summaryrefslogtreecommitdiff
path: root/drivers/atm/horizon.c
blob: e121b84857310836742690c001dec6502dc68db2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
/*
  Madge Horizon ATM Adapter driver.
  Copyright (C) 1995-1999  Madge Networks Ltd.
  
  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.
  
  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.
  
  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  
  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
  system and in the file COPYING in the Linux kernel source.
*/

/*
  IMPORTANT NOTE: Madge Networks no longer makes the adapters
  supported by this driver and makes no commitment to maintain it.
*/

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/atm.h>
#include <linux/atmdev.h>
#include <linux/sonet.h>
#include <linux/skbuff.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <linux/uio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/wait.h>
#include <linux/slab.h>

#include <asm/io.h>
#include <linux/atomic.h>
#include <linux/uaccess.h>
#include <asm/string.h>
#include <asm/byteorder.h>

#include "horizon.h"

#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
#define description_string "Madge ATM Horizon [Ultra] driver"
#define version_string "1.2.1"

static inline void __init show_version (void) {
  printk ("%s version %s\n", description_string, version_string);
}

/*
  
  CREDITS
  
  Driver and documentation by:
  
  Chris Aston        Madge Networks
  Giuliano Procida   Madge Networks
  Simon Benham       Madge Networks
  Simon Johnson      Madge Networks
  Various Others     Madge Networks
  
  Some inspiration taken from other drivers by:
  
  Alexandru Cucos    UTBv
  Kari Mettinen      University of Helsinki
  Werner Almesberger EPFL LRC
  
  Theory of Operation
  
  I Hardware, detection, initialisation and shutdown.
  
  1. Supported Hardware
  
  This driver should handle all variants of the PCI Madge ATM adapters
  with the Horizon chipset. These are all PCI cards supporting PIO, BM
  DMA and a form of MMIO (registers only, not internal RAM).
  
  The driver is only known to work with SONET and UTP Horizon Ultra
  cards at 155Mb/s. However, code is in place to deal with both the
  original Horizon and 25Mb/s operation.
  
  There are two revisions of the Horizon ASIC: the original and the
  Ultra. Details of hardware bugs are in section III.
  
  The ASIC version can be distinguished by chip markings but is NOT
  indicated by the PCI revision (all adapters seem to have PCI rev 1).
  
  I believe that:
  
  Horizon       => Collage  25 PCI Adapter (UTP and STP)
  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
  Ambassador x  => Collage 155 PCI Server (completely different)
  
  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
  have a Madge B154 plus glue logic serializer. I have also found a
  really ancient version of this with slightly different glue. It
  comes with the revision 0 (140-025-01) ASIC.
  
  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
  output (UTP) or an HP HFBR 5205 output (SONET). It has either
  Madge's SAMBA framer or a SUNI-lite device (early versions). It
  comes with the revision 1 (140-027-01) ASIC.
  
  2. Detection
  
  All Horizon-based cards present with the same PCI Vendor and Device
  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
  to enable bus-mastering (with appropriate latency).
  
  ATM_LAYER_STATUS in the control register distinguishes between the
  two possible physical layers (25 and 155). It is not clear whether
  the 155 cards can also operate at 25Mbps. We rely on the fact that a
  card operates at 155 if and only if it has the newer Horizon Ultra
  ASIC.
  
  For 155 cards the two possible framers are probed for and then set
  up for loop-timing.
  
  3. Initialisation
  
  The card is reset and then put into a known state. The physical
  layer is configured for normal operation at the appropriate speed;
  in the case of the 155 cards, the framer is initialised with
  line-based timing; the internal RAM is zeroed and the allocation of
  buffers for RX and TX is made; the Burnt In Address is read and
  copied to the ATM ESI; various policy settings for RX (VPI bits,
  unknown VCs, oam cells) are made. Ideally all policy items should be
  configurable at module load (if not actually on-demand), however,
  only the vpi vs vci bit allocation can be specified at insmod.
  
  4. Shutdown
  
  This is in response to module_cleaup. No VCs are in use and the card
  should be idle; it is reset.
  
  II Driver software (as it should be)
  
  0. Traffic Parameters
  
  The traffic classes (not an enumeration) are currently: ATM_NONE (no
  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
  (compatible with everything). Together with (perhaps only some of)
  the following items they make up the traffic specification.
  
  struct atm_trafprm {
    unsigned char traffic_class; traffic class (ATM_UBR, ...)
    int           max_pcr;       maximum PCR in cells per second
    int           pcr;           desired PCR in cells per second
    int           min_pcr;       minimum PCR in cells per second
    int           max_cdv;       maximum CDV in microseconds
    int           max_sdu;       maximum SDU in bytes
  };
  
  Note that these denote bandwidth available not bandwidth used; the
  possibilities according to ATMF are:
  
  Real Time (cdv and max CDT given)
  
  CBR(pcr)             pcr bandwidth always available
  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
  
  Non Real Time
  
  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
  UBR()
  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
  
  mbs is max burst size (bucket)
  pcr and scr have associated cdvt values
  mcr is like scr but has no cdtv
  cdtv may differ at each hop
  
  Some of the above items are qos items (as opposed to traffic
  parameters). We have nothing to do with qos. All except ABR can have
  their traffic parameters converted to GCRA parameters. The GCRA may
  be implemented as a (real-number) leaky bucket. The GCRA can be used
  in complicated ways by switches and in simpler ways by end-stations.
  It can be used both to filter incoming cells and shape out-going
  cells.
  
  ATM Linux actually supports:
  
  ATM_NONE() (no traffic in this direction)
  ATM_UBR(max_frame_size)
  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
  
  0 or ATM_MAX_PCR are used to indicate maximum available PCR
  
  A traffic specification consists of the AAL type and separate
  traffic specifications for either direction. In ATM Linux it is:
  
  struct atm_qos {
  struct atm_trafprm txtp;
  struct atm_trafprm rxtp;
  unsigned char aal;
  };
  
  AAL types are:
  
  ATM_NO_AAL    AAL not specified
  ATM_AAL0      "raw" ATM cells
  ATM_AAL1      AAL1 (CBR)
  ATM_AAL2      AAL2 (VBR)
  ATM_AAL34     AAL3/4 (data)
  ATM_AAL5      AAL5 (data)
  ATM_SAAL      signaling AAL
  
  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
  it does not implement AAL 3/4 SAR and it has a different notion of
  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
  supported by this driver.
  
  The Horizon has limited support for ABR (including UBR), VBR and
  CBR. Each TX channel has a bucket (containing up to 31 cell units)
  and two timers (PCR and SCR) associated with it that can be used to
  govern cell emissions and host notification (in the case of ABR this
  is presumably so that RM cells may be emitted at appropriate times).
  The timers may either be disabled or may be set to any of 240 values
  (determined by the clock crystal, a fixed (?) per-device divider, a
  configurable divider and a configurable timer preload value).
  
  At the moment only UBR and CBR are supported by the driver. VBR will
  be supported as soon as ATM for Linux supports it. ABR support is
  very unlikely as RM cell handling is completely up to the driver.
  
  1. TX (TX channel setup and TX transfer)
  
  The TX half of the driver owns the TX Horizon registers. The TX
  component in the IRQ handler is the BM completion handler. This can
  only be entered when tx_busy is true (enforced by hardware). The
  other TX component can only be entered when tx_busy is false
  (enforced by driver). So TX is single-threaded.
  
  Apart from a minor optimisation to not re-select the last channel,
  the TX send component works as follows:
  
  Atomic test and set tx_busy until we succeed; we should implement
  some sort of timeout so that tx_busy will never be stuck at true.
  
  If no TX channel is set up for this VC we wait for an idle one (if
  necessary) and set it up.
  
  At this point we have a TX channel ready for use. We wait for enough
  buffers to become available then start a TX transmit (set the TX
  descriptor, schedule transfer, exit).
  
  The IRQ component handles TX completion (stats, free buffer, tx_busy
  unset, exit). We also re-schedule further transfers for the same
  frame if needed.
  
  TX setup in more detail:
  
  TX open is a nop, the relevant information is held in the hrz_vcc
  (vcc->dev_data) structure and is "cached" on the card.
  
  TX close gets the TX lock and clears the channel from the "cache".
  
  2. RX (Data Available and RX transfer)
  
  The RX half of the driver owns the RX registers. There are two RX
  components in the IRQ handler: the data available handler deals with
  fresh data that has arrived on the card, the BM completion handler
  is very similar to the TX completion handler. The data available
  handler grabs the rx_lock and it is only released once the data has
  been discarded or completely transferred to the host. The BM
  completion handler only runs when the lock is held; the data
  available handler is locked out over the same period.
  
  Data available on the card triggers an interrupt. If the data is not
  suitable for our existing RX channels or we cannot allocate a buffer
  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
  transfers may be scheduled for the same frame.
  
  RX setup in more detail:
  
  RX open...
  RX close...
  
  III Hardware Bugs
  
  0. Byte vs Word addressing of adapter RAM.
  
  A design feature; see the .h file (especially the memory map).
  
  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
  
  The host must not start a transmit direction transfer at a
  non-four-byte boundary in host memory. Instead the host should
  perform a byte, or a two byte, or one byte followed by two byte
  transfer in order to start the rest of the transfer on a four byte
  boundary. RX is OK.
  
  Simultaneous transmit and receive direction bus master transfers are
  not allowed.
  
  The simplest solution to these two is to always do PIO (never DMA)
  in the TX direction on the original Horizon. More complicated
  solutions are likely to hurt my brain.
  
  2. Loss of buffer on close VC
  
  When a VC is being closed, the buffer associated with it is not
  returned to the pool. The host must store the reference to this
  buffer and when opening a new VC then give it to that new VC.
  
  The host intervention currently consists of stacking such a buffer
  pointer at VC close and checking the stack at VC open.
  
  3. Failure to close a VC
  
  If a VC is currently receiving a frame then closing the VC may fail
  and the frame continues to be received.
  
  The solution is to make sure any received frames are flushed when
  ready. This is currently done just before the solution to 2.
  
  4. PCI bus (original Horizon only, fixed in Ultra)
  
  Reading from the data port prior to initialisation will hang the PCI
  bus. Just don't do that then! We don't.
  
  IV To Do List
  
  . Timer code may be broken.
  
  . Allow users to specify buffer allocation split for TX and RX.
  
  . Deal once and for all with buggy VC close.
  
  . Handle interrupted and/or non-blocking operations.
  
  . Change some macros to functions and move from .h to .c.
  
  . Try to limit the number of TX frames each VC may have queued, in
    order to reduce the chances of TX buffer exhaustion.
  
  . Implement VBR (bucket and timers not understood) and ABR (need to
    do RM cells manually); also no Linux support for either.
  
  . Implement QoS changes on open VCs (involves extracting parts of VC open
    and close into separate functions and using them to make changes).
  
*/

/********** globals **********/

static void do_housekeeping (unsigned long arg);

static unsigned short debug = 0;
static unsigned short vpi_bits = 0;
static int max_tx_size = 9000;
static int max_rx_size = 9000;
static unsigned char pci_lat = 0;

/********** access functions **********/

/* Read / Write Horizon registers */
static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
  outl (cpu_to_le32 (data), dev->iobase + reg);
}

static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
  return le32_to_cpu (inl (dev->iobase + reg));
}

static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
  outw (cpu_to_le16 (data), dev->iobase + reg);
}

static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
  return le16_to_cpu (inw (dev->iobase + reg));
}

static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
  outsb (dev->iobase + reg, addr, len);
}

static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
  insb (dev->iobase + reg, addr, len);
}

/* Read / Write to a given address in Horizon buffer memory.
   Interrupts must be disabled between the address register and data
   port accesses as these must form an atomic operation. */
static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
  wr_regl (dev, MEMORY_PORT_OFF, data);
}

static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
  return rd_regl (dev, MEMORY_PORT_OFF);
}

static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
  wr_regl (dev, MEMORY_PORT_OFF, data);
}

static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
  return rd_regl (dev, MEMORY_PORT_OFF);
}

/********** specialised access functions **********/

/* RX */

static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
  return;
}

static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
    ;
  return;
}

static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
  return;
}

static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
    ;
  return;
}

/* TX */

static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
  return;
}

/* Update or query one configuration parameter of a particular channel. */

static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
	   chan * TX_CHANNEL_CONFIG_MULT | mode);
    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
    return;
}

/********** dump functions **********/

static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
#ifdef DEBUG_HORIZON
  unsigned int i;
  unsigned char * data = skb->data;
  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
  for (i=0; i<skb->len && i < 256;i++)
    PRINTDM (DBG_DATA, "%02x ", data[i]);
  PRINTDE (DBG_DATA,"");
#else
  (void) prefix;
  (void) vc;
  (void) skb;
#endif
  return;
}

static inline void dump_regs (hrz_dev * dev) {
#ifdef DEBUG_HORIZON
  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
#else
  (void) dev;
#endif
  return;
}

static inline void dump_framer (hrz_dev * dev) {
#ifdef DEBUG_HORIZON
  unsigned int i;
  PRINTDB (DBG_REGS, "framer registers:");
  for (i = 0; i < 0x10; ++i)
    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
  PRINTDE (DBG_REGS,"");
#else
  (void) dev;
#endif
  return;
}

/********** VPI/VCI <-> (RX) channel conversions **********/

/* RX channels are 10 bit integers, these fns are quite paranoid */

static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
  unsigned short vci_bits = 10 - vpi_bits;
  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
    *channel = vpi<<vci_bits | vci;
    return *channel ? 0 : -EINVAL;
  }
  return -EINVAL;
}

/********** decode RX queue entries **********/

static inline u16 rx_q_entry_to_length (u32 x) {
  return x & RX_Q_ENTRY_LENGTH_MASK;
}

static inline u16 rx_q_entry_to_rx_channel (u32 x) {
  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
}

/* Cell Transmit Rate Values
 *
 * the cell transmit rate (cells per sec) can be set to a variety of
 * different values by specifying two parameters: a timer preload from
 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
 * an exponent from 0 to 14; the special value 15 disables the timer).
 *
 * cellrate = baserate / (preload * 2^divider)
 *
 * The maximum cell rate that can be specified is therefore just the
 * base rate. Halving the preload is equivalent to adding 1 to the
 * divider and so values 1 to 8 of the preload are redundant except
 * in the case of a maximal divider (14).
 *
 * Given a desired cell rate, an algorithm to determine the preload
 * and divider is:
 * 
 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
 *    if x <= 16 then set p = x, d = 0 (high rates), done
 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
 *    we find the range (n will be between 1 and 14), set d = n
 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
 *
 * The algorithm used below is a minor variant of the above.
 *
 * The base rate is derived from the oscillator frequency (Hz) using a
 * fixed divider:
 *
 * baserate = freq / 32 in the case of some Unknown Card
 * baserate = freq / 8  in the case of the Horizon        25
 * baserate = freq / 8  in the case of the Horizon Ultra 155
 *
 * The Horizon cards have oscillators and base rates as follows:
 *
 * Card               Oscillator  Base Rate
 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
 * Horizon        25  32 MHz      4       MHz
 * Horizon Ultra 155  40 MHz      5       MHz
 *
 * The following defines give the base rates in Hz. These were
 * previously a factor of 100 larger, no doubt someone was using
 * cps*100.
 */

#define BR_UKN 1031250l
#define BR_HRZ 4000000l
#define BR_ULT 5000000l

// d is an exponent
#define CR_MIND 0
#define CR_MAXD 14

// p ranges from 1 to a power of 2
#define CR_MAXPEXP 4
 
static int make_rate (const hrz_dev * dev, u32 c, rounding r,
		      u16 * bits, unsigned int * actual)
{
	// note: rounding the rate down means rounding 'p' up
	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
  
	u32 div = CR_MIND;
	u32 pre;
  
	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
	// the tests below. We could think harder about exact possibilities
	// of failure...
  
	unsigned long br_man = br;
	unsigned int br_exp = 0;
  
	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
		r == round_up ? "up" : r == round_down ? "down" : "nearest");
  
	// avoid div by zero
	if (!c) {
		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
		return -EINVAL;
	}
  
	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
		br_man = br_man >> 1;
		++br_exp;
	}
	// (br >>br_exp) <<br_exp == br and
	// br_exp <= CR_MAXPEXP+CR_MIND
  
	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
		// Equivalent to: B <= (c << (MAXPEXP+MIND))
		// take care of rounding
		switch (r) {
			case round_down:
				pre = DIV_ROUND_UP(br, c<<div);
				// but p must be non-zero
				if (!pre)
					pre = 1;
				break;
			case round_nearest:
				pre = DIV_ROUND_CLOSEST(br, c<<div);
				// but p must be non-zero
				if (!pre)
					pre = 1;
				break;
			default:	/* round_up */
				pre = br/(c<<div);
				// but p must be non-zero
				if (!pre)
					return -EINVAL;
		}
		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
		goto got_it;
	}
  
	// at this point we have
	// d == MIND and (c << (MAXPEXP+MIND)) < B
	while (div < CR_MAXD) {
		div++;
		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
			// Equivalent to: B <= (c << (MAXPEXP+d))
			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
			// MAXP/2 < B/c2^d <= MAXP
			// take care of rounding
			switch (r) {
				case round_down:
					pre = DIV_ROUND_UP(br, c<<div);
					break;
				case round_nearest:
					pre = DIV_ROUND_CLOSEST(br, c<<div);
					break;
				default: /* round_up */
					pre = br/(c<<div);
			}
			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
			goto got_it;
		}
	}
	// at this point we have
	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
	// but we cannot go any higher
	// take care of rounding
	if (r == round_down)
		return -EINVAL;
	pre = 1 << CR_MAXPEXP;
	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
got_it:
	// paranoia
	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
			div, pre);
		return -EINVAL;
	} else {
		if (bits)
			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
		if (actual) {
			*actual = DIV_ROUND_UP(br, pre<<div);
			PRINTD (DBG_QOS, "actual rate: %u", *actual);
		}
		return 0;
	}
}

static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
				     u16 * bit_pattern, unsigned int * actual) {
  unsigned int my_actual;
  
  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
  
  if (!actual)
    // actual rate is not returned
    actual = &my_actual;
  
  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
    // should never happen as round_nearest always succeeds
    return -1;
  
  if (c - tol <= *actual && *actual <= c + tol)
    // within tolerance
    return 0;
  else
    // intolerant, try rounding instead
    return make_rate (dev, c, r, bit_pattern, actual);
}

/********** Listen on a VC **********/

static int hrz_open_rx (hrz_dev * dev, u16 channel) {
  // is there any guarantee that we don't get two simulataneous
  // identical calls of this function from different processes? yes
  // rate_lock
  unsigned long flags;
  u32 channel_type; // u16?
  
  u16 buf_ptr = RX_CHANNEL_IDLE;
  
  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
  
  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
  
  spin_lock_irqsave (&dev->mem_lock, flags);
  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
  spin_unlock_irqrestore (&dev->mem_lock, flags);
  
  // very serious error, should never occur
  if (channel_type != RX_CHANNEL_DISABLED) {
    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
    return -EBUSY; // clean up?
  }
  
  // Give back spare buffer
  if (dev->noof_spare_buffers) {
    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
    // should never occur
    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
      // but easy to recover from
      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
      buf_ptr = RX_CHANNEL_IDLE;
    }
  } else {
    PRINTD (DBG_VCC, "using IDLE buffer pointer");
  }
  
  // Channel is currently disabled so change its status to idle
  
  // do we really need to save the flags again?
  spin_lock_irqsave (&dev->mem_lock, flags);
  
  wr_mem (dev, &rx_desc->wr_buf_type,
	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
  if (buf_ptr != RX_CHANNEL_IDLE)
    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
  
  spin_unlock_irqrestore (&dev->mem_lock, flags);
  
  // rxer->rate = make_rate (qos->peak_cells);
  
  PRINTD (DBG_FLOW, "hrz_open_rx ok");
  
  return 0;
}

#if 0
/********** change vc rate for a given vc **********/

static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
  rxer->rate = make_rate (qos->peak_cells);
}
#endif

/********** free an skb (as per ATM device driver documentation) **********/

static void hrz_kfree_skb (struct sk_buff * skb) {
  if (ATM_SKB(skb)->vcc->pop) {
    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
  } else {
    dev_kfree_skb_any (skb);
  }
}

/********** cancel listen on a VC **********/

static void hrz_close_rx (hrz_dev * dev, u16 vc) {
  unsigned long flags;
  
  u32 value;
  
  u32 r1, r2;
  
  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
  
  int was_idle = 0;
  
  spin_lock_irqsave (&dev->mem_lock, flags);
  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
  spin_unlock_irqrestore (&dev->mem_lock, flags);
  
  if (value == RX_CHANNEL_DISABLED) {
    // I suppose this could happen once we deal with _NONE traffic properly
    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
    return;
  }
  if (value == RX_CHANNEL_IDLE)
    was_idle = 1;
  
  spin_lock_irqsave (&dev->mem_lock, flags);
  
  for (;;) {
    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
    
    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
      break;
    
    was_idle = 0;
  }
  
  if (was_idle) {
    spin_unlock_irqrestore (&dev->mem_lock, flags);
    return;
  }
  
  WAIT_FLUSH_RX_COMPLETE(dev);
  
  // XXX Is this all really necessary? We can rely on the rx_data_av
  // handler to discard frames that remain queued for delivery. If the
  // worry is that immediately reopening the channel (perhaps by a
  // different process) may cause some data to be mis-delivered then
  // there may still be a simpler solution (such as busy-waiting on
  // rx_busy once the channel is disabled or before a new one is
  // opened - does this leave any holes?). Arguably setting up and
  // tearing down the TX and RX halves of each virtual circuit could
  // most safely be done within ?x_busy protected regions.
  
  // OK, current changes are that Simon's marker is disabled and we DO
  // look for NULL rxer elsewhere. The code here seems flush frames
  // and then remember the last dead cell belonging to the channel
  // just disabled - the cell gets relinked at the next vc_open.
  // However, when all VCs are closed or only a few opened there are a
  // handful of buffers that are unusable.
  
  // Does anyone feel like documenting spare_buffers properly?
  // Does anyone feel like fixing this in a nicer way?
  
  // Flush any data which is left in the channel
  for (;;) {
    // Change the rx channel port to something different to the RX
    // channel we are trying to close to force Horizon to flush the rx
    // channel read and write pointers.
    
    u16 other = vc^(RX_CHANS/2);
    
    SELECT_RX_CHANNEL (dev, other);
    WAIT_UPDATE_COMPLETE (dev);
    
    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
    
    // Select this RX channel. Flush doesn't seem to work unless we
    // select an RX channel before hand
    
    SELECT_RX_CHANNEL (dev, vc);
    WAIT_UPDATE_COMPLETE (dev);
    
    // Attempt to flush a frame on this RX channel
    
    FLUSH_RX_CHANNEL (dev, vc);
    WAIT_FLUSH_RX_COMPLETE (dev);
    
    // Force Horizon to flush rx channel read and write pointers as before
    
    SELECT_RX_CHANNEL (dev, other);
    WAIT_UPDATE_COMPLETE (dev);
    
    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
    
    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
    
    if (r1 == r2) {
      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
      break;
    }
  }
  
#if 0
  {
    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
    rx_q_entry * rd_ptr = dev->rx_q_entry;
    
    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
    
    while (rd_ptr != wr_ptr) {
      u32 x = rd_mem (dev, (HDW *) rd_ptr);
      
      if (vc == rx_q_entry_to_rx_channel (x)) {
	x |= SIMONS_DODGEY_MARKER;
	
	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
	
	wr_mem (dev, (HDW *) rd_ptr, x);
      }
      
      if (rd_ptr == dev->rx_q_wrap)
	rd_ptr = dev->rx_q_reset;
      else
	rd_ptr++;
    }
  }
#endif
  
  spin_unlock_irqrestore (&dev->mem_lock, flags);
  
  return;
}

/********** schedule RX transfers **********/

// Note on tail recursion: a GCC developer said that it is not likely
// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
// are sure it does as you may otherwise overflow the kernel stack.

// giving this fn a return value would help GCC, allegedly

static void rx_schedule (hrz_dev * dev, int irq) {
  unsigned int rx_bytes;
  
  int pio_instead = 0;
#ifndef TAILRECURSIONWORKS
  pio_instead = 1;
  while (pio_instead) {
#endif
    // bytes waiting for RX transfer
    rx_bytes = dev->rx_bytes;
    
#if 0
    spin_count = 0;
    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
      if (++spin_count > 10) {
	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
	clear_bit (rx_busy, &dev->flags);
	hrz_kfree_skb (dev->rx_skb);
	return;
      }
    }
#endif
    
    // this code follows the TX code but (at the moment) there is only
    // one region - the skb itself. I don't know if this will change,
    // but it doesn't hurt to have the code here, disabled.
    
    if (rx_bytes) {
      // start next transfer within same region
      if (rx_bytes <= MAX_PIO_COUNT) {
	PRINTD (DBG_RX|DBG_BUS, "(pio)");
	pio_instead = 1;
      }
      if (rx_bytes <= MAX_TRANSFER_COUNT) {
	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
	dev->rx_bytes = 0;
      } else {
	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
	rx_bytes = MAX_TRANSFER_COUNT;
      }
    } else {
      // rx_bytes == 0 -- we're between regions
      // regions remaining to transfer
#if 0
      unsigned int rx_regions = dev->rx_regions;
#else
      unsigned int rx_regions = 0;
#endif
      
      if (rx_regions) {
#if 0
	// start a new region
	dev->rx_addr = dev->rx_iovec->iov_base;
	rx_bytes = dev->rx_iovec->iov_len;
	++dev->rx_iovec;
	dev->rx_regions = rx_regions - 1;
	
	if (rx_bytes <= MAX_PIO_COUNT) {
	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
	  pio_instead = 1;
	}
	if (rx_bytes <= MAX_TRANSFER_COUNT) {
	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
	  dev->rx_bytes = 0;
	} else {
	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
	  rx_bytes = MAX_TRANSFER_COUNT;
	}
#endif
      } else {
	// rx_regions == 0
	// that's all folks - end of frame
	struct sk_buff * skb = dev->rx_skb;
	// dev->rx_iovec = 0;
	
	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
	
	dump_skb ("<<<", dev->rx_channel, skb);
	
	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
	
	{
	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
	  // VC layer stats
	  atomic_inc(&vcc->stats->rx);
	  __net_timestamp(skb);
	  // end of our responsibility
	  vcc->push (vcc, skb);
	}
      }
    }
    
    // note: writing RX_COUNT clears any interrupt condition
    if (rx_bytes) {
      if (pio_instead) {
	if (irq)
	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
      } else {
	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
      }
      dev->rx_addr += rx_bytes;
    } else {
      if (irq)
	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
      // allow another RX thread to start
      YELLOW_LED_ON(dev);
      clear_bit (rx_busy, &dev->flags);
      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
    }
    
#ifdef TAILRECURSIONWORKS
    // and we all bless optimised tail calls
    if (pio_instead)
      return rx_schedule (dev, 0);
    return;
#else
    // grrrrrrr!
    irq = 0;
  }
  return;
#endif
}

/********** handle RX bus master complete events **********/

static void rx_bus_master_complete_handler (hrz_dev * dev) {
  if (test_bit (rx_busy, &dev->flags)) {
    rx_schedule (dev, 1);
  } else {
    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
    // clear interrupt condition on adapter
    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
  }
  return;
}

/********** (queue to) become the next TX thread **********/

static int tx_hold (hrz_dev * dev) {
  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
  if (signal_pending (current))
    return -1;
  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
  return 0;
}

/********** allow another TX thread to start **********/

static inline void tx_release (hrz_dev * dev) {
  clear_bit (tx_busy, &dev->flags);
  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
  wake_up_interruptible (&dev->tx_queue);
}

/********** schedule TX transfers **********/

static void tx_schedule (hrz_dev * const dev, int irq) {
  unsigned int tx_bytes;
  
  int append_desc = 0;
  
  int pio_instead = 0;
#ifndef TAILRECURSIONWORKS
  pio_instead = 1;
  while (pio_instead) {
#endif
    // bytes in current region waiting for TX transfer
    tx_bytes = dev->tx_bytes;
    
#if 0
    spin_count = 0;
    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
      if (++spin_count > 10) {
	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
	tx_release (dev);
	hrz_kfree_skb (dev->tx_skb);
	return;
      }
    }
#endif
    
    if (tx_bytes) {
      // start next transfer within same region
      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
	PRINTD (DBG_TX|DBG_BUS, "(pio)");
	pio_instead = 1;
      }
      if (tx_bytes <= MAX_TRANSFER_COUNT) {
	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
	if (!dev->tx_iovec) {
	  // end of last region
	  append_desc = 1;
	}
	dev->tx_bytes = 0;
      } else {
	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
	tx_bytes = MAX_TRANSFER_COUNT;
      }
    } else {
      // tx_bytes == 0 -- we're between regions
      // regions remaining to transfer
      unsigned int tx_regions = dev->tx_regions;
      
      if (tx_regions) {
	// start a new region
	dev->tx_addr = dev->tx_iovec->iov_base;
	tx_bytes = dev->tx_iovec->iov_len;
	++dev->tx_iovec;
	dev->tx_regions = tx_regions - 1;
	
	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
	  pio_instead = 1;
	}
	if (tx_bytes <= MAX_TRANSFER_COUNT) {
	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
	  dev->tx_bytes = 0;
	} else {
	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
	  tx_bytes = MAX_TRANSFER_COUNT;
	}
      } else {
	// tx_regions == 0
	// that's all folks - end of frame
	struct sk_buff * skb = dev->tx_skb;
	dev->tx_iovec = NULL;
	
	// VC layer stats
	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
	
	// free the skb
	hrz_kfree_skb (skb);
      }
    }
    
    // note: writing TX_COUNT clears any interrupt condition
    if (tx_bytes) {
      if (pio_instead) {
	if (irq)
	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
	if (append_desc)
	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
      } else {
	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
	if (append_desc)
	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
		 append_desc
		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
		 : tx_bytes);
      }
      dev->tx_addr += tx_bytes;
    } else {
      if (irq)
	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
      YELLOW_LED_ON(dev);
      tx_release (dev);
    }
    
#ifdef TAILRECURSIONWORKS
    // and we all bless optimised tail calls
    if (pio_instead)
      return tx_schedule (dev, 0);
    return;
#else
    // grrrrrrr!
    irq = 0;
  }
  return;
#endif
}

/********** handle TX bus master complete events **********/

static void tx_bus_master_complete_handler (hrz_dev * dev) {
  if (test_bit (tx_busy, &dev->flags)) {
    tx_schedule (dev, 1);
  } else {
    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
    // clear interrupt condition on adapter
    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
  }
  return;
}

/********** move RX Q pointer to next item in circular buffer **********/

// called only from IRQ sub-handler
static u32 rx_queue_entry_next (hrz_dev * dev) {
  u32 rx_queue_entry;
  spin_lock (&dev->mem_lock);
  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
  if (dev->rx_q_entry == dev->rx_q_wrap)
    dev->rx_q_entry = dev->rx_q_reset;
  else
    dev->rx_q_entry++;
  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
  spin_unlock (&dev->mem_lock);
  return rx_queue_entry;
}

/********** handle RX data received by device **********/

// called from IRQ handler
static void rx_data_av_handler (hrz_dev * dev) {
  u32 rx_queue_entry;
  u32 rx_queue_entry_flags;
  u16 rx_len;
  u16 rx_channel;
  
  PRINTD (DBG_FLOW, "hrz_data_av_handler");
  
  // try to grab rx lock (not possible during RX bus mastering)
  if (test_and_set_bit (rx_busy, &dev->flags)) {
    PRINTD (DBG_RX, "locked out of rx lock");
    return;
  }
  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
  // lock is cleared if we fail now, o/w after bus master completion
  
  YELLOW_LED_OFF(dev);
  
  rx_queue_entry = rx_queue_entry_next (dev);
  
  rx_len = rx_q_entry_to_length (rx_queue_entry);
  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
  
  WAIT_FLUSH_RX_COMPLETE (dev);
  
  SELECT_RX_CHANNEL (dev, rx_channel);
  
  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
  
  if (!rx_len) {
    // (at least) bus-mastering breaks if we try to handle a
    // zero-length frame, besides AAL5 does not support them
    PRINTK (KERN_ERR, "zero-length frame!");
    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
  }
  
  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
  }
  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
    struct atm_vcc * atm_vcc;
    
    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
    
    atm_vcc = dev->rxer[rx_channel];
    // if no vcc is assigned to this channel, we should drop the frame
    // (is this what SIMONS etc. was trying to achieve?)
    
    if (atm_vcc) {
      
      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
	
	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
	    
	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
	  if (skb) {
	    // remember this so we can push it later
	    dev->rx_skb = skb;
	    // remember this so we can flush it later
	    dev->rx_channel = rx_channel;
	    
	    // prepare socket buffer
	    skb_put (skb, rx_len);
	    ATM_SKB(skb)->vcc = atm_vcc;
	    
	    // simple transfer
	    // dev->rx_regions = 0;
	    // dev->rx_iovec = 0;
	    dev->rx_bytes = rx_len;
	    dev->rx_addr = skb->data;
	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
		    skb->data, rx_len);
	    
	    // do the business
	    rx_schedule (dev, 0);
	    return;
	    
	  } else {
	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
	  }
	  
	} else {
	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
	  // do we count this?
	}
	
      } else {
	PRINTK (KERN_WARNING, "dropped over-size frame");
	// do we count this?
      }
      
    } else {
      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
      // do we count this?
    }
    
  } else {
    // Wait update complete ? SPONG
  }
  
  // RX was aborted
  YELLOW_LED_ON(dev);
  
  FLUSH_RX_CHANNEL (dev,rx_channel);
  clear_bit (rx_busy, &dev->flags);
  
  return;
}

/********** interrupt handler **********/

static irqreturn_t interrupt_handler(int irq, void *dev_id)
{
  hrz_dev *dev = dev_id;
  u32 int_source;
  unsigned int irq_ok;
  
  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
  
  // definitely for us
  irq_ok = 0;
  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
	  & INTERESTING_INTERRUPTS)) {
    // In the interests of fairness, the handlers below are
    // called in sequence and without immediate return to the head of
    // the while loop. This is only of issue for slow hosts (or when
    // debugging messages are on). Really slow hosts may find a fast
    // sender keeps them permanently in the IRQ handler. :(
    
    // (only an issue for slow hosts) RX completion goes before
    // rx_data_av as the former implies rx_busy and so the latter
    // would just abort. If it reschedules another transfer
    // (continuing the same frame) then it will not clear rx_busy.
    
    // (only an issue for slow hosts) TX completion goes before RX
    // data available as it is a much shorter routine - there is the
    // chance that any further transfers it schedules will be complete
    // by the time of the return to the head of the while loop
    
    if (int_source & RX_BUS_MASTER_COMPLETE) {
      ++irq_ok;
      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
      rx_bus_master_complete_handler (dev);
    }
    if (int_source & TX_BUS_MASTER_COMPLETE) {
      ++irq_ok;
      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
      tx_bus_master_complete_handler (dev);
    }
    if (int_source & RX_DATA_AV) {
      ++irq_ok;
      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
      rx_data_av_handler (dev);
    }
  }
  if (irq_ok) {
    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
  } else {
    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
  }
  
  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
  if (irq_ok)
	return IRQ_HANDLED;
  return IRQ_NONE;
}

/********** housekeeping **********/

static void do_housekeeping (unsigned long arg) {
  // just stats at the moment
  hrz_dev * dev = (hrz_dev *) arg;

  // collect device-specific (not driver/atm-linux) stats here
  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);

  mod_timer (&dev->housekeeping, jiffies + HZ/10);

  return;
}

/********** find an idle channel for TX and set it up **********/

// called with tx_busy set
static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
  unsigned short idle_channels;
  short tx_channel = -1;
  unsigned int spin_count;
  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
  
  // better would be to fail immediately, the caller can then decide whether
  // to wait or drop (depending on whether this is UBR etc.)
  spin_count = 0;
  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
    // delay a bit here
    if (++spin_count > 100) {
      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
      return -EBUSY;
    }
  }
  
  // got an idle channel
  {
    // tx_idle ensures we look for idle channels in RR order
    int chan = dev->tx_idle;
    
    int keep_going = 1;
    while (keep_going) {
      if (idle_channels & (1<<chan)) {
	tx_channel = chan;
	keep_going = 0;
      }
      ++chan;
      if (chan == TX_CHANS)
	chan = 0;
    }
    
    dev->tx_idle = chan;
  }
  
  // set up the channel we found
  {
    // Initialise the cell header in the transmit channel descriptor
    // a.k.a. prepare the channel and remember that we have done so.
    
    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
    u32 rd_ptr;
    u32 wr_ptr;
    u16 channel = vcc->channel;
    
    unsigned long flags;
    spin_lock_irqsave (&dev->mem_lock, flags);
    
    // Update the transmit channel record.
    dev->tx_channel_record[tx_channel] = channel;
    
    // xBR channel
    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
			      vcc->tx_xbr_bits);
    
    // Update the PCR counter preload value etc.
    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
			      vcc->tx_pcr_bits);

#if 0
    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
      // SCR timer
      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
				vcc->tx_scr_bits);
      
      // Bucket size...
      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
				vcc->tx_bucket_bits);
      
      // ... and fullness
      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
				vcc->tx_bucket_bits);
    }
#endif

    // Initialise the read and write buffer pointers
    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
    
    // idle TX channels should have identical pointers
    if (rd_ptr != wr_ptr) {
      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
      // spin_unlock... return -E...
      // I wonder if gcc would get rid of one of the pointer aliases
    }
    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
	    rd_ptr, wr_ptr);
    
    switch (vcc->aal) {
      case aal0:
	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
	break;
      case aal34:
	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
	rd_ptr |= CHANNEL_TYPE_AAL3_4;
	wr_ptr |= CHANNEL_TYPE_AAL3_4;
	break;
      case aal5:
	rd_ptr |= CHANNEL_TYPE_AAL5;
	wr_ptr |= CHANNEL_TYPE_AAL5;
	// Initialise the CRC
	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
	break;
    }
    
    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
    
    // Write the Cell Header
    // Payload Type, CLP and GFC would go here if non-zero
    wr_mem (dev, &tx_desc->cell_header, channel);
    
    spin_unlock_irqrestore (&dev->mem_lock, flags);
  }
  
  return tx_channel;
}

/********** send a frame **********/

static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
  unsigned int spin_count;
  int free_buffers;
  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
  u16 channel = vcc->channel;
  
  u32 buffers_required;
  
  /* signed for error return */
  short tx_channel;
  
  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
	  channel, skb->data, skb->len);
  
  dump_skb (">>>", channel, skb);
  
  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
    hrz_kfree_skb (skb);
    return -EIO;
  }
  
  // don't understand this
  ATM_SKB(skb)->vcc = atm_vcc;
  
  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
    hrz_kfree_skb (skb);
    return -EIO;
  }
  
  if (!channel) {
    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
    hrz_kfree_skb (skb);
    return -EIO;
  }
  
#if 0
  {
    // where would be a better place for this? housekeeping?
    u16 status;
    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
    if (status & PCI_STATUS_REC_MASTER_ABORT) {
      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
      status &= ~PCI_STATUS_REC_MASTER_ABORT;
      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
      if (test_bit (tx_busy, &dev->flags)) {
	hrz_kfree_skb (dev->tx_skb);
	tx_release (dev);
      }
    }
  }
#endif
  
#ifdef DEBUG_HORIZON
  /* wey-hey! */
  if (channel == 1023) {
    unsigned int i;
    unsigned short d = 0;
    char * s = skb->data;
    if (*s++ == 'D') {
	for (i = 0; i < 4; ++i)
		d = (d << 4) | hex_to_bin(*s++);
      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
    }
  }
#endif
  
  // wait until TX is free and grab lock
  if (tx_hold (dev)) {
    hrz_kfree_skb (skb);
    return -ERESTARTSYS;
  }
 
  // Wait for enough space to be available in transmit buffer memory.
  
  // should be number of cells needed + 2 (according to hardware docs)
  // = ((framelen+8)+47) / 48 + 2
  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
  
  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
  spin_count = 0;
  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
	    free_buffers, buffers_required);
    // what is the appropriate delay? implement a timeout? (depending on line speed?)
    // mdelay (1);
    // what happens if we kill (current_pid, SIGKILL) ?
    schedule();
    if (++spin_count > 1000) {
      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
	      free_buffers, buffers_required);
      tx_release (dev);
      hrz_kfree_skb (skb);
      return -ERESTARTSYS;
    }
  }
  
  // Select a channel to transmit the frame on.
  if (channel == dev->last_vc) {
    PRINTD (DBG_TX, "last vc hack: hit");
    tx_channel = dev->tx_last;
  } else {
    PRINTD (DBG_TX, "last vc hack: miss");
    // Are we currently transmitting this VC on one of the channels?
    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
      if (dev->tx_channel_record[tx_channel] == channel) {
	PRINTD (DBG_TX, "vc already on channel: hit");
	break;
      }
    if (tx_channel == TX_CHANS) { 
      PRINTD (DBG_TX, "vc already on channel: miss");
      // Find and set up an idle channel.
      tx_channel = setup_idle_tx_channel (dev, vcc);
      if (tx_channel < 0) {
	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
	tx_release (dev);
	return tx_channel;
      }
    }
    
    PRINTD (DBG_TX, "got channel");
    SELECT_TX_CHANNEL(dev, tx_channel);
    
    dev->last_vc = channel;
    dev->tx_last = tx_channel;
  }
  
  PRINTD (DBG_TX, "using channel %u", tx_channel);
  
  YELLOW_LED_OFF(dev);
  
  // TX start transfer
  
  {
    unsigned int tx_len = skb->len;
    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
    // remember this so we can free it later
    dev->tx_skb = skb;
    
    if (tx_iovcnt) {
      // scatter gather transfer
      dev->tx_regions = tx_iovcnt;
      dev->tx_iovec = NULL;		/* @@@ needs rewritten */
      dev->tx_bytes = 0;
      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
	      skb->data, tx_len);
      tx_release (dev);
      hrz_kfree_skb (skb);
      return -EIO;
    } else {
      // simple transfer
      dev->tx_regions = 0;
      dev->tx_iovec = NULL;
      dev->tx_bytes = tx_len;
      dev->tx_addr = skb->data;
      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
	      skb->data, tx_len);
    }
    
    // and do the business
    tx_schedule (dev, 0);
    
  }
  
  return 0;
}

/********** reset a card **********/

static void hrz_reset (const hrz_dev * dev) {
  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
  
  // why not set RESET_HORIZON to one and wait for the card to
  // reassert that bit as zero? Like so:
  control_0_reg = control_0_reg & RESET_HORIZON;
  wr_regl (dev, CONTROL_0_REG, control_0_reg);
  while (control_0_reg & RESET_HORIZON)
    control_0_reg = rd_regl (dev, CONTROL_0_REG);
  
  // old reset code retained:
  wr_regl (dev, CONTROL_0_REG, control_0_reg |
	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
  // just guessing here
  udelay (1000);
  
  wr_regl (dev, CONTROL_0_REG, control_0_reg);
}

/********** read the burnt in address **********/

static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
{
	wr_regl (dev, CONTROL_0_REG, ctrl);
	udelay (5);
}
  
static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
{
	// DI must be valid around rising SK edge
	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
}

static u16 read_bia(const hrz_dev *dev, u16 addr)
{
  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
  
  const unsigned int addr_bits = 6;
  const unsigned int data_bits = 16;
  
  unsigned int i;
  
  u16 res;
  
  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
  WRITE_IT_WAIT(dev, ctrl);
  
  // wake Serial EEPROM and send 110 (READ) command
  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
  CLOCK_IT(dev, ctrl);
  
  ctrl |= SEEPROM_DI;
  CLOCK_IT(dev, ctrl);
  
  ctrl &= ~SEEPROM_DI;
  CLOCK_IT(dev, ctrl);
  
  for (i=0; i<addr_bits; i++) {
    if (addr & (1 << (addr_bits-1)))
      ctrl |= SEEPROM_DI;
    else
      ctrl &= ~SEEPROM_DI;
    
    CLOCK_IT(dev, ctrl);
    
    addr = addr << 1;
  }
  
  // we could check that we have DO = 0 here
  ctrl &= ~SEEPROM_DI;
  
  res = 0;
  for (i=0;i<data_bits;i++) {
    res = res >> 1;
    
    CLOCK_IT(dev, ctrl);
    
    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
      res |= (1 << (data_bits-1));
  }
  
  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
  WRITE_IT_WAIT(dev, ctrl);
  
  return res;
}

/********** initialise a card **********/

static int hrz_init(hrz_dev *dev)
{
  int onefivefive;
  
  u16 chan;
  
  int buff_count;
  
  HDW * mem;
  
  cell_buf * tx_desc;
  cell_buf * rx_desc;
  
  u32 ctrl;
  
  ctrl = rd_regl (dev, CONTROL_0_REG);
  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
  onefivefive = ctrl & ATM_LAYER_STATUS;
  
  if (onefivefive)
    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
  else
    printk (DEV_LABEL ": Horizon (at 25 MBps)");
  
  printk (":");
  // Reset the card to get everything in a known state
  
  printk (" reset");
  hrz_reset (dev);
  
  // Clear all the buffer memory
  
  printk (" clearing memory");
  
  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
    wr_mem (dev, mem, 0);
  
  printk (" tx channels");
  
  // All transmit eight channels are set up as AAL5 ABR channels with
  // a 16us cell spacing. Why?
  
  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
  // buffer at 110h etc.
  
  for (chan = 0; chan < TX_CHANS; ++chan) {
    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
    cell_buf * buf = &memmap->inittxbufs[chan];
    
    // initialise the read and write buffer pointers
    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
    
    // set the status of the initial buffers to empty
    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
  }
  
  // Use space bufn3 at the moment for tx buffers
  
  printk (" tx buffers");
  
  tx_desc = memmap->bufn3;
  
  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
  
  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
    tx_desc++;
  }
  
  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
  
  // Initialise the transmit free buffer count
  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
  
  printk (" rx channels");
  
  // Initialise all of the receive channels to be AAL5 disabled with
  // an interrupt threshold of 0
  
  for (chan = 0; chan < RX_CHANS; ++chan) {
    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
    
    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
  }
  
  printk (" rx buffers");
  
  // Use space bufn4 at the moment for rx buffers
  
  rx_desc = memmap->bufn4;
  
  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
  
  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
    
    rx_desc++;
  }
  
  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
  
  // Initialise the receive free buffer count
  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
  
  // Initialize Horizons registers
  
  // TX config
  wr_regw (dev, TX_CONFIG_OFF,
	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
  
  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
  wr_regw (dev, RX_CONFIG_OFF,
	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
  
  // RX line config
  wr_regw (dev, RX_LINE_CONFIG_OFF,
	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
  
  // Set the max AAL5 cell count to be just enough to contain the
  // largest AAL5 frame that the user wants to receive
  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
  
  // Enable receive
  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
  
  printk (" control");
  
  // Drive the OE of the LEDs then turn the green LED on
  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
  wr_regl (dev, CONTROL_0_REG, ctrl);
  
  // Test for a 155-capable card
  
  if (onefivefive) {
    // Select 155 mode... make this a choice (or: how do we detect
    // external line speed and switch?)
    ctrl |= ATM_LAYER_SELECT;
    wr_regl (dev, CONTROL_0_REG, ctrl);
    
    // test SUNI-lite vs SAMBA
    
    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
    // engineers.  It'll never work.
    
    if (rd_framer (dev, 0) & 0x00f0) {
      // SUNI
      printk (" SUNI");
      
      // Reset, just in case
      wr_framer (dev, 0x00, 0x0080);
      wr_framer (dev, 0x00, 0x0000);
      
      // Configure transmit FIFO
      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
      
      // Set line timed mode
      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
    } else {
      // SAMBA
      printk (" SAMBA");
      
      // Reset, just in case
      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
      
      // Turn off diagnostic loopback and enable line-timed mode
      wr_framer (dev, 0, 0x0002);
      
      // Turn on transmit outputs
      wr_framer (dev, 2, 0x0B80);
    }
  } else {
    // Select 25 mode
    ctrl &= ~ATM_LAYER_SELECT;
    
    // Madge B154 setup
    // none required?
  }
  
  printk (" LEDs");
  
  GREEN_LED_ON(dev);
  YELLOW_LED_ON(dev);
  
  printk (" ESI=");
  
  {
    u16 b = 0;
    int i;
    u8 * esi = dev->atm_dev->esi;
    
    // in the card I have, EEPROM
    // addresses 0, 1, 2 contain 0
    // addresess 5, 6 etc. contain ffff
    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
    // the read_bia routine gets the BIA in Ethernet bit order
    
    for (i=0; i < ESI_LEN; ++i) {
      if (i % 2 == 0)
	b = read_bia (dev, i/2 + 2);
      else
	b = b >> 8;
      esi[i] = b & 0xFF;
      printk ("%02x", esi[i]);
    }
  }
  
  // Enable RX_Q and ?X_COMPLETE interrupts only
  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
  printk (" IRQ on");
  
  printk (".\n");
  
  return onefivefive;
}

/********** check max_sdu **********/

static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
  
  switch (aal) {
    case aal0:
      if (!(tp->max_sdu)) {
	PRINTD (DBG_QOS, "defaulting max_sdu");
	tp->max_sdu = ATM_AAL0_SDU;
      } else if (tp->max_sdu != ATM_AAL0_SDU) {
	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
	return -EINVAL;
      }
      break;
    case aal34:
      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
	tp->max_sdu = ATM_MAX_AAL34_PDU;
      }
      break;
    case aal5:
      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
	tp->max_sdu = max_frame_size;
      }
      break;
  }
  return 0;
}

/********** check pcr **********/

// something like this should be part of ATM Linux
static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
  // we are assuming non-UBR, and non-special values of pcr
  if (tp->min_pcr == ATM_MAX_PCR)
    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
  else if (tp->min_pcr < 0)
    PRINTD (DBG_QOS, "luser gave negative min_pcr");
  else if (tp->min_pcr && tp->min_pcr > pcr)
    PRINTD (DBG_QOS, "pcr less than min_pcr");
  else
    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
    // [this would get rid of next two conditionals]
    if ((0) && tp->max_pcr == ATM_MAX_PCR)
      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
      PRINTD (DBG_QOS, "luser gave negative max_pcr");
    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
      PRINTD (DBG_QOS, "pcr greater than max_pcr");
    else {
      // each limit unspecified or not violated
      PRINTD (DBG_QOS, "xBR(pcr) OK");
      return 0;
    }
  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
  return -EINVAL;
}

/********** open VC **********/

static int hrz_open (struct atm_vcc *atm_vcc)
{
  int error;
  u16 channel;
  
  struct atm_qos * qos;
  struct atm_trafprm * txtp;
  struct atm_trafprm * rxtp;
  
  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
  hrz_vcc vcc;
  hrz_vcc * vccp; // allocated late
  short vpi = atm_vcc->vpi;
  int vci = atm_vcc->vci;
  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
  
#ifdef ATM_VPI_UNSPEC
  // UNSPEC is deprecated, remove this code eventually
  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
    return -EINVAL;
  }
#endif
  
  error = vpivci_to_channel (&channel, vpi, vci);
  if (error) {
    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
    return error;
  }
  
  vcc.channel = channel;
  // max speed for the moment
  vcc.tx_rate = 0x0;
  
  qos = &atm_vcc->qos;
  
  // check AAL and remember it
  switch (qos->aal) {
    case ATM_AAL0:
      // we would if it were 48 bytes and not 52!
      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
      vcc.aal = aal0;
      break;
    case ATM_AAL34:
      // we would if I knew how do the SAR!
      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
      vcc.aal = aal34;
      break;
    case ATM_AAL5:
      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
      vcc.aal = aal5;
      break;
    default:
      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
      return -EINVAL;
  }
  
  // TX traffic parameters
  
  // there are two, interrelated problems here: 1. the reservation of
  // PCR is not a binary choice, we are given bounds and/or a
  // desirable value; 2. the device is only capable of certain values,
  // most of which are not integers. It is almost certainly acceptable
  // to be off by a maximum of 1 to 10 cps.
  
  // Pragmatic choice: always store an integral PCR as that which has
  // been allocated, even if we allocate a little (or a lot) less,
  // after rounding. The actual allocation depends on what we can
  // manage with our rate selection algorithm. The rate selection
  // algorithm is given an integral PCR and a tolerance and told
  // whether it should round the value up or down if the tolerance is
  // exceeded; it returns: a) the actual rate selected (rounded up to
  // the nearest integer), b) a bit pattern to feed to the timer
  // register, and c) a failure value if no applicable rate exists.
  
  // Part of the job is done by atm_pcr_goal which gives us a PCR
  // specification which says: EITHER grab the maximum available PCR
  // (and perhaps a lower bound which we musn't pass), OR grab this
  // amount, rounding down if you have to (and perhaps a lower bound
  // which we musn't pass) OR grab this amount, rounding up if you
  // have to (and perhaps an upper bound which we musn't pass). If any
  // bounds ARE passed we fail. Note that rounding is only rounding to
  // match device limitations, we do not round down to satisfy
  // bandwidth availability even if this would not violate any given
  // lower bound.
  
  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
  // (say) so this is not even a binary fixpoint cell rate (but this
  // device can do it). To avoid this sort of hassle we use a
  // tolerance parameter (currently fixed at 10 cps).
  
  PRINTD (DBG_QOS, "TX:");
  
  txtp = &qos->txtp;
  
  // set up defaults for no traffic
  vcc.tx_rate = 0;
  // who knows what would actually happen if you try and send on this?
  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
  vcc.tx_pcr_bits = CLOCK_DISABLE;
#if 0
  vcc.tx_scr_bits = CLOCK_DISABLE;
  vcc.tx_bucket_bits = 0;
#endif
  
  if (txtp->traffic_class != ATM_NONE) {
    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
    if (error) {
      PRINTD (DBG_QOS, "TX max_sdu check failed");
      return error;
    }
    
    switch (txtp->traffic_class) {
      case ATM_UBR: {
	// we take "the PCR" as a rate-cap
	// not reserved
	vcc.tx_rate = 0;
	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
	vcc.tx_xbr_bits = ABR_RATE_TYPE;
	break;
      }
#if 0
      case ATM_ABR: {
	// reserve min, allow up to max
	vcc.tx_rate = 0; // ?
	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
	vcc.tx_xbr_bits = ABR_RATE_TYPE;
	break;
      }
#endif
      case ATM_CBR: {
	int pcr = atm_pcr_goal (txtp);
	rounding r;
	if (!pcr) {
	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
	  // should really have: once someone gets unlimited bandwidth
	  // that no more non-UBR channels can be opened until the
	  // unlimited one closes?? For the moment, round_down means
	  // greedy people actually get something and not nothing
	  r = round_down;
	  // slight race (no locking) here so we may get -EAGAIN
	  // later; the greedy bastards would deserve it :)
	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
	  pcr = dev->tx_avail;
	} else if (pcr < 0) {
	  r = round_down;
	  pcr = -pcr;
	} else {
	  r = round_up;
	}
	error = make_rate_with_tolerance (dev, pcr, r, 10,
					  &vcc.tx_pcr_bits, &vcc.tx_rate);
	if (error) {
	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
	  return error;
	}
	// not really clear what further checking is needed
	error = atm_pcr_check (txtp, vcc.tx_rate);
	if (error) {
	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
	  return error;
	}
	vcc.tx_xbr_bits = CBR_RATE_TYPE;
	break;
      }
#if 0
      case ATM_VBR: {
	int pcr = atm_pcr_goal (txtp);
	// int scr = atm_scr_goal (txtp);
	int scr = pcr/2; // just for fun
	unsigned int mbs = 60; // just for fun
	rounding pr;
	rounding sr;
	unsigned int bucket;
	if (!pcr) {
	  pr = round_nearest;
	  pcr = 1<<30;
	} else if (pcr < 0) {
	  pr = round_down;
	  pcr = -pcr;
	} else {
	  pr = round_up;
	}
	error = make_rate_with_tolerance (dev, pcr, pr, 10,
					  &vcc.tx_pcr_bits, 0);
	if (!scr) {
	  // see comments for PCR with CBR above
	  sr = round_down;
	  // slight race (no locking) here so we may get -EAGAIN
	  // later; the greedy bastards would deserve it :)
	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
	  scr = dev->tx_avail;
	} else if (scr < 0) {
	  sr = round_down;
	  scr = -scr;
	} else {
	  sr = round_up;
	}
	error = make_rate_with_tolerance (dev, scr, sr, 10,
					  &vcc.tx_scr_bits, &vcc.tx_rate);
	if (error) {
	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
	  return error;
	}
	// not really clear what further checking is needed
	// error = atm_scr_check (txtp, vcc.tx_rate);
	if (error) {
	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
	  return error;
	}
	// bucket calculations (from a piece of paper...) cell bucket
	// capacity must be largest integer smaller than m(p-s)/p + 1
	// where m = max burst size, p = pcr, s = scr
	bucket = mbs*(pcr-scr)/pcr;
	if (bucket*pcr != mbs*(pcr-scr))
	  bucket += 1;
	if (bucket > BUCKET_MAX_SIZE) {
	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
		  bucket, BUCKET_MAX_SIZE);
	  bucket = BUCKET_MAX_SIZE;
	}
	vcc.tx_xbr_bits = VBR_RATE_TYPE;
	vcc.tx_bucket_bits = bucket;
	break;
      }
#endif
      default: {
	PRINTD (DBG_QOS, "unsupported TX traffic class");
	return -EINVAL;
      }
    }
  }
  
  // RX traffic parameters
  
  PRINTD (DBG_QOS, "RX:");
  
  rxtp = &qos->rxtp;
  
  // set up defaults for no traffic
  vcc.rx_rate = 0;
  
  if (rxtp->traffic_class != ATM_NONE) {
    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
    if (error) {
      PRINTD (DBG_QOS, "RX max_sdu check failed");
      return error;
    }
    switch (rxtp->traffic_class) {
      case ATM_UBR: {
	// not reserved
	break;
      }
#if 0
      case ATM_ABR: {
	// reserve min
	vcc.rx_rate = 0; // ?
	break;
      }
#endif
      case ATM_CBR: {
	int pcr = atm_pcr_goal (rxtp);
	if (!pcr) {
	  // slight race (no locking) here so we may get -EAGAIN
	  // later; the greedy bastards would deserve it :)
	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
	  pcr = dev->rx_avail;
	} else if (pcr < 0) {
	  pcr = -pcr;
	}
	vcc.rx_rate = pcr;
	// not really clear what further checking is needed
	error = atm_pcr_check (rxtp, vcc.rx_rate);
	if (error) {
	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
	  return error;
	}
	break;
      }
#if 0
      case ATM_VBR: {
	// int scr = atm_scr_goal (rxtp);
	int scr = 1<<16; // just for fun
	if (!scr) {
	  // slight race (no locking) here so we may get -EAGAIN
	  // later; the greedy bastards would deserve it :)
	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
	  scr = dev->rx_avail;
	} else if (scr < 0) {
	  scr = -scr;
	}
	vcc.rx_rate = scr;
	// not really clear what further checking is needed
	// error = atm_scr_check (rxtp, vcc.rx_rate);
	if (error) {
	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
	  return error;
	}
	break;
      }
#endif
      default: {
	PRINTD (DBG_QOS, "unsupported RX traffic class");
	return -EINVAL;
      }
    }
  }
  
  
  // late abort useful for diagnostics
  if (vcc.aal != aal5) {
    PRINTD (DBG_QOS, "AAL not supported");
    return -EINVAL;
  }
  
  // get space for our vcc stuff and copy parameters into it
  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
  if (!vccp) {
    PRINTK (KERN_ERR, "out of memory!");
    return -ENOMEM;
  }
  *vccp = vcc;
  
  // clear error and grab cell rate resource lock
  error = 0;
  spin_lock (&dev->rate_lock);
  
  if (vcc.tx_rate > dev->tx_avail) {
    PRINTD (DBG_QOS, "not enough TX PCR left");
    error = -EAGAIN;
  }
  
  if (vcc.rx_rate > dev->rx_avail) {
    PRINTD (DBG_QOS, "not enough RX PCR left");
    error = -EAGAIN;
  }
  
  if (!error) {
    // really consume cell rates
    dev->tx_avail -= vcc.tx_rate;
    dev->rx_avail -= vcc.rx_rate;
    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
	    vcc.tx_rate, vcc.rx_rate);
  }
  
  // release lock and exit on error
  spin_unlock (&dev->rate_lock);
  if (error) {
    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
    kfree (vccp);
    return error;
  }
  
  // this is "immediately before allocating the connection identifier
  // in hardware" - so long as the next call does not fail :)
  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
  
  // any errors here are very serious and should never occur
  
  if (rxtp->traffic_class != ATM_NONE) {
    if (dev->rxer[channel]) {
      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
      error = -EBUSY;
    }
    if (!error)
      error = hrz_open_rx (dev, channel);
    if (error) {
      kfree (vccp);
      return error;
    }
    // this link allows RX frames through
    dev->rxer[channel] = atm_vcc;
  }
  
  // success, set elements of atm_vcc
  atm_vcc->dev_data = (void *) vccp;
  
  // indicate readiness
  set_bit(ATM_VF_READY,&atm_vcc->flags);
  
  return 0;
}

/********** close VC **********/

static void hrz_close (struct atm_vcc * atm_vcc) {
  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
  u16 channel = vcc->channel;
  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
  
  // indicate unreadiness
  clear_bit(ATM_VF_READY,&atm_vcc->flags);

  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
    unsigned int i;
    
    // let any TX on this channel that has started complete
    // no restart, just keep trying
    while (tx_hold (dev))
      ;
    // remove record of any tx_channel having been setup for this channel
    for (i = 0; i < TX_CHANS; ++i)
      if (dev->tx_channel_record[i] == channel) {
	dev->tx_channel_record[i] = -1;
	break;
      }
    if (dev->last_vc == channel)
      dev->tx_last = -1;
    tx_release (dev);
  }

  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
    // disable RXing - it tries quite hard
    hrz_close_rx (dev, channel);
    // forget the vcc - no more skbs will be pushed
    if (atm_vcc != dev->rxer[channel])
      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
	      "arghhh! we're going to die!",
	      atm_vcc, dev->rxer[channel]);
    dev->rxer[channel] = NULL;
  }
  
  // atomically release our rate reservation
  spin_lock (&dev->rate_lock);
  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
	  vcc->tx_rate, vcc->rx_rate);
  dev->tx_avail += vcc->tx_rate;
  dev->rx_avail += vcc->rx_rate;
  spin_unlock (&dev->rate_lock);
  
  // free our structure
  kfree (vcc);
  // say the VPI/VCI is free again
  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
}

#if 0
static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
			   void *optval, int optlen) {
  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
  switch (level) {
    case SOL_SOCKET:
      switch (optname) {
//	case SO_BCTXOPT:
//	  break;
//	case SO_BCRXOPT:
//	  break;
	default:
	  return -ENOPROTOOPT;
      };
      break;
  }
  return -EINVAL;
}

static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
			   void *optval, unsigned int optlen) {
  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
  switch (level) {
    case SOL_SOCKET:
      switch (optname) {
//	case SO_BCTXOPT:
//	  break;
//	case SO_BCRXOPT:
//	  break;
	default:
	  return -ENOPROTOOPT;
      };
      break;
  }
  return -EINVAL;
}
#endif

#if 0
static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
  hrz_dev * dev = HRZ_DEV(atm_dev);
  PRINTD (DBG_FLOW, "hrz_ioctl");
  return -1;
}

unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
  hrz_dev * dev = HRZ_DEV(atm_dev);
  PRINTD (DBG_FLOW, "hrz_phy_get");
  return 0;
}

static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
			 unsigned long addr) {
  hrz_dev * dev = HRZ_DEV(atm_dev);
  PRINTD (DBG_FLOW, "hrz_phy_put");
}

static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
  hrz_dev * dev = HRZ_DEV(vcc->dev);
  PRINTD (DBG_FLOW, "hrz_change_qos");
  return -1;
}
#endif

/********** proc file contents **********/

static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
  hrz_dev * dev = HRZ_DEV(atm_dev);
  int left = *pos;
  PRINTD (DBG_FLOW, "hrz_proc_read");
  
  /* more diagnostics here? */
  
#if 0
  if (!left--) {
    unsigned int count = sprintf (page, "vbr buckets:");
    unsigned int i;
    for (i = 0; i < TX_CHANS; ++i)
      count += sprintf (page, " %u/%u",
			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
    count += sprintf (page+count, ".\n");
    return count;
  }
#endif
  
  if (!left--)
    return sprintf (page,
		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
		    dev->tx_cell_count, dev->rx_cell_count,
		    dev->hec_error_count, dev->unassigned_cell_count);
  
  if (!left--)
    return sprintf (page,
		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
		    dev->noof_spare_buffers);
  
  if (!left--)
    return sprintf (page,
		    "cps remaining: TX %u, RX %u\n",
		    dev->tx_avail, dev->rx_avail);
  
  return 0;
}

static const struct atmdev_ops hrz_ops = {
  .open	= hrz_open,
  .close	= hrz_close,
  .send	= hrz_send,
  .proc_read	= hrz_proc_read,
  .owner	= THIS_MODULE,
};

static int hrz_probe(struct pci_dev *pci_dev,
		     const struct pci_device_id *pci_ent)
{
	hrz_dev * dev;
	int err = 0;

	// adapter slot free, read resources from PCI configuration space
	u32 iobase = pci_resource_start (pci_dev, 0);
	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
	unsigned int irq;
	unsigned char lat;

	PRINTD (DBG_FLOW, "hrz_probe");

	if (pci_enable_device(pci_dev))
		return -EINVAL;

	/* XXX DEV_LABEL is a guess */
	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
		err = -EINVAL;
		goto out_disable;
	}

	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
	if (!dev) {
		// perhaps we should be nice: deregister all adapters and abort?
		PRINTD(DBG_ERR, "out of memory");
		err = -ENOMEM;
		goto out_release;
	}

	pci_set_drvdata(pci_dev, dev);

	// grab IRQ and install handler - move this someplace more sensible
	irq = pci_dev->irq;
	if (request_irq(irq,
			interrupt_handler,
			IRQF_SHARED, /* irqflags guess */
			DEV_LABEL, /* name guess */
			dev)) {
		PRINTD(DBG_WARN, "request IRQ failed!");
		err = -EINVAL;
		goto out_free;
	}

	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
	       iobase, irq, membase);

	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
					NULL);
	if (!(dev->atm_dev)) {
		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
		err = -EINVAL;
		goto out_free_irq;
	}

	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
	       dev->atm_dev->number, dev, dev->atm_dev);
	dev->atm_dev->dev_data = (void *) dev;
	dev->pci_dev = pci_dev; 

	// enable bus master accesses
	pci_set_master(pci_dev);

	// frobnicate latency (upwards, usually)
	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
	if (pci_lat) {
		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
		       "changing", lat, pci_lat);
		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
	} else if (lat < MIN_PCI_LATENCY) {
		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
		       "increasing", lat, MIN_PCI_LATENCY);
		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
	}

	dev->iobase = iobase;
	dev->irq = irq; 
	dev->membase = membase; 

	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];

	// these next three are performance hacks
	dev->last_vc = -1;
	dev->tx_last = -1;
	dev->tx_idle = 0;

	dev->tx_regions = 0;
	dev->tx_bytes = 0;
	dev->tx_skb = NULL;
	dev->tx_iovec = NULL;

	dev->tx_cell_count = 0;
	dev->rx_cell_count = 0;
	dev->hec_error_count = 0;
	dev->unassigned_cell_count = 0;

	dev->noof_spare_buffers = 0;

	{
		unsigned int i;
		for (i = 0; i < TX_CHANS; ++i)
			dev->tx_channel_record[i] = -1;
	}

	dev->flags = 0;

	// Allocate cell rates and remember ASIC version
	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53

	if (hrz_init(dev)) {
		// to be really pedantic, this should be ATM_OC3c_PCR
		dev->tx_avail = ATM_OC3_PCR;
		dev->rx_avail = ATM_OC3_PCR;
		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
	} else {
		dev->tx_avail = ((25600000/8)*26)/(27*53);
		dev->rx_avail = ((25600000/8)*26)/(27*53);
		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
	}

	// rate changes spinlock
	spin_lock_init(&dev->rate_lock);

	// on-board memory access spinlock; we want atomic reads and
	// writes to adapter memory (handles IRQ and SMP)
	spin_lock_init(&dev->mem_lock);

	init_waitqueue_head(&dev->tx_queue);

	// vpi in 0..4, vci in 6..10
	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;

	setup_timer(&dev->housekeeping, do_housekeeping, (unsigned long) dev);
	mod_timer(&dev->housekeeping, jiffies);

out:
	return err;

out_free_irq:
	free_irq(irq, dev);
out_free:
	kfree(dev);
out_release:
	release_region(iobase, HRZ_IO_EXTENT);
out_disable:
	pci_disable_device(pci_dev);
	goto out;
}

static void hrz_remove_one(struct pci_dev *pci_dev)
{
	hrz_dev *dev;

	dev = pci_get_drvdata(pci_dev);

	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
	del_timer_sync(&dev->housekeeping);
	hrz_reset(dev);
	atm_dev_deregister(dev->atm_dev);
	free_irq(dev->irq, dev);
	release_region(dev->iobase, HRZ_IO_EXTENT);
	kfree(dev);

	pci_disable_device(pci_dev);
}

static void __init hrz_check_args (void) {
#ifdef DEBUG_HORIZON
  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
#else
  if (debug)
    PRINTK (KERN_NOTICE, "no debug support in this image");
#endif
  
  if (vpi_bits > HRZ_MAX_VPI)
    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
	    vpi_bits = HRZ_MAX_VPI);
  
  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
	    max_tx_size = TX_AAL5_LIMIT);
  
  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
	    max_rx_size = RX_AAL5_LIMIT);
  
  return;
}

MODULE_AUTHOR(maintainer_string);
MODULE_DESCRIPTION(description_string);
MODULE_LICENSE("GPL");
module_param(debug, ushort, 0644);
module_param(vpi_bits, ushort, 0);
module_param(max_tx_size, int, 0);
module_param(max_rx_size, int, 0);
module_param(pci_lat, byte, 0);
MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");

static const struct pci_device_id hrz_pci_tbl[] = {
	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
	  0, 0, 0 },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);

static struct pci_driver hrz_driver = {
	.name =		"horizon",
	.probe =	hrz_probe,
	.remove =	hrz_remove_one,
	.id_table =	hrz_pci_tbl,
};

/********** module entry **********/

static int __init hrz_module_init (void) {
  BUILD_BUG_ON(sizeof(struct MEMMAP) != 128*1024/4);
  
  show_version();
  
  // check arguments
  hrz_check_args();
  
  // get the juice
  return pci_register_driver(&hrz_driver);
}

/********** module exit **********/

static void __exit hrz_module_exit (void) {
  PRINTD (DBG_FLOW, "cleanup_module");

  pci_unregister_driver(&hrz_driver);
}

module_init(hrz_module_init);
module_exit(hrz_module_exit);