summaryrefslogtreecommitdiff
path: root/drivers/clocksource/sh_cmt.c
blob: 926abe28812612bcc013b1758c67ee5650395aaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
/*
 * SuperH Timer Support - CMT
 *
 *  Copyright (C) 2008 Magnus Damm
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/sh_timer.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>

struct sh_cmt_device;

/*
 * The CMT comes in 5 different identified flavours, depending not only on the
 * SoC but also on the particular instance. The following table lists the main
 * characteristics of those flavours.
 *
 *			16B	32B	32B-F	48B	48B-2
 * -----------------------------------------------------------------------------
 * Channels		2	1/4	1	6	2/8
 * Control Width	16	16	16	16	32
 * Counter Width	16	32	32	32/48	32/48
 * Shared Start/Stop	Y	Y	Y	Y	N
 *
 * The 48-bit gen2 version has a per-channel start/stop register located in the
 * channel registers block. All other versions have a shared start/stop register
 * located in the global space.
 *
 * Note that CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
 */

enum sh_cmt_model {
	SH_CMT_16BIT,
	SH_CMT_32BIT,
	SH_CMT_32BIT_FAST,
	SH_CMT_48BIT,
	SH_CMT_48BIT_GEN2,
};

struct sh_cmt_info {
	enum sh_cmt_model model;

	unsigned long width; /* 16 or 32 bit version of hardware block */
	unsigned long overflow_bit;
	unsigned long clear_bits;

	/* callbacks for CMSTR and CMCSR access */
	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
	void (*write_control)(void __iomem *base, unsigned long offs,
			      unsigned long value);

	/* callbacks for CMCNT and CMCOR access */
	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
	void (*write_count)(void __iomem *base, unsigned long offs,
			    unsigned long value);
};

struct sh_cmt_channel {
	struct sh_cmt_device *cmt;
	unsigned int index;

	void __iomem *base;

	unsigned long flags;
	unsigned long match_value;
	unsigned long next_match_value;
	unsigned long max_match_value;
	unsigned long rate;
	raw_spinlock_t lock;
	struct clock_event_device ced;
	struct clocksource cs;
	unsigned long total_cycles;
	bool cs_enabled;
};

struct sh_cmt_device {
	struct platform_device *pdev;

	const struct sh_cmt_info *info;

	void __iomem *mapbase_ch;
	void __iomem *mapbase;
	struct clk *clk;

	struct sh_cmt_channel *channels;
	unsigned int num_channels;
};

#define SH_CMT16_CMCSR_CMF		(1 << 7)
#define SH_CMT16_CMCSR_CMIE		(1 << 6)
#define SH_CMT16_CMCSR_CKS8		(0 << 0)
#define SH_CMT16_CMCSR_CKS32		(1 << 0)
#define SH_CMT16_CMCSR_CKS128		(2 << 0)
#define SH_CMT16_CMCSR_CKS512		(3 << 0)
#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)

#define SH_CMT32_CMCSR_CMF		(1 << 15)
#define SH_CMT32_CMCSR_OVF		(1 << 14)
#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
#define SH_CMT32_CMCSR_STTF		(1 << 12)
#define SH_CMT32_CMCSR_STPF		(1 << 11)
#define SH_CMT32_CMCSR_SSIE		(1 << 10)
#define SH_CMT32_CMCSR_CMS		(1 << 9)
#define SH_CMT32_CMCSR_CMM		(1 << 8)
#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)

static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
{
	return ioread16(base + (offs << 1));
}

static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
{
	return ioread32(base + (offs << 2));
}

static void sh_cmt_write16(void __iomem *base, unsigned long offs,
			   unsigned long value)
{
	iowrite16(value, base + (offs << 1));
}

static void sh_cmt_write32(void __iomem *base, unsigned long offs,
			   unsigned long value)
{
	iowrite32(value, base + (offs << 2));
}

static const struct sh_cmt_info sh_cmt_info[] = {
	[SH_CMT_16BIT] = {
		.model = SH_CMT_16BIT,
		.width = 16,
		.overflow_bit = SH_CMT16_CMCSR_CMF,
		.clear_bits = ~SH_CMT16_CMCSR_CMF,
		.read_control = sh_cmt_read16,
		.write_control = sh_cmt_write16,
		.read_count = sh_cmt_read16,
		.write_count = sh_cmt_write16,
	},
	[SH_CMT_32BIT] = {
		.model = SH_CMT_32BIT,
		.width = 32,
		.overflow_bit = SH_CMT32_CMCSR_CMF,
		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
		.read_control = sh_cmt_read16,
		.write_control = sh_cmt_write16,
		.read_count = sh_cmt_read32,
		.write_count = sh_cmt_write32,
	},
	[SH_CMT_32BIT_FAST] = {
		.model = SH_CMT_32BIT_FAST,
		.width = 32,
		.overflow_bit = SH_CMT32_CMCSR_CMF,
		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
		.read_control = sh_cmt_read16,
		.write_control = sh_cmt_write16,
		.read_count = sh_cmt_read32,
		.write_count = sh_cmt_write32,
	},
	[SH_CMT_48BIT] = {
		.model = SH_CMT_48BIT,
		.width = 32,
		.overflow_bit = SH_CMT32_CMCSR_CMF,
		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
		.read_control = sh_cmt_read32,
		.write_control = sh_cmt_write32,
		.read_count = sh_cmt_read32,
		.write_count = sh_cmt_write32,
	},
	[SH_CMT_48BIT_GEN2] = {
		.model = SH_CMT_48BIT_GEN2,
		.width = 32,
		.overflow_bit = SH_CMT32_CMCSR_CMF,
		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
		.read_control = sh_cmt_read32,
		.write_control = sh_cmt_write32,
		.read_count = sh_cmt_read32,
		.write_count = sh_cmt_write32,
	},
};

#define CMCSR 0 /* channel register */
#define CMCNT 1 /* channel register */
#define CMCOR 2 /* channel register */

static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
{
	return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
}

static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
{
	return ch->cmt->info->read_control(ch->base, CMCSR);
}

static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
{
	return ch->cmt->info->read_count(ch->base, CMCNT);
}

static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
				      unsigned long value)
{
	ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
}

static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
				      unsigned long value)
{
	ch->cmt->info->write_control(ch->base, CMCSR, value);
}

static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
				      unsigned long value)
{
	ch->cmt->info->write_count(ch->base, CMCNT, value);
}

static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
				      unsigned long value)
{
	ch->cmt->info->write_count(ch->base, CMCOR, value);
}

static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
					int *has_wrapped)
{
	unsigned long v1, v2, v3;
	int o1, o2;

	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;

	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
	do {
		o2 = o1;
		v1 = sh_cmt_read_cmcnt(ch);
		v2 = sh_cmt_read_cmcnt(ch);
		v3 = sh_cmt_read_cmcnt(ch);
		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));

	*has_wrapped = o1;
	return v2;
}

static DEFINE_RAW_SPINLOCK(sh_cmt_lock);

static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
{
	struct sh_timer_config *cfg = ch->cmt->pdev->dev.platform_data;
	unsigned long flags, value;

	/* start stop register shared by multiple timer channels */
	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
	value = sh_cmt_read_cmstr(ch);

	if (start)
		value |= 1 << cfg->timer_bit;
	else
		value &= ~(1 << cfg->timer_bit);

	sh_cmt_write_cmstr(ch, value);
	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
}

static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
{
	int k, ret;

	pm_runtime_get_sync(&ch->cmt->pdev->dev);
	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);

	/* enable clock */
	ret = clk_enable(ch->cmt->clk);
	if (ret) {
		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
			ch->index);
		goto err0;
	}

	/* make sure channel is disabled */
	sh_cmt_start_stop_ch(ch, 0);

	/* configure channel, periodic mode and maximum timeout */
	if (ch->cmt->info->width == 16) {
		*rate = clk_get_rate(ch->cmt->clk) / 512;
		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
				   SH_CMT16_CMCSR_CKS512);
	} else {
		*rate = clk_get_rate(ch->cmt->clk) / 8;
		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
				   SH_CMT32_CMCSR_CMTOUT_IE |
				   SH_CMT32_CMCSR_CMR_IRQ |
				   SH_CMT32_CMCSR_CKS_RCLK8);
	}

	sh_cmt_write_cmcor(ch, 0xffffffff);
	sh_cmt_write_cmcnt(ch, 0);

	/*
	 * According to the sh73a0 user's manual, as CMCNT can be operated
	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
	 * modifying CMCNT register; two RCLK cycles are necessary before
	 * this register is either read or any modification of the value
	 * it holds is reflected in the LSI's actual operation.
	 *
	 * While at it, we're supposed to clear out the CMCNT as of this
	 * moment, so make sure it's processed properly here.  This will
	 * take RCLKx2 at maximum.
	 */
	for (k = 0; k < 100; k++) {
		if (!sh_cmt_read_cmcnt(ch))
			break;
		udelay(1);
	}

	if (sh_cmt_read_cmcnt(ch)) {
		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
			ch->index);
		ret = -ETIMEDOUT;
		goto err1;
	}

	/* enable channel */
	sh_cmt_start_stop_ch(ch, 1);
	return 0;
 err1:
	/* stop clock */
	clk_disable(ch->cmt->clk);

 err0:
	return ret;
}

static void sh_cmt_disable(struct sh_cmt_channel *ch)
{
	/* disable channel */
	sh_cmt_start_stop_ch(ch, 0);

	/* disable interrupts in CMT block */
	sh_cmt_write_cmcsr(ch, 0);

	/* stop clock */
	clk_disable(ch->cmt->clk);

	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
	pm_runtime_put(&ch->cmt->pdev->dev);
}

/* private flags */
#define FLAG_CLOCKEVENT (1 << 0)
#define FLAG_CLOCKSOURCE (1 << 1)
#define FLAG_REPROGRAM (1 << 2)
#define FLAG_SKIPEVENT (1 << 3)
#define FLAG_IRQCONTEXT (1 << 4)

static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
					      int absolute)
{
	unsigned long new_match;
	unsigned long value = ch->next_match_value;
	unsigned long delay = 0;
	unsigned long now = 0;
	int has_wrapped;

	now = sh_cmt_get_counter(ch, &has_wrapped);
	ch->flags |= FLAG_REPROGRAM; /* force reprogram */

	if (has_wrapped) {
		/* we're competing with the interrupt handler.
		 *  -> let the interrupt handler reprogram the timer.
		 *  -> interrupt number two handles the event.
		 */
		ch->flags |= FLAG_SKIPEVENT;
		return;
	}

	if (absolute)
		now = 0;

	do {
		/* reprogram the timer hardware,
		 * but don't save the new match value yet.
		 */
		new_match = now + value + delay;
		if (new_match > ch->max_match_value)
			new_match = ch->max_match_value;

		sh_cmt_write_cmcor(ch, new_match);

		now = sh_cmt_get_counter(ch, &has_wrapped);
		if (has_wrapped && (new_match > ch->match_value)) {
			/* we are changing to a greater match value,
			 * so this wrap must be caused by the counter
			 * matching the old value.
			 * -> first interrupt reprograms the timer.
			 * -> interrupt number two handles the event.
			 */
			ch->flags |= FLAG_SKIPEVENT;
			break;
		}

		if (has_wrapped) {
			/* we are changing to a smaller match value,
			 * so the wrap must be caused by the counter
			 * matching the new value.
			 * -> save programmed match value.
			 * -> let isr handle the event.
			 */
			ch->match_value = new_match;
			break;
		}

		/* be safe: verify hardware settings */
		if (now < new_match) {
			/* timer value is below match value, all good.
			 * this makes sure we won't miss any match events.
			 * -> save programmed match value.
			 * -> let isr handle the event.
			 */
			ch->match_value = new_match;
			break;
		}

		/* the counter has reached a value greater
		 * than our new match value. and since the
		 * has_wrapped flag isn't set we must have
		 * programmed a too close event.
		 * -> increase delay and retry.
		 */
		if (delay)
			delay <<= 1;
		else
			delay = 1;

		if (!delay)
			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
				 ch->index);

	} while (delay);
}

static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
{
	if (delta > ch->max_match_value)
		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
			 ch->index);

	ch->next_match_value = delta;
	sh_cmt_clock_event_program_verify(ch, 0);
}

static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&ch->lock, flags);
	__sh_cmt_set_next(ch, delta);
	raw_spin_unlock_irqrestore(&ch->lock, flags);
}

static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
{
	struct sh_cmt_channel *ch = dev_id;

	/* clear flags */
	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
			   ch->cmt->info->clear_bits);

	/* update clock source counter to begin with if enabled
	 * the wrap flag should be cleared by the timer specific
	 * isr before we end up here.
	 */
	if (ch->flags & FLAG_CLOCKSOURCE)
		ch->total_cycles += ch->match_value + 1;

	if (!(ch->flags & FLAG_REPROGRAM))
		ch->next_match_value = ch->max_match_value;

	ch->flags |= FLAG_IRQCONTEXT;

	if (ch->flags & FLAG_CLOCKEVENT) {
		if (!(ch->flags & FLAG_SKIPEVENT)) {
			if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
				ch->next_match_value = ch->max_match_value;
				ch->flags |= FLAG_REPROGRAM;
			}

			ch->ced.event_handler(&ch->ced);
		}
	}

	ch->flags &= ~FLAG_SKIPEVENT;

	if (ch->flags & FLAG_REPROGRAM) {
		ch->flags &= ~FLAG_REPROGRAM;
		sh_cmt_clock_event_program_verify(ch, 1);

		if (ch->flags & FLAG_CLOCKEVENT)
			if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
			    || (ch->match_value == ch->next_match_value))
				ch->flags &= ~FLAG_REPROGRAM;
	}

	ch->flags &= ~FLAG_IRQCONTEXT;

	return IRQ_HANDLED;
}

static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
{
	int ret = 0;
	unsigned long flags;

	raw_spin_lock_irqsave(&ch->lock, flags);

	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
		ret = sh_cmt_enable(ch, &ch->rate);

	if (ret)
		goto out;
	ch->flags |= flag;

	/* setup timeout if no clockevent */
	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
		__sh_cmt_set_next(ch, ch->max_match_value);
 out:
	raw_spin_unlock_irqrestore(&ch->lock, flags);

	return ret;
}

static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
{
	unsigned long flags;
	unsigned long f;

	raw_spin_lock_irqsave(&ch->lock, flags);

	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
	ch->flags &= ~flag;

	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
		sh_cmt_disable(ch);

	/* adjust the timeout to maximum if only clocksource left */
	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
		__sh_cmt_set_next(ch, ch->max_match_value);

	raw_spin_unlock_irqrestore(&ch->lock, flags);
}

static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
{
	return container_of(cs, struct sh_cmt_channel, cs);
}

static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
{
	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
	unsigned long flags, raw;
	unsigned long value;
	int has_wrapped;

	raw_spin_lock_irqsave(&ch->lock, flags);
	value = ch->total_cycles;
	raw = sh_cmt_get_counter(ch, &has_wrapped);

	if (unlikely(has_wrapped))
		raw += ch->match_value + 1;
	raw_spin_unlock_irqrestore(&ch->lock, flags);

	return value + raw;
}

static int sh_cmt_clocksource_enable(struct clocksource *cs)
{
	int ret;
	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);

	WARN_ON(ch->cs_enabled);

	ch->total_cycles = 0;

	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
	if (!ret) {
		__clocksource_updatefreq_hz(cs, ch->rate);
		ch->cs_enabled = true;
	}
	return ret;
}

static void sh_cmt_clocksource_disable(struct clocksource *cs)
{
	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);

	WARN_ON(!ch->cs_enabled);

	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
	ch->cs_enabled = false;
}

static void sh_cmt_clocksource_suspend(struct clocksource *cs)
{
	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);

	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
}

static void sh_cmt_clocksource_resume(struct clocksource *cs)
{
	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);

	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
}

static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
				       const char *name, unsigned long rating)
{
	struct clocksource *cs = &ch->cs;

	cs->name = name;
	cs->rating = rating;
	cs->read = sh_cmt_clocksource_read;
	cs->enable = sh_cmt_clocksource_enable;
	cs->disable = sh_cmt_clocksource_disable;
	cs->suspend = sh_cmt_clocksource_suspend;
	cs->resume = sh_cmt_clocksource_resume;
	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;

	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
		 ch->index);

	/* Register with dummy 1 Hz value, gets updated in ->enable() */
	clocksource_register_hz(cs, 1);
	return 0;
}

static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
{
	return container_of(ced, struct sh_cmt_channel, ced);
}

static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
{
	struct clock_event_device *ced = &ch->ced;

	sh_cmt_start(ch, FLAG_CLOCKEVENT);

	/* TODO: calculate good shift from rate and counter bit width */

	ced->shift = 32;
	ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);

	if (periodic)
		sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
	else
		sh_cmt_set_next(ch, ch->max_match_value);
}

static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
				    struct clock_event_device *ced)
{
	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);

	/* deal with old setting first */
	switch (ced->mode) {
	case CLOCK_EVT_MODE_PERIODIC:
	case CLOCK_EVT_MODE_ONESHOT:
		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
		break;
	default:
		break;
	}

	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
		dev_info(&ch->cmt->pdev->dev,
			 "ch%u: used for periodic clock events\n", ch->index);
		sh_cmt_clock_event_start(ch, 1);
		break;
	case CLOCK_EVT_MODE_ONESHOT:
		dev_info(&ch->cmt->pdev->dev,
			 "ch%u: used for oneshot clock events\n", ch->index);
		sh_cmt_clock_event_start(ch, 0);
		break;
	case CLOCK_EVT_MODE_SHUTDOWN:
	case CLOCK_EVT_MODE_UNUSED:
		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
		break;
	default:
		break;
	}
}

static int sh_cmt_clock_event_next(unsigned long delta,
				   struct clock_event_device *ced)
{
	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);

	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
	if (likely(ch->flags & FLAG_IRQCONTEXT))
		ch->next_match_value = delta - 1;
	else
		sh_cmt_set_next(ch, delta - 1);

	return 0;
}

static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
{
	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);

	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
	clk_unprepare(ch->cmt->clk);
}

static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
{
	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);

	clk_prepare(ch->cmt->clk);
	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
}

static void sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
				       const char *name, unsigned long rating)
{
	struct clock_event_device *ced = &ch->ced;

	ced->name = name;
	ced->features = CLOCK_EVT_FEAT_PERIODIC;
	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
	ced->rating = rating;
	ced->cpumask = cpu_possible_mask;
	ced->set_next_event = sh_cmt_clock_event_next;
	ced->set_mode = sh_cmt_clock_event_mode;
	ced->suspend = sh_cmt_clock_event_suspend;
	ced->resume = sh_cmt_clock_event_resume;

	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
		 ch->index);
	clockevents_register_device(ced);
}

static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
			   unsigned long clockevent_rating,
			   unsigned long clocksource_rating)
{
	if (clockevent_rating)
		sh_cmt_register_clockevent(ch, name, clockevent_rating);

	if (clocksource_rating)
		sh_cmt_register_clocksource(ch, name, clocksource_rating);

	return 0;
}

static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
				struct sh_cmt_device *cmt)
{
	struct sh_timer_config *cfg = cmt->pdev->dev.platform_data;
	int irq;
	int ret;

	ch->cmt = cmt;
	ch->base = cmt->mapbase_ch;
	ch->index = index;

	irq = platform_get_irq(cmt->pdev, 0);
	if (irq < 0) {
		dev_err(&cmt->pdev->dev, "ch%u: failed to get irq\n",
			ch->index);
		return irq;
	}

	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
		ch->max_match_value = ~0;
	else
		ch->max_match_value = (1 << cmt->info->width) - 1;

	ch->match_value = ch->max_match_value;
	raw_spin_lock_init(&ch->lock);

	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
			      cfg->clockevent_rating,
			      cfg->clocksource_rating);
	if (ret) {
		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
			ch->index);
		return ret;
	}
	ch->cs_enabled = false;

	ret = request_irq(irq, sh_cmt_interrupt,
			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
			  dev_name(&cmt->pdev->dev), ch);
	if (ret) {
		dev_err(&cmt->pdev->dev, "ch%u: failed to request irq %d\n",
			ch->index, irq);
		return ret;
	}

	return 0;
}

static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
{
	struct sh_timer_config *cfg = pdev->dev.platform_data;
	struct resource *res, *res2;
	int ret;
	ret = -ENXIO;

	cmt->pdev = pdev;

	if (!cfg) {
		dev_err(&cmt->pdev->dev, "missing platform data\n");
		goto err0;
	}

	res = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
		goto err0;
	}

	/* optional resource for the shared timer start/stop register */
	res2 = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 1);

	/* map memory, let mapbase_ch point to our channel */
	cmt->mapbase_ch = ioremap_nocache(res->start, resource_size(res));
	if (cmt->mapbase_ch == NULL) {
		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
		goto err0;
	}

	/* map second resource for CMSTR */
	cmt->mapbase = ioremap_nocache(res2 ? res2->start :
				       res->start - cfg->channel_offset,
				       res2 ? resource_size(res2) : 2);
	if (cmt->mapbase == NULL) {
		dev_err(&cmt->pdev->dev, "failed to remap I/O second memory\n");
		goto err1;
	}

	/* get hold of clock */
	cmt->clk = clk_get(&cmt->pdev->dev, "cmt_fck");
	if (IS_ERR(cmt->clk)) {
		dev_err(&cmt->pdev->dev, "cannot get clock\n");
		ret = PTR_ERR(cmt->clk);
		goto err2;
	}

	ret = clk_prepare(cmt->clk);
	if (ret < 0)
		goto err3;

	/* identify the model based on the resources */
	if (resource_size(res) == 6)
		cmt->info = &sh_cmt_info[SH_CMT_16BIT];
	else if (res2 && (resource_size(res2) == 4))
		cmt->info = &sh_cmt_info[SH_CMT_48BIT_GEN2];
	else
		cmt->info = &sh_cmt_info[SH_CMT_32BIT];

	cmt->channels = kzalloc(sizeof(*cmt->channels), GFP_KERNEL);
	if (cmt->channels == NULL) {
		ret = -ENOMEM;
		goto err4;
	}

	cmt->num_channels = 1;

	ret = sh_cmt_setup_channel(&cmt->channels[0], cfg->timer_bit, cmt);
	if (ret < 0)
		goto err4;

	platform_set_drvdata(pdev, cmt);

	return 0;
err4:
	kfree(cmt->channels);
	clk_unprepare(cmt->clk);
err3:
	clk_put(cmt->clk);
err2:
	iounmap(cmt->mapbase);
err1:
	iounmap(cmt->mapbase_ch);
err0:
	return ret;
}

static int sh_cmt_probe(struct platform_device *pdev)
{
	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
	struct sh_timer_config *cfg = pdev->dev.platform_data;
	int ret;

	if (!is_early_platform_device(pdev)) {
		pm_runtime_set_active(&pdev->dev);
		pm_runtime_enable(&pdev->dev);
	}

	if (cmt) {
		dev_info(&pdev->dev, "kept as earlytimer\n");
		goto out;
	}

	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
	if (cmt == NULL) {
		dev_err(&pdev->dev, "failed to allocate driver data\n");
		return -ENOMEM;
	}

	ret = sh_cmt_setup(cmt, pdev);
	if (ret) {
		kfree(cmt);
		pm_runtime_idle(&pdev->dev);
		return ret;
	}
	if (is_early_platform_device(pdev))
		return 0;

 out:
	if (cfg->clockevent_rating || cfg->clocksource_rating)
		pm_runtime_irq_safe(&pdev->dev);
	else
		pm_runtime_idle(&pdev->dev);

	return 0;
}

static int sh_cmt_remove(struct platform_device *pdev)
{
	return -EBUSY; /* cannot unregister clockevent and clocksource */
}

static struct platform_driver sh_cmt_device_driver = {
	.probe		= sh_cmt_probe,
	.remove		= sh_cmt_remove,
	.driver		= {
		.name	= "sh_cmt",
	}
};

static int __init sh_cmt_init(void)
{
	return platform_driver_register(&sh_cmt_device_driver);
}

static void __exit sh_cmt_exit(void)
{
	platform_driver_unregister(&sh_cmt_device_driver);
}

early_platform_init("earlytimer", &sh_cmt_device_driver);
subsys_initcall(sh_cmt_init);
module_exit(sh_cmt_exit);

MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("SuperH CMT Timer Driver");
MODULE_LICENSE("GPL v2");