE_DESCRIPTION("QCOM CPUFREQ HW Driver");
MODULE_LICENSE("GPL v2");
|