summaryrefslogtreecommitdiff
path: root/drivers/clk/clk-fractional-divider.c
blob: f88df265e7873dd4ae5d3f661f43b4f9c6886615 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2014 Intel Corporation
 *
 * Adjustable fractional divider clock implementation.
 * Output rate = (m / n) * parent_rate.
 * Uses rational best approximation algorithm.
 */

#include <linux/clk-provider.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/rational.h>

static inline u32 clk_fd_readl(struct clk_fractional_divider *fd)
{
	if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
		return ioread32be(fd->reg);

	return clk_readl(fd->reg);
}

static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val)
{
	if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
		iowrite32be(val, fd->reg);
	else
		clk_writel(val, fd->reg);
}

static unsigned long clk_fd_recalc_rate(struct clk_hw *hw,
					unsigned long parent_rate)
{
	struct clk_fractional_divider *fd = to_clk_fd(hw);
	unsigned long flags = 0;
	unsigned long m, n;
	u32 val;
	u64 ret;

	if (fd->lock)
		spin_lock_irqsave(fd->lock, flags);
	else
		__acquire(fd->lock);

	val = clk_fd_readl(fd);

	if (fd->lock)
		spin_unlock_irqrestore(fd->lock, flags);
	else
		__release(fd->lock);

	m = (val & fd->mmask) >> fd->mshift;
	n = (val & fd->nmask) >> fd->nshift;

	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
		m++;
		n++;
	}

	if (!n || !m)
		return parent_rate;

	ret = (u64)parent_rate * m;
	do_div(ret, n);

	return ret;
}

static void clk_fd_general_approximation(struct clk_hw *hw, unsigned long rate,
					 unsigned long *parent_rate,
					 unsigned long *m, unsigned long *n)
{
	struct clk_fractional_divider *fd = to_clk_fd(hw);
	unsigned long scale;

	/*
	 * Get rate closer to *parent_rate to guarantee there is no overflow
	 * for m and n. In the result it will be the nearest rate left shifted
	 * by (scale - fd->nwidth) bits.
	 */
	scale = fls_long(*parent_rate / rate - 1);
	if (scale > fd->nwidth)
		rate <<= scale - fd->nwidth;

	rational_best_approximation(rate, *parent_rate,
			GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0),
			m, n);
}

static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate,
			      unsigned long *parent_rate)
{
	struct clk_fractional_divider *fd = to_clk_fd(hw);
	unsigned long m, n;
	u64 ret;

	if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate))
		return *parent_rate;

	if (fd->approximation)
		fd->approximation(hw, rate, parent_rate, &m, &n);
	else
		clk_fd_general_approximation(hw, rate, parent_rate, &m, &n);

	ret = (u64)*parent_rate * m;
	do_div(ret, n);

	return ret;
}

static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate,
			   unsigned long parent_rate)
{
	struct clk_fractional_divider *fd = to_clk_fd(hw);
	unsigned long flags = 0;
	unsigned long m, n;
	u32 val;

	rational_best_approximation(rate, parent_rate,
			GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0),
			&m, &n);

	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
		m--;
		n--;
	}

	if (fd->lock)
		spin_lock_irqsave(fd->lock, flags);
	else
		__acquire(fd->lock);

	val = clk_fd_readl(fd);
	val &= ~(fd->mmask | fd->nmask);
	val |= (m << fd->mshift) | (n << fd->nshift);
	clk_fd_writel(fd, val);

	if (fd->lock)
		spin_unlock_irqrestore(fd->lock, flags);
	else
		__release(fd->lock);

	return 0;
}

const struct clk_ops clk_fractional_divider_ops = {
	.recalc_rate = clk_fd_recalc_rate,
	.round_rate = clk_fd_round_rate,
	.set_rate = clk_fd_set_rate,
};
EXPORT_SYMBOL_GPL(clk_fractional_divider_ops);

struct clk_hw *clk_hw_register_fractional_divider(struct device *dev,
		const char *name, const char *parent_name, unsigned long flags,
		void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
		u8 clk_divider_flags, spinlock_t *lock)
{
	struct clk_fractional_divider *fd;
	struct clk_init_data init;
	struct clk_hw *hw;
	int ret;

	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
	if (!fd)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	init.ops = &clk_fractional_divider_ops;
	init.flags = flags | CLK_IS_BASIC;
	init.parent_names = parent_name ? &parent_name : NULL;
	init.num_parents = parent_name ? 1 : 0;

	fd->reg = reg;
	fd->mshift = mshift;
	fd->mwidth = mwidth;
	fd->mmask = GENMASK(mwidth - 1, 0) << mshift;
	fd->nshift = nshift;
	fd->nwidth = nwidth;
	fd->nmask = GENMASK(nwidth - 1, 0) << nshift;
	fd->flags = clk_divider_flags;
	fd->lock = lock;
	fd->hw.init = &init;

	hw = &fd->hw;
	ret = clk_hw_register(dev, hw);
	if (ret) {
		kfree(fd);
		hw = ERR_PTR(ret);
	}

	return hw;
}
EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider);

struct clk *clk_register_fractional_divider(struct device *dev,
		const char *name, const char *parent_name, unsigned long flags,
		void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
		u8 clk_divider_flags, spinlock_t *lock)
{
	struct clk_hw *hw;

	hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags,
			reg, mshift, mwidth, nshift, nwidth, clk_divider_flags,
			lock);
	if (IS_ERR(hw))
		return ERR_CAST(hw);
	return hw->clk;
}
EXPORT_SYMBOL_GPL(clk_register_fractional_divider);

void clk_hw_unregister_fractional_divider(struct clk_hw *hw)
{
	struct clk_fractional_divider *fd;

	fd = to_clk_fd(hw);

	clk_hw_unregister(hw);
	kfree(fd);
}